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Abstract 
This study contributes to understanding the relationship between climatic variables and 
groundnut production in different farming systems in Uganda.  Alternative production 
function models are estimated using pooled cross-sectional time series data at the district 
level.  The models incorporate land area, indicators for farming systems, technological 
change, and either rainfall or the El Niño–Southern Oscillation (ENSO) effect as 
variables to account for climatic conditions.  The data set includes 333 observations 
corresponding to 37 districts for 9 consecutive years, from 1992 to 2000.  Analyses were 
performed using a Translog functional form and GARCH estimators. The results suggest 
that the partial elasticity of production for land is positive, high and significant, which is 
consistent with a priori expectations.  Farming systems are also found to have a 
significant impact on output variability.  Climatic conditions, measured by rainfall, have a 
non-significant effect; but, when the ENSO phenomenon is used instead a significant 
negative effect is detected particularly for the warm phase.  An important and alarming 
finding is a marked negative rate of technological change revealing productivity losses 
over the time period studied. 
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Groundnut Production and Climatic Variability: 
Evidence from Uganda 

 
 
1.  Introduction  

 
Agriculture in Africa has a crucial role to play in spurring growth, overcoming 

poverty, and enhancing food security (World Bank, 2008).  Growth in agriculture can be 
compatible with development patterns that are employment-intensive and hence 
favorable to the poor (FAAP, 2006).  As an economic activity, agriculture can be a source 
of growth for the national economy, a provider of investment opportunities for the private 
sector, and a prime driver of agriculture-related industries and the rural nonfarm 
economy.  The sector accounts for a large share of national income, employment, and 
foreign trade in Africa.  However, the persistent underperformance of farming in much of 
Africa has not helped significantly to reduce poverty or to alleviate hunger and 
malnutrition. In order to achieve higher rates of agricultural growth, farm productivity 
needs to improve significantly (FAAP, 2006; World Bank, 2008).   

A growing scientific literature has established empirically that climatic conditions 
have a measurable impact on agricultural output and productivity.  Winter et al. (1996) 
studied the expected impact of climate on macroeconomic variables, household income, 
and food consumption in Africa, Asia, and Latin America, and concluded that Africa was 
the most vulnerable of the areas studied. Jones et al. (1997) suggested that climate change 
has a direct effect on crop yields and farm management, and that variations in these 
parameters will have subsequent effects on the implementation of new economic policies 
and adaptation strategies.  According to Masters and Wiebe (2000), the most direct 
impact of climate change in Africa stems from growing water shortages or drought, 
leading to an increasing dependence on imported foodstuffs (Boubacar, 2010).  A recent 
IPCC report (Boko et al., 2007) concluded that changing climatic conditions are likely to 
impose additional pressure on water availability, reducing the length of the growing 
season and forcing large regions of marginal agriculture out of production.  The same 
report predicts a 50% reduction in yields by 2020 and a 90% reduction in crop net 
revenues by 2100 in areas that are already classified as marginal in Africa.    

 
Various modeling frameworks have been used to estimate the impact of changing 

climatic conditions on the economy in general and the agricultural sector in particular.  
One such framework is based on simulation methods and includes work by Mearns et al. 
(1997), Phillips et al. (1998), Aggarwal and Mall (2002), and Wang (2005).  A second 
option that has been widely used by economists is the Ricardian approach, in which 
regression analysis is used to examine the impact of climatic conditions on land values or 
net farm income (e.g., Mendelsohn et al., 1994; Deschenes and Greenstone, 2007). A 
third modeling alternative relies on regression estimates of production functions where 
changes in aggregate or specific outputs are explained in terms of a set of variables that 
includes climatic indicators (e.g., Austin et al., 1998; Chen et al., 2004; Barrios et al., 
2008; Schlenker and Lobell, 2010).  This latter modeling approach is applied in this 
study, consistent with the type of data utilized.   
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As Hassan (2010) has recently noted, given the vulnerability of African countries to 
global warming, more disaggregated studies—in terms of geography, agroecological 
zones and type of farming—of the impact of climatic change on agriculture are needed.  
Moreover, the African Centre for Technology Studies (ACTS) has concluded that 
agriculture in Uganda is highly susceptible to changes in climatic conditions, and the 
most important factor limiting productivity is precipitation (Orindi and Eriksen, 2005).  
Considering the dearth of studies that examine the relationship between climatic 
conditions and agricultural productivity in Uganda, this constitutes an important subject 
for research to support strategic adaptations to increasing climatic variability.   

 
This paper aims at narrowing this knowledge gap by assessing the impact of climatic 

variability on groundnut production in Uganda, accounting for the various farming 
systems found throughout the country.  The focus on groundnuts is based on the 
importance of this crop to the country, as detailed in the next section. Alternative 
production function models are estimated, using data for 13 farming systems in 37 
districts for the period 1992–2000.  Climatic variability is captured in two alternative 
ways: (1) using rainfall data; and (2) using the phases of the El Niño–Southern 
Oscillation (ENSO).  The data available for rainfall is limited, as elaborated below, and 
this provides the major rationale for using the ENSO phases.  The estimation strategy 
takes into account the panel structure of the data by using the Generalized Autoregressive 
Conditional Heteroscedastic (GARCH) method. 

 
The remainder of this paper consists of six sections.  Section 2 is an overview of 

Ugandan agriculture and groundnut production, and Section 3 is a review of the existing 
literature on the connection between rainfall and agricultural productivity.  Sections 4 and 
5 present the characteristics of the data and the methodology, respectively.  Section 6 
discusses the results and the last section presents our conclusions. 
 
 
2.  Overview of Ugandan Agriculture and Groundnut Production 

 
Uganda is a landlocked country in eastern Africa (Figure 1) covering an area of about 

241,000 km2. The total population was estimated at 25,827,000 in 2003, with an expected 
annual growth rate of 3.24% for 2000–2005 (UN, 2008).  Most of Uganda has a tropical 
climate, with two rainy and two dry seasons per year.  The rainy seasons are from March 
to May and from September to November (Howard, 1991). The country is divided into 
several broad agroecological zones based on the similarity of various characteristics 
within each zone including soil type, production potential, topography, temperature, 
rainfall, and farming practices (Sandra, 1998). 

 
In the recent World Bank (2008) classification, Uganda is included as an agriculture-

based country, which means that the farming sector plays a dominant role in the country’s 
economy.  This classification is consistent with the fact that agriculture accounts for 36% 
of GDP, 81% of the employed labor force, and 31% of export earnings.  The total area 
under cultivation is just over 68,000 km2, or about one-third of the land area, and about 
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70% of this area is used to produce food crops for local consumption (Encyclopedia of 
the Nations, Uganda, 2007). 

 
Groundnut is the second most widely grown legume in Uganda, after common beans.  

Groundnuts were brought into Uganda by early traders and travelers following the initial 
introduction of this crop into East Africa by Portuguese explorers in the mid-1800s 
(Nalyongo and Emeetai-Areke, 1987; Busolo-Bulafu, 1990).  It is considered a women’s 
crop, since it was originally grown by females to supplement family diets with protein 
(Kenny and Finn, 2004).  The groundnuts are consumed primarily roasted or as oil.  This 
crop requires few inputs and increases soil fertility by fixing nitrogen, making it an 
appropriate choice in the low-input agricultural systems that are prevalent among many 
small-scale farmers in Africa (Smartt, 1994; Okello et al., 2010).  Moreover, as a cash 
crop, groundnut can give relatively high returns for a limited land area, and is well 
adapted to the hot semi-arid conditions characterizing many of the regions where it is 
grown (Wangai et al., 2001).  

 
Groundnut yields in Uganda are constrained by various factors.  One constraint is the 

high incidence of diseases and pests where groundnut rosette disease (GRD) and late leaf 
spot (LLD) are the main culprits (Okello et al, 2010). Bonabana-Wabbi et al. (2008) 
noted that GRD and LLD on groundnut can lead to complete crop failure, and farmers 
have limited access to operating capital to purchase chemical pesticides or fungicides to 
cope with infestations. Other significant constraints include restricted supplies of 
improved seed varieties and unreliable rainfall, with recurring droughts being a major 
challenge (Busolo-Bulafu, 1990; Naidu et al. 1999; Okello et al., 2010).   
 
 
3.  Rainfall and Agriculture: Literature Review 

As already noted, a number of researchers have suggested the importance of rainfall 
for general economic growth in Africa.  Tesfaye (1988) and Tsegay (1998) used different 
methodologies to predict the impact of rainfall patterns on production in Ethiopia.  More 
detailed studies examined the correlation between yields and the amount of rainfall for 
particular crops in a given year.  The study by Austin et al. (1998) in Spain showed a 
strong correlation between farm-specific yields and rainfall.  O’Connell and Ndulu 
(2000) included a measure of the number of dry years in a cross-country growth 
regression of African countries and found that this variable has a significant negative 
effect on economic growth rates.   

 
Using climate data from the Intergovernmental Panel on Climate Change (IPCC), 

Masters and Sachs (2001) showed the effects of rainfall on a sample of developing and 
developed countries.  Another early contribution to this literature is by Sherlund et al. 
(2002) who incorporated rainfall, soil fertility, and slope into a stochastic production 
frontier model for rice in the Côte d’Ivoire.  More recently, Alem et al. (2010), using 
random effects Tobit adoption models and panel data from a sample of producers located 
in the Central Highlands of Ethiopia, concluded that increased rainfall in the previous 
year is associated with greater fertilizer applications in the current year, while higher 
rainfall variability leads to a lower probability of using fertilizer and also decreases the 
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intensity of fertilizer use.  These results imply that the connection between good weather 
along with lower rainfall variability and the use of fertilizer has a significant effect on 
productivity and farm investments.  Schlenker and Lobell (2010) estimated the impact of 
climatic variability, including temperature and precipitation, on yield of maize, sorghum, 
millet, groundnut, and cassava in several sub-Saharan African countries.  The only non-
climatic variables in their model are production and land.   

 
The usefulness of rainfall analysis as part of an early warning system has gained 

support in some developing countries.  Tsegay (1998) showed the importance of rainfall 
and drought patterns in the development of an early warning system in the case of 
Ethiopia.  Lemi (2005) used time series econometric models and data from five provinces 
in Ethiopia from 1954 to 1994, to analyze the dynamic link between rainfall and yields by 
province and crop type.  Lemi’s work, like other similar studies, was limited by the 
paucity of available information on other factors involved in the relationship between 
rainfall and yields, such as availability and access to other farm inputs, land quality, 
government agricultural policy, and infrastructure.  Unlike rainfall, these factors can be 
controlled or manipulated by farmers or governments in the short and/or the long term.   

 
An alternative to using rainfall data, which can be difficult to obtain in Africa, is to 

rely on information concerning the El Niño/La Niña–Southern Oscillation, or ENSO, 
climatic pattern.  ENSO is a general term used to describe both warm (El Niño) and cool 
(La Niña) ocean–atmosphere events in the tropical Pacific.  El Niño events, in which sea 
surface temperatures (SST) in the eastern equatorial Pacific Ocean are anomalously 
warm, occur on average one to two times a decade.  When SSTs are anomalously cool, 
the event is called La Niña (Trenberth and Hoar, 1996; Rajagopalan et al., 1997).  The 
ENSO events have significant effects on precipitation levels around the globe (Ubilava, 
2012). 

 
In his study of the cause and characteristics of drought in Ethiopia, Tesfaye (1988) 

showed that there was a high correlation between the annual rainfall series and ENSO 
events.  El Niño events have been associated with low grain yields in south Asia and 
Australia and high grain yields in the North American prairies (Garnett and Khandekar, 
1992).  Recently Ubilava (2012), using an autoregressive approach, found that the ENSO 
events have an important impact on coffee supplies and thus a statistically significant 
effect on world coffee prices.  Moreover, the author determined that the impact of La 
Niña and El Niño varies geographically depending on the type of coffee (robusta vs. 
arabica) that dominates in the various growing regions.   

 
In summary, the effect of growing climatic variability on agricultural productivity in 

Africa has been well established.  However, analyses for specific crops and countries are 
limited in general, and for groundnuts in Uganda in particular.  Therefore, in this paper 
we analyze the effect of climatic variability based alternatively on precipitation levels and 
the ENSO phases on groundnut production using data for 37 districts in Uganda.   
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4.  Data Description  
 
Data on groundnut production, land area devoted to groundnut production, and 

rainfall were obtained from the National Semi-Arid Resources Research Institute located 
in Serere, Uganda (NARO, 2010; MLWNR, 2010).  The ENSO information was obtained 
from the Center for Ocean Atmospheric Prediction Studies (COAPS).  The total number 
of observations available for the analysis is 333, corresponding to 37 districts in Uganda, 
each observed for 9 consecutive years from 1992 to 2000.  These districts are distributed 
over 13 farming systems.  The output variable is total annual groundnut production per 
district (Q) in tons.  The explanatory variables are: land area in hectares devoted to 
groundnut in each district in each year (L); a set of binary variables denoting the farming 
system (FS) (agroecological fixed effects); rainfall in each district in the 11-month period 
from February to December measured in mm (R), alternatively binary variables to 
capture the ENSO effect; and technological change measured as a time trend (T) or as a 
set of year dummy variables (TD) (time fixed effects), which are commonly used 
alternatives in the economics literature (Ahmad and Bravo-Ureta, 1996).  The farming 
systems correspond to different agroecological zones with a distinct natural resource 
base, climate, location, and altitude.  A summary of descriptive statistics is given in Table 
1, and a summary of the farming systems and corresponding districts is provided in Table 
2. 

 
The ENSO effect, used as an alternative to the rainfall variable, is defined according 

to the COAPS classification as follows: “La Niña”, the colder and dryer phase (CP); “El 
Niño”, the warmer and wetter phase (WP); or neutral, which is the omitted category in 
the models below.  The period of analysis covered in this study includes one WP year 
(1997) and two CP years (1998 and 1999), while the other six years (1992–1996 and 
2000) are neutral.   
     

The rainfall data were obtained either directly or indirectly through imputation. There 
are 37 districts in Uganda, and 13 meteorological stations covering the whole country. 
Nine of the 37 districts had local meteorological stations that made direct measurements 
of rainfall data. The other 28 districts did not have recorded rainfall information, and 
rainfall data were imputed whenever possible. For this purpose, we assume that if two 
districts share the same meteorological station, they will also have similar rainfall. Under 
this assumption, it was possible to impute rainfall data based on information from 
neighboring districts sharing the same station for 18 out of the 28 districts.  However, 
there were five stations covering the remaining 10 districts for which rainfall data were 
not obtainable and thus no imputation was possible.  Thus, rainfall information is 
available for 195 out of the total 333 observations in the data set.  This significant gap in 
the number of observations is the major rationale for using the ENSO phase as an 
alternative to rainfall data, which makes it possible to include all data points.  Table 2 
details the presence of meteorological stations in the various farming systems and 
districts throughout Uganda, and Figure 2 summarizes the districts with and without 
rainfall data and the stations from which precipitation data were available.  
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5.  Methodology 
 
This study utilizes a Translog production function framework to examine the 

relationship between groundnut production and rainfall based on the variables discussed 
above. The Translog (TL) is a flexible functional form, which can be interpreted as a 
second-order approximation to an unknown technology (Christensen et al., 1971).  In 
empirical analysis it is customary to express all variables as deviations from their 
geometric mean.  An advantage of such transformation is that the estimated first-order 
parameters can be interpreted directly as partial elasticities of production at the sample 
geometric mean (Coelli et al., 2005).  In our particular model specification, this 
transformation is applied to groundnut production (Q), land area (L), and rainfall (R). 

 
Given that climatic conditions and technological progress are modeled using 

alternative specifications, we estimate several models, all of which include land area (L) 
and the set of Farming Systems dummies (FS).  Unfortunately, the lack of data makes it 
impossible to include in the production function conventional inputs beyond land area 
(L).  However, our specification is similar in this respect to the production function 
estimates recently published by Schlenker and Lobell (2010) and Lemi (2005).   

 
The first model is what we referred to as the base, or Model 1, and is given by:   

 
Model 1: 
 
𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + 𝜆𝑇 + 1

2
𝛽𝐿𝐿(𝑙𝑛𝐿)2 + 1

2
𝛾𝑇𝑇𝑇2 + 𝛾𝐿𝑇(𝑙𝑛𝐿)𝑇 + ∑𝛿𝐹𝑆 + 𝜀  (1)             

 
where all variables are as defined earlier, 𝜀 is the error term, and the other Greek letters 
are parameters to be estimated.  Thus, Model 1 incorporates technological progress as a 
time trend, and no rainfall effect is included.  

 
Next, we consider the rainfall effect by incorporating the continuous rainfall variable 

(R) in Model 1, giving rise to Model 2: 
 
Model 2: 𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿+𝛼𝑅𝑙𝑛𝑅 + 𝜆𝑇 + 1

2
𝛽𝐿𝐿(𝑙𝑛𝐿)2 + 1

2
𝛽𝑅𝑅(𝑙𝑛𝑅)2 +

1
2
𝛾𝑇𝑇𝑇2 + 𝛽𝐿𝑅(𝑙𝑛𝐿)(𝑙𝑛𝑅) + 𝛾𝐿𝑇(𝑙𝑛𝐿)𝑇 + 𝛾𝑅𝑇(𝑙𝑛𝑅)𝑇 + ∑𝛿𝐹𝑆 + 𝜀     (2) 

 
As indicated above, the rainfall data is incomplete, so we can only include 195 
observations.   Alternatively, we substitute the ENSO dummy variables CP and WP for R, 
and we define Model 3 as:   
 
Model 3: 𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + 𝜆𝑇 + 1

2
𝛽𝐿𝐿(𝑙𝑛𝐿)2 + 1

2
𝛾𝑇𝑇𝑇2 + 𝛾𝐿𝑇(𝑙𝑛𝐿)𝑇 +

𝜃𝐶𝑃𝐶𝑃 + 𝜃𝑊𝑃𝑊𝑃 + ∑𝛿𝐹𝑆 + 𝜀       (3)            
 
where CP is equal to 1 for the cold phase and 0 otherwise; WP is equal to 1 for the warm 
phase and 0 otherwise; and the omitted category is the neutral phase.  For simplicity we 
use the same Greek letters to stand for the coefficients for the same variables in all three 
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models, but clearly this does not imply that the estimated parameters are expected to have 
the same values.    

 
A useful feature of the TL functional form is that it reduces to a Cobb–Douglas if the 

βs and γs in models (1) – (3) are equal to zero (Coelli et al., 2005).  In other words, the 
Cobb–Douglas (CD), which is nested within the TL, can be obtained by setting  
𝛽𝐿𝐿 = 𝛽𝑅𝑅 = 𝛾𝐿𝑇 = 𝛾𝑅𝑇 = 𝛾𝑇𝑇 = 0 
 
Note that the specific terms set to zero do vary with the model.  Therefore, the CD 
models corresponding to equations (1), (2), and (3), respectively, can be written as: 
 
Model 4: 𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + 𝜆𝑇 + ∑𝛿𝐹𝑆 + 𝜀      (4) 
 
Model 5: 𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿+𝛼𝑅𝑙𝑛𝑅 + 𝜆𝑇 + ∑𝛿𝐹𝑆 + 𝜀     (5) 
 
Model 6: 𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + 𝜆𝑇 + 𝜃𝐶𝑃𝐶𝑃 + 𝜃𝑊𝑃𝑊𝑃 + ∑𝛿𝐹𝑆 + 𝜀   (6)               

 
To compare formally the TL models (models 1–3) with the restricted CD counterparts 

(models 4–6), the following F-statistic is computed:  
 

𝐹 =
(𝜏 − 1)(𝑛 − 𝑘)

𝑘2
 

 
where 𝜏 = 𝑅𝑅𝑆𝑆/𝑈𝑅𝑆𝑆; 𝑅𝑅𝑆𝑆 is the residual sum of squares for the restricted model; 
𝑈𝑅𝑆𝑆 is the residual sum of squares for the unrestricted model; 𝑛 is the number of 
observations; 𝑘 is the number of total regressors; and 𝑘2 is the difference between the of 
number of parameters in the unrestricted and restricted models (Coelli et al., 2005).  

 
Models (1) – (6) treat technological change as a continuous trend, which may be too 

restrictive. Alternatively, we use annual dummy variables (TD), where 1992 is the 
excluded year, resulting in the following alternative models: 
 
Model 7-12: 𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + 1

2
𝛽𝐿𝐿(𝑙𝑛𝐿)2 + ∑𝛿𝐹𝑆 + ∑𝜆𝑇𝐷 + 𝜀   (7) 

 
𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿+𝛼𝑅𝑙𝑛𝑅 + 1

2
𝛽𝐿𝐿(𝑙𝑛𝐿)2 +  1

2
𝛽𝑅𝑅(𝑙𝑛𝑅)2 + 𝛽𝐿𝑇(𝑙𝑛𝐿)(𝑙𝑛𝑅) + ∑𝛿𝐹𝑆 +

∑𝜆𝑇𝐷 + 𝜀          (8)  
 
𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + 1

2
𝛽𝐿𝐿(𝑙𝑛𝐿)2 + 𝜃𝐶𝑃𝐶𝑃 + 𝜃𝑊𝑃𝑊𝑃 + ∑𝛿𝐹𝑆 + ∑𝜆𝑇𝐷 + 𝜀  (9) 

 
𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + ∑𝛿𝐹𝑆 + ∑𝜆𝑇𝐷 + 𝜀      (10) 
 
𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿+𝛼𝑅𝑙𝑛𝑅 + ∑𝛿𝐹𝑆 + ∑𝜆𝑇𝐷 + 𝜀     (11) 
 
𝑙𝑛𝑄 = 𝛼0+𝛼𝐿𝑙𝑛𝐿 + 𝜃𝐶𝑃𝐶𝑃 + 𝜃𝑊𝑃𝑊𝑃 + ∑𝛿𝐹𝑆 + ∑𝜆𝑇𝐷 + 𝜀    (12) 
 
Models (7), (8) and (9) are TL models, while models (10), (11) and (12) are the 
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corresponding CD specifications.  Models (7) and (10) correspond to TL and CD versions 
of the base model, respectively, where technological change is incorporated using time 
dummies (TD). Models (8) and (11) include rainfall (R) along with TD, while models (9) 
and (12) use the ENSO dummy variables to replace rainfall (R).  The excluded category 
for ENSO is the neutral phase. 

  
The estimation strategy adopted recognizes that Ordinary Least Squares (OLS) 

regressions, which have been widely used to estimate production functions, assume that 
the error term is homoscedastic. However, heteroscedasticity tends to be a common 
problem with cross-sectional data (Rao, 1970).  Even in the presence of 
heteroscedasticity, OLS models give unbiased parameters, but the standard errors are 
biased, and so are the results of hypothesis testing. Several tests have been developed to 
determine if the variance of the error terms in a regression model is constant or not, such 
as the White, Breusch–Pagan, Portmanteau Q and Lagrange-Multiplier (LM) tests 
(White, 1980; Breusch and Pagan, 1979; McLeod and Li, 1983; Engle, 1982).  The fact 
that the data used in this study are also time-series in nature poses the possibility of 
autocorrelation, i.e., that errors are not independent through time.  If the error term is 
autocorrelated, OLS estimates again are unbiased, but not efficient (Greene, 2008). Given 
the cross-sectional time series data used here, we adopted the ARCH/GARCH 
(Autoregressive Conditional Heteroscedastic/Generalized Autoregressive Conditional 
Heteroscedastic) modeling framework developed by Engle (1982) and refined by 
Bollerslev (1986) as a way to deal with both heteroscedasticity and autocorrelation. The 
basic idea behind ARCH is that the variance of the error term at time t depends on the 
size of the squared error terms in previous time periods (Engle, 1982).  A very useful 
generalization of ARCH is the GARCH method, introduced by Bollerslev (1986), which 
also features a weighted average of past squared residuals. In this method, the weights 
decline but never go completely to zero (Engle, 2001). The GARCH approach is more 
flexible, and consequently it is the option we adopt in our analysis. Our GARCH 
regression model can be written as: 

𝑦 𝑡
= 𝑥𝑡′𝛽 + 𝜀𝑡                      (13) 

   
       𝜀𝑡 = 𝜖𝑡 − 𝜑1𝜀𝑡−1                              (14)         
  𝜖 𝑡 = ℎ𝑡𝑒𝑡                        (15) 

         
 ℎ 𝑡

2 = 𝜔 + 𝜎𝜖𝑡−12 + 𝛾ℎ𝑡−12                     (16) 
 
where 𝜔, 𝜎 and 𝛾 are positive parameters, and 𝑒𝑡 ~ 𝑖𝑖𝑑(0, 1). The unit variance 
assumption for 𝑒𝑡 ensures that ℎ𝑡2 is the variance of 𝑒𝑡.  Equations (13) – (16) combine the 
first-order autoregressive error model with the GARCH (1, 1) variance model; this 
combination is denoted as AR (1)-GARCH (1, 1).  For the GARCH (1, 1) model, the first 
number refers to the number of autoregressive lags, also called ARCH terms, while the 
second number refers to how many moving average lags are specified, often referred to 
as the number of GARCH terms (Engle, 2001). 

 
Examples of applications of GARCH in agriculture include the work of Aradhyula 

and Holt (1988), who utilized this framework in their analysis of meat retail prices during 
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the 1970s and early 1980s and found it to be a suitable approach for their data.  Yang et 
al. (1992) examined alternative models that correct for heteroscedasticity in wheat yields 
and concluded that the GARCH specification is promising, particularly when the source 
of heteroscedasticity cannot be identified. 
 
 
6.  Results 

 
Initially, all 12 models (equations 1–12) presented above were estimated using both 

OLS and GARCH procedures.  After several tests, the TL models estimated with the 
GARCH method, the results of which are shown in Tables 4 and 5, were retained for 
further analysis.   

 
The first step was to test the CD models against the TL models using the F-statistic 

described earlier.  The values of the F-statistics for both OLS and GARCH models are 
given in Table 3.  The results indicate that in all cases, the F-tests are significant, favoring 
the TL functional form instead of the simpler CD models.  Therefore, all analyses 
reported below are based on the TL models. 

 
As already discussed, OLS assumes homoscedasticity and no autocorrelation, and 

both of these assumptions are subject to statistical testing.  If the assumptions for the OLS 
models are rejected, then the GARCH method is used to correct for heteroscedasticity 
and/or autocorrelation.  Based on both the Portmanteau Q and the Lagrange Multiplier 
(LM) tests, heteroscedasticity is strongly rejected in the TL time-trend base model 
(Model 1), the time-trend rainfall model (Model 2), and the time-dummy rainfall model 
(Model 8) for all lag windows.  To diagnose autocorrelation, the generalized Durbin–
Watson (DW) statistic is used, and the results support the presence of autocorrelation for 
all TL time-trend and time-dummy models (Models 1–3 and 7–9).  Overall, Models 1, 2, 
and 8 fit an AR(1)-GARCH(1, 1) structure, while the time-trend ENSO model (Model 3), 
the time-dummy base model (Model 7) and the time-dummy ENSO model (Model 9) do 
not exhibit heteroscedasticity, and AR(1) was sufficient for correction. 

 
Consistent with the outcomes of the tests for functional form, homoscedasticity, and 

autocorrelation, we present the results for the TL models estimated with GARCH.  Table 
4 presents the parameter estimates for the base (Model 1), the rainfall (Model 2) and the 
ENSO (Model 3) models when technological change is treated as a time trend.  By 
contrast, Table 5 shows the same sequence of models when time is incorporated as a set 
of dummies (Models 7, 8 and 9).1

 
   

In all six models, the linear parameters for land (L) are significant and slightly less 
than 1.0; that is, output is roughly proportional to the land area at the geometric mean.   
However, the parameter for L2 is significant and negative, which indicates a decreasing 
rate in output growth as land area increases. The parameters for farming systems (FS) are 
                                                             

1 For comparative purposes, we also show the counterpart for Models (3) and (9) estimated via OLS in 
Table 4 and 5, respectively.   
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almost all negative and significant (1%) in the base and ENSO models, regardless of 
whether we treat time as discrete or continuous.  However, when we include the rainfall 
variable in the model, most of the farming system parameters lose significance.  For 
example, in the model incorporating the time-trend and rainfall variables (Table 4, Model 
2), the coefficients for all the farming systems but three (FS1, FS10 and FS12) are 
nonsignificant.  

 
The parameters for technical change (T) are consistently significant in the time-trend 

base and ENSO models (Table 4, Models 1 and 3).  By comparison, most of the 
parameters for the time-dummy variables are negative and significant except for TD2, 
which has a positive and significant coefficient (Table 5, Models 7, 8, and 9).  In addition, 
in the models including rainfall (Table 4, Model 2; and Table 5, Model 8), the parameters 
for this variable are not significant in either the time-dummy or the time-trend models.  
The coefficients for warm ENSO (WP) are negative in all corresponding models.  By 
contrast, the coefficient for the cold ENSO (CP) is significant and positive in the time-
trend equation (Model 3) but negative and significant in the time-dummy model (Model 
9). 

 
Tables 4 and 5 also show the F-statistics used to compare the base models versus the 

alternative specifications (ENSO or rainfall), which is a test of the null hypothesis that all 
ENSO (CP and WP) or rainfall parameters are zero.  The results show that the time-trend 
with rainfall model (Model 2) is not a significant improvement over the base model 
(Model 1), whereas the rainfall with time-dummies model (Model 8) is a significant 
improvement over the base model (Model 7).  On the other hand, both ENSO models 
(Models 3 and 9) are significantly better (F-statistic is significant at the 1%) than the 
corresponding base models (Models 1 and 7).   

 
It is tempting to conclude that the ENSO models are preferred to either the base 

models or rainfall models; however, since the data sets for the rainfall and ENSO models 
are different due to missing values in the former, further analysis with additional data is 
needed to come to a more definitive conclusion as to which specification is preferable.  
Nevertheless, Tables 3, 4, and 5 reveal that the most robust results are associated with the 
TL functional form that includes the ENSO variable to capture climatic conditions 
estimated with the GARCH procedure.  Moreover, technological change seems to be 
captured better by the more flexible option of using time dummies rather than by a time 
trend.  A remarkable and consistent finding is that technological change, regardless of the 
model used, is negative and significant, pointing to technological regress or a decline in 
production, ceteris paribus, over the time period covered by the data.   

 
Based on the above discussion, the most robust model appears to be TL with time 

dummies and the ENSO events (Model 9), and we rely on those results for some 
additional analysis.  First, to investigate further the robustness of Model 9, we tested the 
following two null hypotheses: (1) all FS parameters are jointly equal to zero; and (2) all 
TD parameters are jointly equal to zero.  The F-statistics obtained for both cases (43.32 
for FS, and 187.22 for TD) lead to a strong rejection of both null hypotheses.  The 
coefficients of the TD variables in Model 9, which capture technical change, are positive 
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and significant for only one (TD2) of the six estimates, while the other five are negative 
and significant.  Also note that parameters for TD6 and TD7 cannot be estimated, because 
1997 (TD6 = 1) is a warm year and 1998 (TD7 = 1) is a cold year; therefore, TD6 and 
TD7 are equivalent to the WP and CP variables, respectively, so separate parameters 
cannot be identified.   

 
Following Cuesta (2000), year-to-year technical change is given by the difference 

between the coefficients of two time dummies, as denoted by the following equation: 
 
𝑇𝐶𝑡,𝑡+1 = 𝜆𝑡+1 − 𝜆𝑡                       (17) 

 
which reflects the rate of technical change between two consecutive years (t and t+1).  As 
already noted, technical change between 1992 and 2000 was negative, signaling the 
presence of technological regress, i. e., a loss in productivity, over the years analyzed.  
Year-to-year rates of technical change are: 2.5% for 1992–1993; -8.5% for 1993–1994; -
0.10% for 1994–1995; -15.7% for 1995–1996; and -21.6% for 1999–2000. The 
cumulative technical change between 1992 and 2000 is the coefficient for the last time 
dummy, i. e., around -23%, and the average over the nine-year period would be -2.6%.  
These negative results suggest that major efforts would be required to reverse this rate of 
productivity decline.   

 
For farming systems, the largest coefficient is 0.12 (FS1 and FS2), while the lowest is 

-0.14 (FS8), revealing considerable output variability across agroecological zones in 
Uganda.  On the other hand, the coefficients for the ENSO dummies are -0.13 for CP and 
-.54 for WP, indicating that shifts from the neutral phase have significant negative effects 
on output, particularly during the warm phase.    
 
 
7. Concluding Remarks 

 
This study analyzes the relationship between groundnut output and land area, along 

with climatic conditions, for 13 different farming systems, while accounting for 
technological progress using various production function specifications.  The model 
chosen for a more detailed analysis is a translog that captures climatic conditions through 
dummy variables that account for the El Niño–Southern Oscillation (ENSO) phases, 
while technological change is modeled using year dummies (time-fixed effects).  The 
data comprise a pooled cross-sectional time series covering 37 Ugandan districts over a 
period of 9 years (1992-2000).  Given the pooled nature of the data, heteroscedasticity 
and autocorrelation are dealt with by using the GARCH modeling approach. 

 
The results indicate that climatic effects expressed in the production function as 

rainfall variability have a nonsignificant effect on groundnut output.  By contrast, the cold 
and warm ENSO phases have a negative and significant effect on output relative to the 
neutral phase, with the warm phase having a greater effect.  A key finding that raises 
considerable concern is that technological change is found to be regressive over the time 
period included in the analysis; this is a robust result that emerges from all models 
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examined.   Concerns regarding low and even negative rates of technological change in 
African agriculture have been reported by other authors, including Nkamleu (2004), 
Fulginiti et al. (2004), Avila and Evenson (2010), and Rezek et al. (2011).  It is 
encouraging to note, however, that new evidence is signaling a shift toward productivity 
gains among farmers in Africa (Binswanger-Mkhize and McCalla, 2010) 

 
It is important to note that the authors made a major effort to compile the data set 

utilized in this paper; nevertheless, the time series available is short, which poses 
limitations on the analysis.  Also, the lack of specific crop output data suitable for 
matching with climatic information prevents detailed analyses.  Given the potentially 
profound effects that climate change might have on farming systems in Uganda, it is 
important that appropriate data sets be developed so that policy makers can have access 
to analyses based on more detailed information.   

 
Although not a direct focus of this paper, an important strategy would be to redouble 

efforts focusing on improving seed varieties of groundnuts and other key crops in order to 
reverse the decline in productivity as well as to facilitate the adaptation to climate 
change.  Such work needs to pay particular attention to the development and promotion 
of seed varieties that are suitable for specific agroecological zones.  Moreover, a recent 
paper by Kassie et al. (2011) has clearly shown the positive effect that improved 
groundnut varieties can have on household income and poverty alleviation in rural 
Uganda. These authors also emphasize the importance of policies designed to facilitate 
the adoption of the improved material. 

 
Finally, drawing from a recent analysis by Kato et al. (2011) for five regions in 

Ethiopia, it is important to highlight the role of water and soil conservation technologies 
in counteracting the effects of climate change on farming.  In particular, Kato and 
colleagues find that soil and water conservation can have important benefits in 
moderating the effects of both high and low rainfall patterns, but such benefits can vary 
significantly across agroecological zones and because of the interaction among 
technologies.  In sum, the evidence from Ethiopia clearly suggests that policy actions 
need to focus on technology packages, rather than individual technologies, and that, 
considering the geographic heterogeneity across Uganda, these packages need to be 
developed and targeted locally. 
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Table 1.  Definition of Variables 
 
Variable Unit Definition N* Mean  Minimum  Maximum  
Panel A: N=333  
Q Ton Groundnut production 333 3633.5 39.0 16764.0 
L Hectare Land area 333 5240.2 83.0 19430.0 
Y Kilogram/

Hectare 
Yield 333 682.0 340.0 1116.0 

FSi Dummies Farming systems (i=1, 
2,…13) 

333 N/A** N/A N/A 

T Number Mean-corrected time 
trend is converted from 
(1,… 9) to (-4,…4) 

333 N/A N/A N/A 

TD Dummy 1 if the observation is 
in the specific year 

333 N/A N/A N/A 

WP Dummy 1 if the year is in the 
warm phase of ENSO 

333 N/A N/A N/A 

CP Dummy 1 if the year is in cold 
phase of ENSO 

333 N/A N/A N/A 

 
Variable Unit Definition N* Mean  Minimum  Maximum  
Panel B: N=195 
Q Tons Groundnut production 195 4671.5 168.0 16764.0 
L Hectares Land area 195 6802.4 361.0 19430.0 
Y Kilogram/

Hectare 
Yield 195 685.2 439.6 1116.0 

R Millimeters 11-month (February to 
December) average 
rainfall*** 

195 129.9 83.5 177.5 

FSi Dummies Farming systems (i=1, 
2,…13) 

195 N/A N/A N/A 

T Number Mean-corrected time 
trend, i.e., converted 
from (2,… 9) to (-
3,…4) 

195 N/A N/A N/A 

TD Dummy 1 if the observation is 
in the specific year 

195 N/A N/A N/A 

 
Notes: 
* N is the number of observations. Rainfall data are available for only 195 out of 333 
observations. 
** Mean, minimum, and maximum are not computed for dummy variables. 
*** 11-month rainfall data: the average rainfall was calculated from February to December. 
N/A: Not Available 
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Table 2.  Farming Systems, Meteorological Stations, and Districts in Uganda 

Farming System (FS) 
Meteorology Station 

(MS)* District 

 Name 
MS 

Symbol** Name 
District 

Number*** 
MS 

Number 
(FS1) Acholi Sub FS Gulu A 

 
Gulu 17 A 

(FS1) Acholi Sub FS Gulu Kitgum 42 A 
(FS2) Ankole FS Agro Pastoral Mbarara B 

 
Bushenyi 12 B 

(FS2) Ankole FS Agro Pastoral Mbarara Mbarara 55 B 
(FS3) AnkoleMontane Kasese C Rukungiri 71 C 
(FS4) Busoga Jinja  

D 
 

Iganga 20 D 
(FS4) Busoga Jinja Jinja 21 D 
(FS4) Busoga Jinja Kamuli 30 D 
(FS5) Karamoja FS Soroti E 

 
Moroto 57 E 

(FS6) Karamoja/Pastoral Soroti Kotido 44 E 
(FS7) Lake Albert Crescent Kasese C Kabarole 24 C 
(FS7) Lake Albert Crescent Kibale F Kibaale 37 F 
(FS7) Lake Albert Crescent Masindi G 

 
Hoima 18 G 

(FS7) Lake Albert Crescent Masindi Masindi 52 G 
(FS8) Lake Victoria Crescent Entebbe H Kalangala 27 H 
(FS8) Lake Victoria Crescent Kampala 

I 
 
 
 
 

Kiboga 38 I 
(FS8) Lake Victoria Crescent Kampala Luwero 48 I 
(FS8) Lake Victoria Crescent Kampala Masaka 51 I 
(FS8) Lake Victoria Crescent Kampala Mpigi 59 I 
(FS8) Lake Victoria Crescent Kampala Mubende 60 I 
(FS8) Lake Victoria Crescent Kampala Mukono 61 I 
(FS8) Lake Victoria Crescent Kampala Rakai 70 I 
(FS9) Lango Sub FS Lira J 

 
Apac 5 J 

(FS9) Lango Sub FS Lira Lira 47 J 
(FS10) Montane Kabale K Kabale 23 K 
(FS10) Montane Kasese C Kisoro 41 C 
(FS10) Montane Tororo L 

 
Kapchorwa 33 L 

(FS10) Montane Tororo Mbale 54 L 
(FS11) Montane/Lake Albert Crescent Kasese C 

 
Bundibugyo 11 C 

(FS11) Montane/Lake Albert Crescent Kasese Kasese 34 C 
(FS12) Teso Soroti 

E 
 

Pallisa 69 E 
(FS12) Teso Soroti Soroti 74 E 
(FS12) Teso Soroti Kumi 45 E 
(FS12) Teso Tororo L Tororo 75 L 
(FS13) West Nile Arua M 

 
 

Arua 6 M 
(FS13) West Nile Arua Moyo 58 M 
(FS13) West Nile Arua Nebbi 65 M 

 
*MS stands for Meteorological Station. 
**The letters denote the matching Meteorological Station (e.g., “A” represents the “Gulu” MS).  
***District number (e.g., “17”denotes “Gulu” according to Wikipedia 
 http://en.wikipedia.org/wiki/Districts_of_Uganda) 

http://en.wikipedia.org/wiki/Districts_of_Uganda�
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Table 3.  F-tests between Translog and Cobb–Douglas Models 

OLS 
Time 
Trend 

Preferred 
Model 

Time 
Dummies 

Preferred 
Model 

Base Model 
Rainfall Model 

26.9*** 
11.5*** 

TL 
TL 

120.3*** 
26.83*** 

TL 
TL 

ENSO Model 39.4*** TL 120.3*** TL 
     

GARCH 
Time 
Trend 

Preferred 
Model 

Time 
Dummies 

Preferred 
Model 

Base Model 62.1*** TL 145.1*** TL 
Rainfall Model 20.6*** TL 3.22** TL 
ENSO Model 40.2*** TL 143.26*** TL 

 
Note: ***indicate 1% significance levels and **indicate 5% significance level. 
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Table 4.  Translog Output Models with Time Trend for Uganda Groundnut 
Production 
 
 

 
Note: In Table 4 and 5 ***, **, and * indicate 1%, 5%, and 10% significance levels. N/A=no data  
 
 
 
 

Variables 
  

GARCH 
Base Model 
(Model 1) 

GARCH 
Rainfall, Time Trend 

(Model 2) 

GARCH 
ENSO, Time Trend 

(Model 3) 

OLS 
ENSO, Time Trend 

(Model 3-OLS) 

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Intercept 0.2158** 0.1010 0.1165 0.1839 0.1142*** 0.0176 0.1235*** 0.0194 

lnL 0.9874*** 0.0043 0.9576*** 0.0077 0.9641*** 0.0065 0.9611*** 0.0064 

lnR N/A N/A 0.0768 0.0557 N/A N/A N/A N/A 

T -0.1381*** 0.0196 -0.0449 0.0460 -0.0347*** 0.0017 -0.0347*** 0.0021 

(1/2)lnL*lnL -0.0282*** 0.0024 -0.1039*** 0.0119 -0.0559*** 0.0057 -0.0564*** 0.0056 

(1/2)lnR*lnR N/A N/A -0.0742 0.4238 N/A N/A N/A N/A 

(1/2)T*T -0.0573*** 0.0095 -0.0003 0.0057 0.0060*** 0.0013 0.0059*** 0.0016 

lnL*lnR  N/A N/A 0.0072 0.0211 N/A N/A N/A N/A 

lnL*T -0.0004 0.0005 0.0002 0.0016 0.0026** 0.0011 0.0027* 0.0012 

lnR*T N/A N/A -0.0016 0.0250 N/A N/A N/A N/A 

CP N/A N/A N/A N/A 0.0800*** 0.0110 0.0801*** 0.0129 

WP N/A N/A N/A N/A -0.3651*** 0.0134 -0.3648*** 0.0157 

FS1 0.0600** 0.0295 0.2535*** 0.0433 0.1278*** 0.0247 0.1315*** 0.0265 

FS2 -0.2166** 0.0937 N/A N/A -0.0877*** 0.0220 -0.1017*** 0.0244 

FS3 -0.2426*** 0.0937 N/A N/A -0.1340*** 0.0305 -0.1525*** 0.0322 

FS4 -0.1984** 0.0918 -0.1775 0.9421 -0.0779*** 0.0199 -0.0854*** 0.0211 

FS5 -0.1758* 0.0911 -0.1619 0.8763 -0.1061*** 0.0327 -0.1200*** 0.0339 

FS6 -0.1751* 0.0902 -0.2628 0.8711 -0.1349*** 0.0308 -0.1424*** 0.0317 

FS7 -0.1388 0.0898 -0.2324 0.8380 -0.1139*** 0.0187 -0.1190*** 0.0210 

FS8 -0.2415*** 0.0903 -0.3470 0.2849 -0.1508*** 0.0190 -0.1632*** 0.0208 

FS9 -0.1587* 0.0903 -0.1796 0.2717 -0.0136 0.0218 -0.0168 0.0242 

FS10 -0.1695* 0.0904 -0.1468*** 0.0000 -0.0520** 0.0212 -0.0631*** 0.0229 

FS11 -0.2065** 0.0939 N/A N/A -0.0649** 0.0265 -0.0881*** 0.0287 

FS12 -0.0355 0.0921 -0.1318** 0.525 0.1150*** 0.0181 0.1080*** 0.0201 

Observations 333  195  333  333  

F-Test N/A  0.82  523.89***  N/A  

R2 0.9926  0.9907  0.9973  0.9972  
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Table 5.  Translog Output Models with Time Dummies for Uganda Groundnut 
Production 

 

 
Note: In Table 4 and 5 ***, **, and * indicate 1%, 5%, and 10% significance levels. N/A=no data  
  

Variables 
  

GARCH 
Base Model 
(Model 7) 

GARCH 
Rainfall, Time Dummy 

(Model 8) 

GARCH 
ENSO, Time Dummy 

(Model 9) 

OLS 
ENSO, Time Dummy 

(Model 9 OLS) 

Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error Coefficient Std. Error 

Intercept 0.2529*** 0.0136 0.3303*** 0.0128 0.2529*** 0.0136 0.2709** 0.0195 

lnL 0.9698*** 0.0053 0.9495*** 0.0177 0.9689*** 0.0053 0.9617*** 0.0058 

lnR N/A N/A 0.0046 0.0275 N/A N/A N/A N/A 

T N/A N/A N/A N/A N/A N/A N/A N/A 

(1/2)lnL*lnL -0.0546*** 0.0045 -0.0570** 0.0185 -0.0546*** 0.0045 -0.0557*** 0.0051 

(1/2)lnR*lnR N/A N/A -0.0395 0.1879 N/A N/A N/A N/A 

(1/2)T*T N/A N/A N/A N/A N/A N/A N/A N/A 

lnL*lnR  N/A N/A 0.0107 0.0253 N/A N/A N/A N/A 

lnL*T N/A N/A N/A N/A N/A N/A N/A N/A 

lnR*T N/A N/A N/A N/A N/A N/A N/A N/A 

CP N/A N/A N/A N/A -0.1297*** 0.0103 -0.1286*** 0.0166 

WP N/A N/A N/A N/A -0.5460*** 0.0103 -0.5449*** 0.0166 

FS1 0.1207*** 0.0180 0.1088*** 0.0185 0.1207*** 0.0180 0.1302*** 0.0240 

FS2 -0.0739*** 0.0156 N/A N/A -0.0739*** 0.0156 -0.1011*** 0.0221 

FS3 -0.1160*** 0.0227 N/A N/A -0.1160*** 0.0227 -0.1513*** 0.0292 

FS4 -0.0696*** 0.0142 -0.1037** 0.0446 -0.0696*** 0.0142 -0.0851*** 0.0200 

FS5 -0.0897*** 0.0253 -0.1295 0.1014 -0.0897*** 0.0253 -0.1191*** 0.0308 

FS6 -0.1250**** 0.0245 -0.1633 0.1162 -0.1250*** 0.0245 -0.1414*** 0.0287 

FS7 -0.1078*** 0.0129 -0.1324 0.1178 -0.1078*** 0.0129 -0.1183*** 0.0190 

FS8 -0.1367*** 0.0137 -0.1554*** 0.0170 -0.1367*** 0.0137 -0.1623*** 0.0188 

FS9 -0.0123 0.0151 -0.0043 0.0234 -0.0123 0.0151 -0.0172 0.0220 

FS10 -0.0389** 0.0155 -0.0394 N/A -0.0389** 0.0155 -0.0630*** 0.0208 

FS11 -0.0393** 0.0193 N/A N/A -0.0393** 0.0193 -0.0876*** 0.0260 

FS12 0.1200*** 0.0125 0.1052*** 0.0084 0.1200*** 0.0125 0.1080*** 0.0182 

TD2 0.0242*** 0.0103 N/A N/A 0.0242*** 0.0103 0.0249*** 0.0166 

TD3 -0.0610** 0.0103 -0.0899*** 0.0107 -0.0610*** 0.0103 -0.0602*** 0.0166 

TD4 -0.0621*** 0.0103 -0.0905*** 0.0107 -0.0621*** 0.0103 -0.0612*** 0.0166 

TD5 -0.2187*** 0.0103 -0.2451*** 0.0106 -0.2187*** 0.0103 -0.2177*** 0.0166 

TD6 -0.5460*** 0.0103 -0.5713 0.0103 N/A N/A N/A N/A 

TD7 -0.1297*** 0.0103 -0.1513*** 0.0101 N/A N/A N/A N/A 

TD8 -0.1436*** 0.0103 -0.1576*** 0.0106 -0.0139 0.0103 -0.0140 0.0166 

TD9 -0.2312*** 0.0103 -0.2402*** 0.0097 -0.2312*** 0.0103 -0.2303*** 0.0166 

Observations 333  195  333  333  

F-Test N/A  3.22**  1537.44***  N/A  

R2 0.9982  0.9990  0.9982  0.9977  
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Figure 1.  Map of Uganda 
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Figure 2.  Map of Meteorology Stations and Districts in Uganda 

 
  

Meteorology station District 
A 17,42 
B 12,55 
C 71,24,41,11,34 
D  20,21,30 
E 57,44,69,74,45 
F 37 
G 18,52 
H 27 
I 38,48,51,59,60,61,70 
J 5,47 
K 23 
L 33,54,75 
M 6,58,65 

 
Note: Red designates the districts with rainfall data. Yellow designates the districts without 
rainfall data. 
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