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ABSTRACT
~ CHAOS IN COMMODIFY MARKETS: A NEURAL NETWORK APPROACI

~ Chaos theory suggests that seemingly rndom varables may come from donlinegs
deterministiv functions. In such cases linear moels connot capture the underlying regularitios of
the chaotic time series. This study develops an alternative neural network spproach 1o the
~commonly used BDS test of chios to study the non-linear dynamics of the commadity marker,
- This paper uses newral netwarks, a-type of computer antificial intelligence which has recently
shown strong potential for identifving and forecasting econonue time series. This paper will
examing the performance of newral networks with thal of time series methods for predic g
conummadity prives. ' ' ' S
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- L Introduetion

Prive forecasting is an infegral part s\f‘w‘»imnmﬁity srading and price analysis. Quantitgive
acyvracy with small errors., atong with tuming zpﬁixﬁ ff’carméwtin;a power, e hoth »inmﬁmm 1
evaluaing ‘fu;tfs:ﬂﬁi#g madels. Numerous studies have found thit univatiae tme series, such an
Box-Jenkins ARIMA muodels we as aveurare as more expensive linear regression x,.»r' vegtor
autoregressive wodels J2, 11:@ 121 The success of finear models, however, s vonditional npon the
underlying data penerating process bewng lisear and not being random. The traditionad view
trancial economics is that market prives wre random and thut past prices catmnt be ted as 2
guide for the price behaviour in the future. (haos theory, however, sugpgest that a seemingly
random provess may have been in fact generated by a deterministe function that is nof tandon
by such i case, ARIMA methods are no longer a weful tood for extimation and Dorecaiing

Howeser, revent developments i the study of auificial osenesl networks swow tu
teediorwad nearal netwarks are non- fawear mapping sroctures that van a pproximate any athitrary
function {9150 18] Therefore, such @ nontinear model may be superior o ARIMA maodels fuor
e series forecisting

The objective of this study is to examine whether the oeutal netwink van outpesbori i
z-mdn‘u;mai ARIMA mudel for forecasting commodity prives. Specitivally. we use 4 teural
petwork o forecast US cattle prices and compare the results with the ARIMA model as o
benchmark. The remainder of the paper is organized as follows. Tn section 2. chaos theory i
brefly discussed. In section 3, the waditional univariate tme seres approach i forecasting is

descrihed T section 4, nearal network architecture that is designed for tus study s diseusaed,



Sectinn § tiiwimm wmnatm me.lhmix for x;rmﬁjmring the two forevasting approacies. Data and
forecast provedom e sy ussed i in section & Section 7 shows r{»mnu nbmm:*d fmm ARR&M amd
mxixa ful newsal network simulations. 1o Secuon 8, overall evaluation Lomparson of twe

m%miqu are (;Iies;.«::tstzwssvzféti~ amd finally, section 9 provides the voneluding remarks,

- L Chans Theory and Forecasting ‘
€haos theory wgmam that a time series whivh seems 1o be random may be penetated by
a deterrinstic function An obvious example of sinh provesses ate raadom numbers penerated
by computers 151 In such cases, 1 is quite possille that even sinple dymanne strutire wvelving
only a tew mreducible degrees of freedom can lead o comples dvaamie waectones 11 Ax a
result, statistical fests soch as spectial analysas or autocoananee anabyses wilh fd 1o didfsentate
hetween determimstic chuos and stochastiv processes. Another diffnouby with chaotic series i
it Tineay models such as Bme seres o fegressions cantest captre segabanties mosuch o series,
A lugistic map functen o a standard example by which the behavions of chaote
provesses van be explained. Consider the followmg data penerating provess
Xom Ax gl oox 12 h
where «,  tabes valaes between O and Tand A 1 betwesn Gand 3 For posttive values of A fess
than 5654, v, generated by (51 is stable and well behaved Bat, for vadues of A froms the mters al
F3.5609, 3] the systens becones a fow dimenvonal chaotic sysient. As i resalt, 1 prodaces g inch
virrery of behaviowr which o not repeat themselves st ample sizes A mote comples

function winch exhubits higher dimension chaostic belat o s Mackey - Cilass equation given by



ax{t - e}

b= A - l'}w

- Dt}

whete a = 0.2, b = 01, and ¢ = 100

It the data s not generated by a high dimension process, it should have si of-term
| fi;;mzl-mtmﬁzy., but not with the ués& ui linear forecasting models [17]. However, in addstion to the
sl sample size problem which is usually the case with most economic data, measn# ing the
in%ﬁai statee . even somall erors inoestimating the paramelers ~f the model Nmsw‘mimiy
propagates mte the future and makes the forecasting impossible. Occasional success of linear
madels 1 short run forecasting associated with the fong run futlure indicites that these models
have not captured the frue nature of data generating progess {3).

The study of chaotic tme series began in natural science, physics and chemistry, and
Tarther attracted econnmists for studying economic variables 135]. Posparicad apphvabions of nop-
lear dynawmics are maindy concentrated in macro evonomic anabysis or capitad nurhets J1 20
However, recently. there have been a few studies trying to address non-linear dynamivs m dwe
commeodity puathets {3, 7, 37, 3R] Results of these studies are mised. as Blank {3] and Chavas
and Holt {7] tound deterministic chaos in soybean Tutures market and dairy sy, while Yany
and Brorsen {36] concluded that chunges in cash prices of seven commaodites they studed do
not Tollow a fon dimension deterministic chaos provess, Yang and Bropses 37 abse (ound ne
stmng support Tot or against detenministic chaos in the futares markers for most of the by
venmmethizes,

A b as forevasting s vancerned, the most difficolt ot b the modething of «haotie e

series As discsed ahove, small measmrement errers o simplity g spsstimptions i nen-dineos




mmialiing nay maﬁ{pﬁz@}; further inm the forecasting horizon and, a8 a result, '1’3:‘1:@&11&
uxmﬂmfiufrﬂr,y orecits. Attificial ‘xmmxl::néiwmkan ;ﬁrme*ifiv an alternative for mudelhing chaoti
nme series. Sipve they wie fi;ua;ﬂﬂ‘tztiwﬁ appromches, s upposed o medel-driven appraaches,
therefore, they do not f{nl"fﬁ*r ffm:ﬁ madel ‘;'nm‘pmﬁ:;atiém per se [6]. Henee, Lapedes and Farber
122) amd white J34L were able to well approximate: the Togistie map and hiph dinensional

Mackey-Glass chaos with the newral network,

3 ARIMA Thue Series Model
Derfma and Muelnmosh [10] suggest that “sractural econometrios mey not be saperior 1o
time senes techigues even when the structural modeliers are given the eluvive true model ”
Therefore. a common approach o Torecasting is the Box-Jenkine ARTMA time series approach
which s used here Tor compartson with the neural setworks 1t has attracted researchiers becine
it is 4 parsimonious approach swhich can represent both stationary and non-stationary stochastie
provesses | 3], The obyective here s to build an Autoregressive Integrated Moving average niodel
tARIMA  which adequately represents the data generating provess, This basic Box fenkins modet
has the following forny
Yoo oy, ¢ B, elhopand 0l g il
where ¥, 1s & statienary stochastic process with non-zevo mean | i, is constant ter, and ¢, s o
white nose disturbance term. The second and third terms in the nght hand side of equation 3.1
are awtoregressive and moving average parts of the model Pguation 31 1 denownd by
ARIMAp.dap in which p s the number of dependent yariable lagged m the apht land sde, 8 ‘

is the number of differencing performed on v, before estimating the ahove meodel, and o is the

4
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;fﬂxfﬂmr :}ag‘ged eitar teiin i the tight and side of By, 3.1,
~ Box-Jenkins methnd involves the following 1fauf~$m;; iterative cycle:

‘;ﬁ"i mundel f‘idemiﬁmtimm |
i) model k*.xii‘mmimn
116 Jragnostic c.:ht?a:king; and |
vy forecasting with the final mwdel

| Forecasting with the estimared model is based on the assumption that the estimated muodel
will hold in the horizon for which the Torecasts are made. The AR part of the model imﬁuﬁm
that the future values of v, are wx*igtﬂﬁi averages of the vorrent and past readizations. Similurly.
the MA part of the madel shows how current and past random shocks will affect the future

vilues of v,

4. The Avtificial Neural Network Approach

Artifivial newral networks are computational structures medelled on the pross stracture of
the hratn. As far application to economivs is voncessied, they have been primanily used 1o address
financial economivs problems, Typical upplivatons i finance have inchuded mortgage risk
amessment, eontiomie prediction, risk rating of eschange-traded fixed imcome imvesiments,
portfolio seleconydiversification. simulation of market behaviour, indes construersm, and
identification of explanators economiv factor. Foy example, the 1S government in 1959
*jmnhaxrkmi on i bive vear. mult-million dollar program for neural network research, but Hiangial
sefvices opganizations have been the principal spomsors of pesearel in newral networh

applications” [33],




}mm A mmﬁwr of mmws i s txi‘:tn ‘zimrg W}ih mm mmmml xmzt fiods, m«,a iwmm s
are el to mﬁhmitmmmi mm:mm mniﬂmmim 3. 36,30, ihﬁ'ﬁx 331, For mamm. Surkin
dnd Smmwn {3 found that the m&mal nmw:k et mﬂ;wrim;m ihe n‘mitmum
' j'dmuﬁmmw analy axs‘*mtw fr Msa&mx% Iﬂ theit sty the nearal nepwork model ﬁmwdm{
‘M ¥ wrtmi mmmmm vempared with, at most, 5664 by the MDA wmethod. ﬂdmm and
; "aimxd.; ’iaﬁi setup buth MDA and neusal network models for pzmmimg* bunhrupiey Mz Vilrs
mmpmm iz«rwf m the Wall Sneet Jourmal They abu found that neurad netaoths sere over 2vg
 mew awum‘wﬁxat the MBA. Trippt and DeSiene 33 compared i neural aework baved mnﬁng
| stiafegy in S&P SO8 dndex tuture s wth passive buy and hold é{miwgzy They found that the neurad
nepsark maoded strongly outperformed buy and hold sirategy by im*h s AL even adter

ingiusion of brokerage changes

41 Fevdiorward setwork with ¢ oniustre sradient d};z:mwe:m

Feedivrward nemsorha are o cliss of neutal netwark which performs sapery isd lening
Prediction with the neural network imvolves the tallowing two steps training and ferecasting, T
traning, the sample data are broken down into tainng set, which vonsists of nwr part of the
data rew TR, and tedting st AL the taming stage, both mfwza apnd desired ontput are
presented o the network, Through fearning algorithens, the network prisduces its vawn oatpat amd
tries to mininuze the discrepancies between its own outpwr and the target output 1 the sertes o
be predivied i not random. g well oned netwark shoodd be able o forecast the renunnder of
sample data, the testing set. Othersase, the architecture and'or parameters of the peraork ae

vhanged o improve performance on the testing set. A satisfactondy tested network then can be

o



:uséii for forecasting,

, ‘"fn:ni;xiﬁga rmlswrfk can be x{ésm'iliam as »m*m}:m;,» (isxisr;f: an error surface whiich takes pl ;xx;:#
' by wxﬁxt ‘idmxmwnh during the Jearming plmw The xmmimd @d&kyuspumtxnﬂ iwmmh
pmpmmi by the PDP; ﬂlmm 1"’»:3} and athers, employs tlw sfeepest descent almmihm for wl m\mg
the weights. The 1’31;{.1,2{1}{1:13{{;‘ ui‘ adjustments depeads on the learming rate and momentum factors
wiczlm by thv FeSe Iwm, Selevting a high leaming rte m;x;;« vanse the netsork o mp from
ane side of the errer surdace to the other side and never weach the mintnnum point. On the other
haud, a low learning rute shows down the training snd may cawe the network o be trapped m
tacal minima. The conjugate r»:mdixrrit method used i this study i an omprovement over steepest
deseent method in the sense that it explores the minimzation of the network error inall possible
directions and guaraitees the network convergence. Moreover, it does ot require v set the
learning rate and momentuny factors,

The conjugate gradient method (C0G) ﬂxzzxtrmtx a setooloa Qiim}mm whith ae all
conjugate to each other along the minimization direction u such that minimization mlu{“twnimrve
s aie nol interfering. The Fletcher-Reeves version of CG aethod 1 as fofloss |20
consider the function f(x1 to be minimized can be approvinsted yothe Lavior series

sy H2E Ax by oo 4.1 1
where * denotes tmanspose and b= VA and A s mantix of the weond partial derisatives of
frx) over all patterns. A change in x results 1 the change i the godient of fix o

SVt = A v R B
When fix) is to be minimized along divection u, the perpendiculnities of the gradients e

that moving along u,,, does not impay minimization aleng g, Inosuch vase o and u e sand to




be conjugate, This is true when (he ~i’m’limvimg equation htﬁdsz :
U U - B = 0 SVFED = 0 A, = RERE)

Starting the minimization at any point resulls in new points until il possibilities are exhausted

and the minimization ix completed.

5. Foreeast Evaluation Methods
Three eriteria will he used to make comparison between the forecasting ability of the
ARIMA tine series mudel and the nevral netvork model The first is mean squared error, MSE,

which meusures the overall performance of & madel. The formula for MST is

Lty - ay
7

MSE =
5.1
Whete P, is the predivted value for time 1, A, is the actual value actime ©oand T s the number

of predictions

The sevond critetion 1s the absolute mwean error. AME. It is 5 measure of average epror
for each point forevast made by the o methods. AME is given by
AME = «1/TXIP, - A 5.0

While MSE and AME are good meastres of deviation of predicted values from the st
vithues, they do not say much about the power of medels in predicting the wrning peints
For many traders and analysts the market direction and turning points are as important as tee
vatue forecast ttselt. “ln these markets, money can be made simply by knowing the direction i
which the senes will move” [25]. A corredt turning pesnt forecast tequires;

sigafP, - A = sipe A, A

Ability of a maodel 1o Torecast the twrning points can be measued by o third methosd

R




developed by Camby and Modest [8] which is a version of Merton's test [23]. Merton’s test is
; y Cumby and A , v

as follows: define a forecast variable K, and an actual direction variable A, such that

Ac=1if AA >0 and A= 0 if AA 50 (53
Fal it AR »0 and F=0 if AP <U | (5.4

where AA, is the amount of change in actual variable between time t-1 and t and &Y, iy the
amount of change in the forecasting variable for the same period.
The probability matrix for the forecasted direction of changes in the actual value

~conditional upon the direction of changes &y the forecasting variable F, iv

P, = Prob[F, = DA, = 0] BT
- P, = ProblF, = UA, = 0] (5.6
P, = Prob[F, = 1A, = 1] | ' 15.7)
L- P, = ProblF, = 0A, = 1] | 5%

In other words, (5.5; and (5.7) are the probability that the Forecasted direction have
actually eecurred and (5.6) and (5.8 are probubilities of wrony forecasts.

By assuming that the magnitude of changes in F, and A, are independent. Menton [23]
showed that a necessary and sufficient condition of market timing ability i that
Puan + Pan o 1
i-e. the forecaster on average has to be right i more than half of the time the forecasts we made.
So the nufl hypothests to be tested iy

Hy o Pp+P- 100

vs

Hy o PP 50

Y




Cumby and Modest 8] shiowed that the above hyrmthft:;iz{ can be ts:ksmd” through the

regression equation® | o
X, =+ N 48 | | ‘ (5.4)

where

X, ;‘ix the change in actual price from previous period at tinme t

A, s the tealized prive direction variable defined in (5.3)

£ is the eryor term,

o= PPy -l

and an o, significantly different from zero is needed to prove the forecasting ability,

0. Data and Forecast Procedure

Monthly commodity prices (37100 Tb) of US beef cattle (900-1 10() by waded in Omaha
are used o test the prediction power of the two approaches. Data are obtained from the CRB
Conmodity Year Book, various issues, and covers period 1973-1987. Monthly data from 1973
through 1986 are used to estimate the time series model, The estinated coefficients are then nsed
to torecast cattle prices ont of sample and twelve steps ahead without updating. The forecasted
valoes are then compared with the actual prices for 1987, The sume monthly data, 1973-1986,
are also used for training and testing the neural network and to predict monthly cartle prices aut

of sample in 1987,

1o




7. Resulfs
- ?IAR!MA time serles rosulls
AN Mz'zszﬁcwién snd estimation residts
k iRv;wl‘i:; of the identifivation step s.mgmm ﬂm;';m AR;[MNB;UH can best represent ‘t’l'xsf'

price behaviowr for the petiod of swdy. The Maximum Likelihood Estimate of the mdel

produced:
yo=  U0Y641 4 025228y, - 029087y, - LISTO0y, . T
(0.5% (3.4 =361 ARy

T statistics w parentheses show that all coefficients are sigmificant other than the constant term,
However, since the mean is not subtracted from ditferenced data, theretore, the constant fenm i

kept in the mode] Jor the forecasting siep,

742 Dragnostic checking

Plots of autocorselation of estimied tesiduals were inside the two standard etror bands
tigure T This is indivates @ white noise error term in the estimated model and proper modeihing
provedure i that all informaton has been extracted from the ertor terms, Liung-Box test statistics
reported in Table 1 show that all estimated probabilities are greater than 19 Therefore, equation
7.1 can be considered as an acceptable representation of data generating provess tor the ARIMA

el
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Results of time series forecasts using equation 7.1 are shown i Table 2. Results show
mmn squared errors of 3679 for the ARINMA model. Absolute mean errors inedicated that
forecasted prives by ARIMA were as mach as 533 ditferent from the actual prices. Resadts also

show o 8,149 {orecasting error,

7.2. Newral Network Resulfs
721 The network’ s architectire
A multi-layer feedioewurd newral vetwork with one hidden faver was set up thigme 2 To

mitke the comparison with the dme series models, twelve Tags of the daty series were sl



HER T «ufm tenf as mptm to the netw mk 1o forecast current prices, At (lw ir‘mmw xmw various
ﬁumhvm of newrons in the hmdm layer were mﬁmum-d The best results were produged by nine
negrons in the hdden Layer, The nutpm fayer had one neuron which was set up o nm;mx the

vurrent prices. With the above specifications, it tonk “fam iteratotys o tram the network

Quiput layer

I{q M( 7,3 3

In yui Ll?ﬁ}*

Figure 2, The Proposed Prive Forevasting Nearal Network Mede!
| #

722 Forecasting with the trained netword

Fo do forecasting ont of sample, 12 months of 19% pices were fed o the tramed
netwark to forecast the first month of 1987 out of sample To forecast the secotd month of J987
he torecasted price for the fust month rrph@si one of presvions puts, the Tt ene, aned @ new
foreeast was obtasned without waimsg the setwork. e gt the forecasting stage so Bainng ek
plave annd o prim?~ ’

s actuad T9RT data, other duan the network s own forecasts s fod dsto

the network. This process of forecasting and recursively substitutuee contimued ot ol 12 months

I3



out of sample Torevasts of 1987 prices were obiined.
Results of the neural network forecasts are shoswn i Table 2. Resolis show that the M8

was THG whieh i over 4504 lower than 37 for the ARIMA,

8 Evaluation and Comyprrison
N1 Qamtitarve vvabuition

Te terms of quantitative forecasts, Table 2 results ofearty shew that the ARIMA model
outperformed by newral aetwork, The ;thﬂuw wmean ereor for the ARIMA 1 S.3% wiule thas
e eror measire o mach lowet at T8 for the tearal petwark forecasts On pereentage tenns,
{5:: last two cobmins of Table 2 show that neural network erors were thiee tmes lowes than

ARIMAL

X2 mraming ponnt evalueation

Plats of the two forecasts along with the acial prives ate shown m Figwre 3 & maph of
the wmal paces shows that m 1957 there were four g pomts w months 1, S, 8 and 10
Figme 2 shows that only one of the four tuming point, month 5, was prediceed by ARIMA O
the other hand. the neural network was able to predict almost all of themy However, the neutal
netwark made o mustabe by predivting ene additional taning pomt between ot f ol %
winch dhd not matenalize.

The formal statistical 1est of mrmng points for both models s perdesned By estmanng

eduation S0 above and results, Latter adiasting For autocorrelations. ate shown w Table 3 The

tratie of slope covftiorent, o, for the Al A nwaded shows that o s not sttt ally Gifterent

L



from zero. This implies that for the period of 1987 the ARIMA mode) bad extremely limied
tuning point forecasting power. On the other hand, for the newral network predictions, o,

highly significant and ditferent from zero. This evidence supports the twning point forecasting

power of nenral netwerk in addition 1o accuate price Tevel furecasts
Y, t‘imct‘usiun

The traditions) view in economucs is that market prices are andom and tat past prives
cannot be used as o guide for the prive belaviour m the futore. However, this view s consistent
anly with lingar models and linear tests {51 In the case of chastiv time series, this conchusson that
prices ate unpredictable cannot be arawn sarhont applying nen haear wsts amd modebs. This
sty used & nonfinear neural netwerh approach by examining commoding prices astng U8 catde
prices. Results showed thar the searad netw ork prosaded more curate fotevasts than the ARIMA
mesdel This may be bevause searal setworks are nontinesr. amd puling up some nonfmearitios
which the ARIMA smudel ot Fmally, e nenral tetwork sesults here conform o the
theoretival proofs that & feedfors ard neard network with suly ane ndden kiver can precisely and

sdiisfavinrdy approsunute any uontmons fumton

1%
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Table 3. Resalts of Merton's Test of "l.*tmaizm,l?nimj Forecasting Power for the ARIMA
and Neural Network. : ,
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“Signifiant at 5 percent levels.






