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A Nested Test for Common Yield Distributions
with Application to U.S. Corn

Jesse Tack

We propose the use of maximum-entropy techniques to nest and test the functional form of
commonly used yield densities. We demonstrate how common parametric yield models can
be nested within a maximum-entropy framework and subsequently tested for using standard
hypothesis tests. We include an empirical application that tests the beta distribution against a
more general maximum-entropy alternative using county-level corn yield data for the U.S. Corn
Belt and find evidence in favor of the alternative generalized maximum-entropy distribution.
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Introduction

This article proposes the use of maximum-entropy techniques to nest and test the functional form of
commonly used yield probability density functions (pdf). This research contributes to the large body
of literature examining the credibility of distributional assumptions for crop yields (see Claassen
and Just, 2011, and references therein). We demonstrate how common parametric yield models
can be nested within a maximum-entropy framework and subsequently tested for using standard
hypothesis tests. We include an empirical application that tests the beta distribution against a more
general maximum-entropy alternative using county-level corn yield data for the U.S. Corn Belt. The
nested hypothesis tests favor the alternative generalized maximum-entropy distribution, and we find
evidence that the beta distribution misrepresents the “fatness” of the yield distribution’s tails, the
importance of which for accurately predicting climate change impacts has been recently stressed
(Nordhaus, 2011; Pindyck, 2011; Weitzman, 2011).

Recent work in the parametric yield modeling literature has focused on nesting a wide range
of skewness-kurtosis combinations within a single parametric model of crop yields. For example,
Ramirez and McDonald (2006) use the Johnson family of distributions, which nests the normal
distribution within a class of non-normal alternatives. However, comparing these distributions to the
commonly used beta distribution—as in Lu et al. (2008)—can be difficult because the beta is not
directly related to the Johnson family. Since this relationship is non-nested, researchers cannot use
standard hypothesis testing frameworks such as the conventional Wald, Lagrange multiplier, and
likelihood ratio tests; rather, they must rely on more ad hoc methods such as a simple ranking of
(potentially penalized) maximized likelihood functions. This is not meant as a criticism of this and
other research that use ranking approaches (e.g., Sherrick et al., 2004; Norwood, Roberts, and Lusk,
2004), but rather as an illustration that even the more flexible models do not permit nested tests for
the beta distribution that has been used to model crop yields since at least Day (1965).

A maximum-entropy (ME) density can be obtained by maximizing Shannon’s information
entropy measure subject to known moment constraints. This distribution is “uniquely determined

Jesse Tack is an assistant professor in the Department of Agricultural Economics at Mississippi State University.
We would like to thank Christopher McIntosh, two anonymous referees, Keith Coble, and Ardian Harri for their helpful
comments and suggestions, and Ximing Wu for guidance in coding the maximum-entropy density estimation. All mistakes
are our own.

Review coordinated by Christopher S. McIntosh.



Tack Nested Test for Common Yield Distributions 65

as the one which is maximally noncommittal with regard to missing information, and that it agrees
with what is known, but expresses maximum uncertainty with respect to all other matters” (Jaynes,
1957; Wu, 2003). The ME density has been used in econometrics (e.g., Golan, Judge, and Miller,
1996; Zellner, 1997; Zellner and Tobias, 2001; Shen and Perloff, 2001), finance (e.g., Buchen and
Kelly, 1996; Hawkins, 1997), and the income distribution literature (e.g., Wu, 2003; Wu and Perloff,
2005). Within the agricultural economics literature, it has been used to study food demand (e.g.,
Golan, Perloff, and Shen, 2001), land use (e.g., Miller and Plantinga, 1999), and crop production
(e.g., Lence and Miller, 1998; Zhang and Fan, 2001). Outside of Stohs and LaFrance (2004) and
Tack, Harri, and Coble (2012), the ME density has not been widely used in the crop yield modeling
literature despite several theoretical and empirical advantages.

This article provides a general framework for nesting and testing a candidate density against a
large class of alternatives. A limitation of the proposed framework is that the candidate density must
belong to the exponential family of distributions, which includes many commonly used distributions.
Additionally, we provide what we believe to be the first nested test of the beta distribution in the yield
modeling literature.

Maximum-Entropy Framework

The maximum-entropy principle states that among all the distributions that satisfy certain moment
constraints, we should choose the one that maximizes Shannon’s information entropy.1 For a random
variable X , the ME density is obtained by maximizing Shannon’s (1948) entropy measure:

(1) W =−
∫

f (x) ln f (x)dx,

subject to the moment constraints:

(2) E[φ j(x)] =
∫

φ j(x) f (x)dx = µ j, j = 0, . . . , J,

where µ j are known values supplied by the researcher. In practice, the constraint for j = 0 is used to
ensure that the density f (·) integrates to unity by setting φ0(x) = µ0 = 1 so that:

(3) E[φ0(x)] =
∫

f (x)dx = 1.

The associated Lagrangian is:

(4) L =−
∫

f (x) ln f (x)dx−
[

λ0

∫
f (x)dx− 1

]
−

J

∑
j=1

λ j

[∫
φ j(x) f (x)dx− µ j

]
,

where λ0, . . . , λJ are the Lagrange multipliers associated with the constraints in equation (2). The
solution to this maximization problem, obtained by calculus of variation, is given by:

(5) f (x,λλλ ) = exp[−λ0 −
J

∑
j=1

λ jφ j(x)],

where λ0 is set to log
(∫

exp
(
−∑

J
j=1 λ jφ j(x)

)
dx
)

to ensure the density integrates to unity (see
Zellner and Highfield, 1988; Golan, Judge, and Miller, 1996).

1 This section follows discussions examining maximum entropy densities in Park and Bera (2009) and Stengos and Wu
(2009).
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The ME density is of the exponential family and can be completely characterized by the moments
E[φ j(x)], j = 1, . . . , J, the sample counterparts of which are sufficient statistics of the density. These
characterizing moments capture known prior information surrounding the random variable, and by
using them a least biased distribution is achieved via the ME principle. Lastly, for a given set of
characterizing moments defined by [φ0,φ1, . . . , φJ ] and associated known values [1,µ1, . . . , µJ ], the
maximized entropy is just W = λ0 + ∑

J
j=1 λ jµ j because:

W = −
∫

f (x,λλλ ) ln f (x,λλλ )dx

=

∫ J

∑
j=0

λ jφ j(x)exp[−
J

∑
j=0

λ jφ j(x)]dx(6)

=
J

∑
j=0

λ jµ j.

Common Maximum-Entropy Densities

Including certain characterizing moments as constraints in the maximum-entropy framework will
generate specific, well-known distributions. For example, suppose we restrict the support to the
interval [a,b] and only require that the density integrates to unity. Since the ME density is always
determined by equation (5), in this specific case we have:

(7) f (x,λ ) = exp(−λλλ 0) = exp

[
− log

(∫ b

a
exp(0)dx

)]
= (b− a)−1,

which is the pdf corresponding to the uniform distribution. If we additionally have information on
the mean, so that φ1 is the identity function φ1(x) = x, and we use the additional characterizing
moment E(x) =

∫
x f (x)dx = µ and assume that the support covers the positive real line, then:

(8) f (x,λλλ ) = exp(−λ0 − λ1x) = exp
[
− log

(∫
∞

0
exp(−λ1x)dx

)
− λ1x

]
= λ1 exp(−λ1x),

which is the pdf corresponding to the exponential distribution. Furthermore, if we model the
support as the entire real line and let φ0(x) = 1, φ1(x) = x, and φ2(x) = x2, then the solution is
f (x,λλλ ) = exp(−λ0 − λ1x− λ2x2), the pdf for the normal distribution. 2

Park and Bera (2009) provide characterizing moments for a variety of other distributions,
including the beta, log-normal, gamma, and Weibul. Furthermore, the Pearson family and its
extensions described in Cobb, Koppstein, and Chen (1983) are all ME densities (Stengos and Wu,
2009).

Building Beta’s Nest

We focus on a nested test for the beta distribution, but this approach generalizes to any member of
the exponential family. We focus on the beta because most of the empirical literature in agricultural
economics over the past decade has used the beta distribution to model crop yields (Lu et al., 2008;
Babcock, Hart, and Hayes, 2004).

The beta pdf is the ME solution on the unit interval under characterizing moments
defined by φ1(x) = ln(x) and φ2(x) = ln(1− x), so that the associated moment constraints are

2 To see that this is the pdf for the normal, start with the standard specification f (x,µ,σ) = (2πσ2)−1/2 exp[−(x−
µ)2/2σ2], expand the quadratic term, and then collect terms according to powers of x. A last step in which (λ0, λ1, λ2)
are defined in terms of (µ,σ) yields the expression in the text.
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E[ln(x)] =
∫

ln(x) f (x)dx = µ1 and E[ln(1− x)] =
∫

ln(1− x) f (x)dx = µ2. The solution
takes the form f Beta = exp[−λ0 − λ1 ln(x)− λ2 ln(1− x)] and the maximized entropy is
W Beta = λ0 + λ1µ1 + λ2µ2.

Now consider as an alternative the model defined over the unit interval with characterizing
moments defined by the k raw moments φi(x) = xi, i = 1, . . . , k. Let the associated moments
be constrained by θ = [1,θ1, . . . , θk] according to E(xi) =

∫
xi f (x)dx = θi, i = 0,1, . . . , k, in

which case the associated solution and maximized entropy are f Alt = exp[−λ0 − ∑
k
i=1 λixi] and

W Alt = λ0 + ∑
k
i=1 λiθi. This is a natural alternative to consider for several reasons. First, Wu (2003)

successfully used it to model the U.S. income distribution, where it compared favorably to the
log-normal and gamma distributions. Second, the raw moments of the ex post estimated density
will match their respective sample counterparts, an intuitively appealing constraint. We refer to this
alternative density as a rank k exponential from here forward.

Given a T × 1 vector of sample data xxx, define the parameter estimates for each of

the models by λ̂λλ
Beta

and λ̂λλ
Alt

, the corresponding densities by f̂ Beta and f̂ Alt , and the
associated maximized entropy measures by Ŵ Beta and Ŵ Alt . In general, the entropy of
the ME density provides a benchmark for comparing these distributions by measuring
their entropy discrepancy, which is the simple difference between Ŵ Beta and Ŵ Alt . A
number of indices based on this discrepancy have been developed, including entropy power
(Shannon, 1948) and its extensions (e.g., Vasicek, 1976), the entropy power variance ratio
(Dudewicz and van der Meulen, 1981), and the entropy power fraction (Gokhale, 1983). More
recently, Soofi, Ebrahimi, and Habibullah (1995) developed an information discrimination (ID)
distinguishability index based on the Kullback-Leibler discrimination function. In this case,
one would distinguish between f̂ Beta and f̂ Alt based on a measure of their relative entropy
K( f̂ Beta : f̂ Alt) =

∫
f̂ Beta(x) ln[ f̂ Beta(x)/ f̂ Alt(x)]dx.

In addition to these information-theoretic measures of difference, likelihood functions could also
be used to rank distributions. As discussed in Stengos and Wu (2009), ME is equivalent to maximum
likelihood estimation (MLE) when the distribution is a member of the exponential family, since
the maximized log-likelihood is proportional to the maximized entropy. That is, for an arbitrary
estimated pdf f (x, λ̂λλ ), the maximized log-likelihood l̂ can be rewritten as:

(9) l̂ =
T

∑
t=1

ln f (xt , λ̂λλ ) = T
J

∑
j=0

λ̂ jµ j = TŴ .

Thus, the maximum-entropy approach can be used to rank yield models using likelihood functions
as in Norwood, Roberts, and Lusk (2004), Lu et al. (2008), Sherrick et al. (2004), and Ramirez
and McDonald (2006). In addition, one can easily construct additional model selection criteria for
further model comparison, such as the Akaike and Bayesian Information Criterion measures.

As currently formulated, the proposed maximum-entropy framework does not provide a nested
hypothesis test for the beta distribution. This is because there does not exist a subset of the parameter
space of the rank k exponential density that generates the beta density. This shortcoming is easily
remedied by building a hybrid model combining the moment constraints associated with beta and
rank k exponential densities. This hybrid model (and thus the associated nesting procedure) is valid
for any candidate and alternative densities provided they are members of the exponential family and
have common support.

Specifically, let the first two characterizing moments of the hybrid model defined on the
unit interval be φ1(x) = ln(x) and φ2(x) = ln(1− x) and the next k be defined by φi(x) = xi,
i = 3, . . . , k + 2. Including the normalizing constraint that ensures the density will integrate to
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unity, there are a total of J = k + 3 moment constraints:

E[φ0(x)] =

∫
f (x)dx = 1,

E[φ1(x)] =

∫
ln(x) f (x)dx = µ1,

(10)
E[φ2(x)] =

∫
ln(1− x) f (x)dx = µ2,

E[φ j(x)] =

∫
x j−2 f (x)dx = µk, j = 3, . . . , J − 1.

The associated solution for the hybrid model is:

(11) f Hyb = exp[−λ0 − λ1 ln(x)− λ2 ln(1− x)−
k

∑
j=1

λ j+2x j],

and the maximized entropy is W Hyb = λ0 + ∑
J−1
j=1 λ jµ j. Equation (11) makes it clear that the

restriction λ3 = . . .= λk+2 = 0 generates the beta density and the restriction λ1 = λ2 = 0 generates a
density of the rank k exponential form. Thus, both the beta and the proposed alternative are properly
nested within the hybrid model.

In general, the hybrid model nests the candidate density and that of the alternative, so the
resulting density is likely to appear different relative to the candidate density. However, the
advantage of this approach is that the researcher can control how different the hybrid density is
by selecting the alternative. For this particular example, one might be concerned that the proposed
rank k exponential alternative is undesirable because the density does not necessarily decay to 0
at the upper bound of the unit interval support as the beta does. While this was not a concern for
the empirical application discussed in this article, one could include one or more characterizing
moments of the form φi(x) = lni(1− x), i∈ {2k + 1;∀k ∈N} to ensure that the alternative density
decays to 0 as x approaches 1.

As proposed in Stengos and Wu (2009), it is possible to exploit the equivalence between ME
and MLE estimates to conduct a likelihood ratio (LR) test of the nested hypothesis. Considering
the J-dimension parameter space ΛΛΛ j, we want to test the restriction λλλ ∈ΛΛΛm, a subspace of ΛΛΛJ ,
m≤ J. Defining by Wm and WJ the maximized entropy values for the restricted and unrestricted
models, the test statistic R =−2T (Wm −WJ) is distributed χ2 with J − m degrees of freedom.
Thus, given parameter estimates and the associated maximized entropy for the hybrid model Ŵ Hyb,
we can test both the beta and the proposed alternative against the hybrid using the test statistics
RBeta =−2T (Ŵ Beta − Ŵ Hyb) and RAlt =−2T (Ŵ Alt − Ŵ Hyb).

The proposed approach easily generalizes to other commonly used distributions in the yield
literature. To build a nest for the log-normal density, start with the characterizing moments defined
by φ1(x) = ln(x) and φ2(x) = ln2(x); for the normal use φ1(x) = x and φ2(x) = ln2(x); for the gamma
use φ1(x) = x and φ2(x) = ln(x); and for the Weibull use φ1(x) = xa and φ2(x) = ln(x). For each case,
if a rank k exponential model is chosen as the alternative then the implied hybrid density is defined
as in equation (11), with φ1(x) and φ2(x) replacing ln(x) and ln(1− x), in which case the candidate
and alternative densities are properly nested.3 The alternative density and corresponding hybrid
must always be defined over the support of the candidate density to ensure a properly nested
structure. Furthermore, one is not restricted in using higher order raw moments to construct the
alternative model, and an interesting avenue for future research would be the consideration of

3 The resulting hybrid for some of these cases would contain redundancies regarding the included characterizing functions
(e.g., the hybrid for the gamma would include φ(x) = x twice). In this situation, the second instance of the characterizing
function can simply be eliminated from the hybrid density without invalidating the properly nested structure of the candidate
and alternative densities.
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Figure 1. Annual Box Plots for the Raw Yield Data

alternative characterizing moments such as a sequence of logarithmic functions lni(x) for i =
1, . . . , k, or trigonometric functions such as sin(x), cos(x), and tan−1(x).4

Data

We focus on the U.S. Corn Belt and include any county in Illinois, Indiana, Iowa, Missouri, or Ohio
that has reported a corn yield to the National Agricultural Statistics Service at any time between
1950 and 2009. We define yield as production over harvested acreage, which produces a dataset
containing 496 counties and 29,057 observations. County-level yields are commonly used in the
literature as they are the most disaggregate level where long time series are available (Tack, Harri,
and Coble, 2012). From a policy perspective, these distributions are useful for analyzing county-
triggered yield and revenue support crop insurance products. The raw yield data are presented in
figure 1; there is a significant amount of inter- and intra-annual variation. The data also display a
noticeable increase in both the mean and variance of corn yields over time.

We follow the standard practice of scaling both the mean and variance of yield outcomes to the
final year in the dataset. We employ the fixed effects model:

(12) yist = αi + β1st + β2st2 + εit ,

where the dependent variable yist denotes crop yield in county i in state s in period t, αi captures
county-specific time-invariant factors that influence yields, and β1st + β2st2 controls for state-
specific technological change. We use the proportional variance model discussed in Harri et al.
(2011), Var(εit) = σ2[E(ŷist)]

2, where the variance of yields moves in direct proportion to predicted
(trending) yield ŷist . We adjust residuals according to:

(13) vit = ε̂it
ŷisT

ŷist
,

4 Park and Bera (2009) provide a nice overview of how different characterizing moments can be used to capture particular
distributional shapes such as thick tails, peakedness, and asymmetry.
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Table 1. Sample Data, Detrended Normalized Yields 1950–2009
State Mean Std Dev Min Max No. of Counties N
Illinois 0.4186 0.0788 0.0765 0.667 102 6114
Indiana 0.4691 0.0729 0.1748 0.6669 92 5459
Iowa 0.4649 0.0799 0.0848 0.6672 99 5940
Missouri 0.3836 0.0976 0.0004 0.6677 115 6362
Ohio 0.4761 0.0713 0.1586 0.6673 88 5182

where ε̂it are the residuals and ŷisT is the predicted yield for the final year in the dataset T . Equation
(12) is estimated for each state separately, and the yield data for each county are constructed
as ỹist = ŷisT + vit . A final normalizing step is performed by dividing all outcomes by the factor
1.5maxt{ỹist}.5 Summary statistics for the detrended and normalized data are presented in table 1.

We implicitly assume that the quadratic trend correctly specifies technical innovations across
time and that state-level pools of the normalized yield data are representative of county-level data.
We conduct several robustness checks to evaluate the credibility of these assumptions for the
empirical results that follow. The details and associated implications of these robustness checks
are described in more detail below.

Empirical Results

We estimate the beta, rank k exponential, and hybrid density functions for each of the five Corn Belt
states. Within each state, county-yield observations are pooled and the densities are estimated using
Matlab.6 We estimate five densities: the beta, three versions of the rank k exponential (k = 3, 5, and
7), and the hybrid.7 As discussed earlier, the hybrid model combines the moments from the beta and
rank k exponential (k = 7) densities. Newton’s method can be problematic when a large number of
moments are included as constraints, so we use the sequential updating method developed in Wu
(2003) to estimate the parameters of each density.

Since the ME estimates are equivalent to MLE estimates for all of the densities considered here,
we calculate the log-likelihood according to equation (9). Column 1 of table 2 reports these values
for each of the estimated densities in each of the five states. Log-likelihood is nondecreasing as one
moves down the list of estimated densities within each state. This is because additional moment
constraints provide additional flexibility in the ME framework. Indeed, ME can provide the same
amount of flexibility as kernel-density-type estimators, provided the number of moment constraints
is sufficiently large.

Both the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are
easily calculated once the log-likelihood is known and can help detect over-fitting. The results are
reported in columns 2 and 3 of table 2. The AIC favors the rank 5 density for all states except Ohio,
for which the more flexible rank 7 density is favored. The BIC, which has a greater complexity
penalty, favors the rank 5 density for all states.

Densities are commonly compared using their information discrepancies. Soofi, Ebrahimi, and
Habibullah’s (1995) ID index, denoted ID( f : f ∗), is a normalization of the Kullback-Leibler

5 Since we are building a test for the two-parameter beta distribution, this normalization of the data to the unit interval is
required. The approach easily generalizes to the three-parameter case, but the second characterizing moment would become
φ2 = ln(c− y) where c is the upper bound of the support. We fully acknowledge that the definition of the upper bound used
here is ad hoc and could potentially affect the empirical findings, as is common when working with the beta distribution in
practice.

6 Code available from the author upon request. The Matlab code for the rank k exponential is available on Ximing Wu’s
web page at http://agecon2.tamu.edu/people/faculty/wu-ximing/. Matlab code for the beta and hybrid models was written by
the authors and available upon request.

7 The first three raw moments are included in each of the rank k densities because yield distributions are likely skewed
(Hennessy, 2009a,b).
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Table 2. LR Tests for Estimated Densities
(1) (2) (3) (4) (5)

Log
Likelihood

Akaike
Information

Criterion

Bayesian
Information

Criterion

Information
Discrimination

Index

Likelihood
Ratio Test
Statistic

Illinois
Beta 6688 -2.1868 -2.1835 – –
k = 3 7093 -2.3191 -2.3147 0.096 –
k = 5 7139 -2.3334 -2.3268 0.0074 91.71
k = 7 7140 -2.3330 -2.3242 0.00011 1.22
Hybrid 7140 -2.3323 -2.3213 0.0000022a 0.00a

0.071b 903.65b

Indiana
Beta 6501 -2.3807 -2.3771 – –
k = 3 6717 -2.4595 -2.4547 0.062 –
k = 5 6777 -2.4806 -2.4733 0.011 119.1
k = 7 6778 -2.4805 -2.4708 0.00023 3.275
Hybrid 6778 -2.4797 -2.4676 0.0000025a 0.00a

0.049b 554.63b

Iowa
Beta 6423 -2.1616 -2.1582 – –
k = 3 6972 -2.3461 -2.3415 0.15 –
k = 5 7101 -2.3890 -2.3822 0.022 258.9
k = 7 7103 -2.3889 -2.3799 0.00028 3.563
Hybrid 7104 -2.3886 -2.3774 0.00027a 2.38a

0.11b 1362.64b

Missouri
Beta 5382 -1.6909 -1.6878 – –
k = 3 5963 -1.8734 -1.8692 0.096 –
k = 5 5981 -1.8784 -1.8720 0.0028 35.24
k = 7 5982 -1.8781 -1.8696 0.00021 2.672
Hybrid 5983 -1.8777 -1.8671 0.000085a 1.14a

0.090b 1202.16b

Ohio
Beta 6286 -2.4248 -2.4210 – –
k = 3 6461 -2.4923 -2.4872 0.048 –
k = 5 6485 -2.5007 -2.4931 0.0045 47.67
k = 7 6491 -2.5023 -2.4922 0.0013 12.43
Hybrid 6491 -2.5015 -2.4889 0.0000064a 0.00a

0.039b 411.45b

Notes: Likelihood Ratio Test Statistic is fk+2(x) versus fk(x) unless otherwise noted.
a Test for the Hybrid versus the k = 7 model.
b Test for the Hybrid versus the Beta model.



72 April 2013 Journal of Agricultural and Resource Economics

distance between two distributions f and f ∗, with values closer to 0 indicating that the two densities
are more similar. Column 4 of table 2 reports the indices, and the first three entries within each state
correspond to ID( f k=3 : f Beta), ID( f k=5 : f k=3), and ID( f k=7 : f k=5). The two values in the final
entry correspond to ID( f Hyb : f k=7) and ID( f Hyb : f Beta). Each of the rank k exponential densities
and the hybrid provide more information than the beta, and the information discrepancy decreases
as more moment constraints are included.

Taken as a whole or individually, the measures provided in columns 1 through 4 provide
information that can be used to select (or rank) the various models. When available, results from
nested hypothesis testing can greatly complement these measures. We calculate LR test statistics
from the maximized entropy values as described earlier in the article, which are provided in column
5 of table 2. The first two entries report ratios for f k=5 versus f k=3 and f k=7 versus f k=5, and the
two values in the final entry are for f Hyb versus f k=7 and f Hyb versus f Beta. There are seven degrees
of freedom for the hybrid-beta test, for all others there are two. The corresponding critical values for
a 5% significance level are χ2(7) = 14.07 and χ2 = 5.99.

The nested hypothesis test results for the rank k exponential models make it clear that including
more than just the first three moments is strongly supported by the data. Thus, while skewness is
widely recognized in the yield literature as an important characteristic of yield distributions, it should
not be considered a threshold beyond which additional moments do not matter. This illustrates a
strength of the proposed approach, as the ME framework’s provision of sequentially nested tests of
more complicated models is especially important for yield modeling. Crop yield research is often
limited by small datasets in which the number of observations per unit can be very small. Under our
approach, a researcher can begin with a parsimonious model (e.g., the normal which is just the rank
2 exponential) and sequentially test whether the additional flexibility gained from including higher
order moments is warranted.

The nested test of the hybrid density versus the rank 7 exponential suggests that the proposed
restrictions are consistent with the data at a 5% level of significance. The LR test statistics are below
the critical value of 5.99 for all states, providing robustness of this finding across the U.S. Corn
Belt. Conversely, the nested test of the hybrid density versus the beta suggest that the proposed
restrictions are not consistent with the data at the 5% level (critical value of 14.07), and again we
see robustness across the included states. Taken together, these tests provide a nested framework
for testing a candidate density against a proposed alternative, and the evidence strongly suggests
rejection of the beta in favor of the rank 7 exponential.

The credibility of the results in table 2 relies on a correct specification of the yield trend and that
the state-level pools of normalized yield data are representative of county-level data. For the former,
we consider two additional technological change specifications, a one-knot and two-knot linear
spline, which are consistent with the detrending approach currently used by the Risk Management
Agency. We find that the overall pattern of results provided in table 2 does not change dramatically
across either alternative model and thus conclude that these results are robust across alternative trend
specifications.

To addresses the appropriateness of state-level pools, we demean and rescale the county-level
normalized yield data as in Claassen and Just (2011). This approach ensures that the resulting
observations are mean 0 and unit variance for each county, and thus poolable across counties within
each state. Again, we find that the overall pattern of results provided in table 2 does not change
dramatically under this alternative approach and thus conclude that results are representative of
what one should expect at the county level. Results of both credibility checks are available from the
authors upon request.

Figure 2 provides a histogram and kernel-density plot for the underlying normalized yield data
overlaid with fitted densities for the beta and rank 7 models for Iowa.8 Relative to the rank 7
exponential, the beta distribution misrepresents the density across nearly all relevant subsections of

8 Graphs for the other states display similar results and are available from the authors upon request.
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Figure 2. Histogram and Kernel Density for the Underlying Data, Overlaid with Fitted
Densities for the Beta and Rank 7 Exponential Models

the support: it underestimates the lower tail (catastrophic losses), overestimates the density between
the lower tail and the mean (shallow losses), and overestimates the upper tail (bumper crops). The
fitted rank 7 exponential compares favorably with a kernel-density plot of the underlying data, which
is not surprising given that the rank 7 model can be thought of as a seventh-order approximation of
the log density.

Economic Significance

To measure the economic significance of the differences between the fitted beta and rank 7
exponential models, we compare implied premium rates for Group Risk Plan (GRP) crop insurance
policies. The GRP program is triggered by county-level yield losses and has received much attention
in the literature due to its potential to mitigate adverse selection and moral hazard problems often
associated with farm-based policies (Harri et al., 2011). Given the fitted densities f k=7 and f Beta,
the implied rates for coverage levels cov∈ [.5, .9] and models m∈ {k = 7,Beta} are calculated as
the ratio of expected indemnity over liability:

(14) ratem
cov = E(indemnitym

cov)/liabilitym
cov,

where:

E(indemnitym
cov) =

∫ ym
cov

0
[ym

cov − y)/cov] f m(y)dy,(15)

liabilitym
cov ≡ ym

cov = covEm(y) = cov
∫ 1

0
y f m(y)dy.(16)

The factor 1/cov in the expected indemnity calculation reflects the “disappearing deductible” built
into GRP contracts (Barnett et al., 2005).

To facilitate rate comparisons, we report the ratio of calculated rates for each state,
ratiocov = rateBeta

cov /ratek=7
cov , in figure 3. The overall pattern of these ratios suggests that rates
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Figure 3. Pair Plots for GRP Rate Ratios under Beta and Rank 7 Exponential Models

are substantially smaller for the beta distribution across the lower range of coverage levels but
approach the rate for the rank 7 model as the coverage level approaches 90%. This is consistent
with the findings in figure 2, where the beta underestimates the density in the lower tail and then
overestimates the density among shallow-loss outcomes in a compensating manner. Overall, the
substantial differences in the GRP premium rates across models suggest that the differences in
density estimates carry economic significance.

Conclusion

This article provides a general framework for nesting and testing a candidate density against a large
class of alternatives, so long as the densities are members of the exponential family. This requirement
is not especially limiting, as many commonly used densities such as the beta, normal, log-normal,
gamma, and Weibull are all members of this family. We include an empirical application that focuses
on testing the beta distribution using county-level corn yield data for the U.S. Corn Belt. Our findings
suggest that the beta distribution be rejected in favor of our proposed alternative.

The testing framework and empirical findings presented here can provide useful guidance about
the appropriateness of distributional assumptions in a variety of contexts. As discussed in the text,
the beta distribution has been used extensively in research focusing on crop yields, and our findings
suggest rejecting this distribution in favor of a parametric alternative that mimics the flexibility of
commonly used kernel-density estimators. Thus, one might be concerned that previous applications
based on the beta distribution employed an overly restrictive parametric assumption and that the
findings might not be robust to the use of the more flexible alternative proposed here. This potential
concern provides a rich area for future research.

Our empirical application includes an analysis of the economic significance of the distributional
differences between the beta and the proposed alternative. The economic significance is established
using a simple comparison of premium-rate differences for Group Risk Plan crop-insurance
contracts; however, a more holistic comparison might include an out-of-sample exercise that
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examines whether private insurers can accrue economic rents through the reinsurance option
provided by the Federal Crop Insurance Corporation’s Standard Reinsurance Agreement (as in Harri
et al., 2011). In this context, future research could consider whether the in-sample testing procedures
presented here are a leading indicator of out-of-sample rating performance exercises in the spirit of
Harri et al. (2011).

Since the proposed testing framework is general enough to include any exponential distribution,
it could also prove useful for pricing livestock revenue insurance products based on the Asian
basket option. As discussed in Hart, Babcock, and Hayes (2001), pricing these options requires “an
analytic approximation to produce closed-form probability density functions for the price averages
of the futures prices” (pg. 560), and they consider both the log-normal and the inverse gamma
distributions as candidates. Given that both of these candidate distributions are members of the
exponential family defined over the positive real line, one could define a hybrid model that included
the characterizing moments for each distribution and then use the testing framework presented here.
As the appropriateness of the log-normality assumption remains an active area of concern in the
literature, future research using this framework seems warranted.

While the above discussion has focused mainly on applications in a crop insurance context,
the testing procedure presented here can also provide useful guidance for empirical studies that
use moment-models in the spirit of Antle (1983) and Just and Pope (1978). Given Tack, Harri, and
Coble’s (2012) framework for the Moment-Based Maximum-Entropy model, which essentially links
moment-models with maximum-entropy density estimation, one can sequentially add additional
equations to the system of moments and test the appropriateness of this inclusion via implied changes
in the resulting maximum-entropy distribution. Given the broad use of these models across several
academic disciplines, including agricultural economics, agronomy, and climate change, this could
prove a rich area for future research.

[Received September 2012; final revision received February 2013.]
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