
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Journal of Agricultural and Resource Economics 38(1):1–18
Copyright 2013 Western Agricultural Economics Association

Do Agricultural Subsidies Affect the Labor
Allocation Decision? Comparing Parametric

and Semiparametric Methods

Mahesh Pandit, Krishna P. Paudel, and Ashok K. Mishra

This study estimates off-farm labor supply from farm operators and their spouses using two
different estimation procedures and data from the 2006 Agricultural Resource Management
Survey. A semiparametric model was found to be better specified to study off-farm labor supply
from operators and spouses than the parametric model. Contrary to previous findings, results found
using the semiparametric model indicate that neither direct nor indirect government payments
have any impact on the off-farm labor supply of farm operators. These findings indicate that
existing literature may overstate the impact of farm payments on the economic well-being of farm
households.
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Introduction

Proper model specification is an essential aspect of economic policy analysis, if economists want
an accurate representation of the economic activity they are modeling. Historically speaking, most
studies of off-farm labor supply have used parametric methods. During the 1970s and 1980s,
ordinary least squares (OLS) was preferred by economists studying off-farm labor supply (Larson
and Hu, 1977; Sumner, 1982; Gould and Saupe, 1989). Some researchers (Huffman, 1980; Gould
and Saupe, 1989) began using a maximum likelihood estimation procedure through probit and logit
models to study off-farm labor supply. Mishra and Goodwin (1997) used a Tobit model to study
the effect of farm-income variability on off-farm labor supply among farm operators and their
spouses. While these types of models were commonly used (El-Osta, Mishra, and Ahearn, 2004;
Phimister and Roberts, 2006), researchers also began to use other models such as bivariate probit
models (Ahearn, El-Osta, and Dewbre, 2006) and multinomial logit models (El-Osta, Mishra, and
Morehart, 2008) to study off-farm labor allocation decisions. El-Osta and Ahearn (1996), Mishra
and Goodwin (1997), and Ahearn, El-Osta, and Dewbre (2006) established an inverse relationship
between government payments and off-farm labor supply using Tobit models.

Over the last ten years, government payments have accounted for nearly 30% of farm net income
on average. During this period, the federal government has distributed an average of $18.2 billion
annually to farmers in the form of direct government payments (U.S. Department of Agriculture,
2010). These payments include direct payments for commodity programs, countercyclical payments,
marketing loan benefits, emergency or disaster payments, tobacco transition payments, and
conservation program payments (see Monke, 2004, for details on farm-commodity programs).
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the Department of Agricultural Economics and Agribusiness at Louisiana State University and Louisiana State University
Agricultural Center.
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Our study is timely and relevant to current policy discussions, because the federal government
has been trying to find ways to reduce unemployment. One way to reduce unemployment is to create
incentives using fiscal policies. Recent studies using parametric analysis have shown that higher
agricultural subsidies would reduce off-farm labor supply and thus reduce unemployment because
quantity supplied for workers trying to find jobs in off-farm markets are lower. Findings from this
research will help determine whether spending on agricultural subsidies (specifically, direct and
indirect farm payments) reduces unemployment.

Multiple studies address the factors influencing a farm family’s decision to participate in off-
farm labor. Of greatest relevance to this article is the literature on how government payments affect
the off-farm labor-supply decision. Using Agricultural Resource Management Survey (ARMS)
data, Ahearn, El-Osta, and Dewbre (2006) and El-Osta, Mishra, and Morehart (2008) found that
government payments tended to increase the number of hours operators work on the farm and
decrease the hours devoted to off-farm labor, regardless of the payment type (coupled or decoupled).
The study further found that government payments had a positive effect on the total number of
hours worked. Ahearn, El-Osta, and Dewbre (2006) also showed that government payments have a
negative effect on off-farm labor participation among farm operators and their spouses. Using data
from Kansas farm households (more homogenous and local in nature), Mishra and Goodwin (1997)
found that government payments were negatively related to off-farm labor participation.

The above studies, which used parametric methods to estimate their empirical models, have
some known weaknesses. For example, a parametric method requires strong assumptions regarding
the functional forms and is subject to misspecification, which may lead to poor results (Keele, 2008).
Could the impact of government payments on off-farm labor supply be spurious as a result? Mishra
et al. (2002) noted that government payments are skewed toward large farms and may be nonlinear
in nature. Therefore, any conclusions based on a parametric method could lead to biased results and
flawed policy design.

This study estimates off-farm labor supply among farm operators and their spouses using
both parametric and semiparametric methods, test parametric versus semiparametric model
specification,1 and assesses the impact of government payments on labor allocation. We use a
spline-based semiparametric model after identifying variables entering the model nonparametrically.
Finally, we use the Hong and White (1995) test to identify appropriate model specification.

Conceptual Model

We assume that individuals allocate time to work on farm labor, off-farm labor, and leisure in such a
way that the optimal allocation is achieved when the net marginal values of the time devoted to the
activities are equal. In our case, the farm operator household is assumed to maximize utility:

(1a) U =U(I,Lo,Ls,Co,Cs,τ),

subject to time constraints of the operator:

(1b) T o = Lo + yo + Fo,

time constraints of the operator’s spouse:

(1c) T s = Ls = ys + Fs,

1 While the semiparametric method is used frequently in statistics and general economics literature, it is used less
frequently in agricultural economics research related to labor supply. Goodwin and Holt (2002) used a semiparametric
(single-index) model to study farm-labor allocation in Bulgaria. They used both Hausman (1978) and Bera, Jarque, and
Lee (1984) tests for their specification search. They found that there are no significant differences in the parameters estimated
by the probit and the semiparametric single-index models.
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the farm production function:

(1d) Yf = f (Fo,Fs,X f ,Co,Cs,R),

and income:

(1e) I = woyo + wsys + PfYf − r f X f +V,

where superscripts o and s indicate “operator” and “spouse,” I is total income, L is time allocated to
leisure, C is human capital, and τ denotes other factors such as life stage, number of children, farm
tenure, and access to health insurance. In constraint equations, T is total time endowment, y is time
allocated to off-farm work, F is time allocated to farm work, Yf are farm outputs, X f are inputs used
in farm, R represents location and farm-specific factors (such as distance to city, diversification, and
government farm program payments), w is the off-farm wage rate, Pf are farm output prices, r f are
farm input prices, and V signifies other household nonlabor income.

We also assume that the utility function and the production function are concave, continuous, and
twice-differentiable (Mishra and Goodwin, 1997). The first-order conditions from the maximization
problem provide many useful results, including the optimality conditions for off-farm labor supply.
The optimal decision to work off farm (y∗) is obtained by substituting the optimal values of leisure
and farm work hours derived from the first-order conditions from equations (1a)–(1e):

(1f) y∗ = T − L∗ − F∗ = f (www,Pf ,r f ,V,CCC,τ,R, I),

where L∗ represents optimal leisure and F∗ represents optimal allocations of farm work hours.

Estimation Methods

A farm operator’s decision to work off farm can be expressed as a discrete choice model.2 Let y
denote the decision of a farm operator to work off farm, which is 1 if the farm operator decides to
work off farm and 0 otherwise; X denotes the independent variables listed in equation (1f).

Parametric Method

A probit model is commonly used for the off-farm labor supply decision, which can be presented
as:

(2) yyy∗ = XXX ′βββ + εεε, yyy = 1 if y∗ > 0, 0 otherwise;

E[εεε|XXX ] = 0;(2a)

Var[εεε|XXX ] = σ2;(2b)

where βββ represents the coefficients associated with the explanatory variables.
Let φ(·) denote the probability density function of the normal distribution and Φ(·) represent

the cumulative distribution function of the normal distribution. The parameters are estimated by a
maximum likelihood estimation procedure. The log likelihood function for a probit density function
is represented as:

(3) ln(lβ ) =
n

∑
i=1
{yi lnΦ(XXX ′β ) + (1− yi) ln(1−Φ(XXX ′βββ ))}.

2 Here, we present the case for farm operators, but one can easily substitute the same arguments for spouses.
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The estimation of parameter βββ is equivalent to maximizing the log likelihood function with
respect to the βββ parameter. The marginal effect of a continuous variable in a probit model is given
by:

(4) ME =
∂E[yyy|XXX ]

∂XXX
= φ(XXX ′βββ )βββ ,

where the marginal effects are calculated by averaging across all observation. The marginal effects
for a binary independent (dummy) variable are:

(5) ME = Prob[y = 1|d = 1]− Prob[y = 1|d = 0].

We calculate robust standard errors (RSE) for all parameter estimated in the model.

Semiparametric Method

A semiparametric method can correct the weaknesses of the parametric and nonparametric methods
because it balances the pros and cons of the parametric and nonparametric methods. One can think
of semiparametric method as being a hybrid form of the parametric and nonparametric methods
(Lee, 2001). The nonparametric components in a semiparametric method are distribution free,
so a strong assumption of the functional form is not required. The semiparametric method also
captures nonlinearity in the data. On the other hand, a semiparametric model reduces the number
of variables entering nonparametrically and helps mitigate the problems associated with the curse
of dimensionality. Using a semiparametric model typically avoids the problem of misspecification.
Finally, the estimated parameters in the semiparametric model are asymptotically efficient.

The semiparametric regression model is often referred to as an additive or generalized additive
model (GAM). A semiparametric model prevents overfitting (when relationships appear more
statistically significant than they actually are) and provides the best mean squared error fit, as it
is adjusted by penalty factors. A smoothing spline estimation procedure for a simple linear equation
is provided in Appendix A.

We cannot use a linear equation directly on off-farm labor allocation decisions among farm
operators and spouses because the decision variable is binary. We need to set up a semiparametric
additive model with nonparametric and parametric terms as a Penalized Generalized Linear Model
(PGLM), which takes the following form:

(6) g{E(yi)}= XXX∗i βββ +
J

∑
j=1

f j(z ji),

where yi ∼ follows a distribution from the exponential family and g is a known link function.3

Link function could be “probit,” “logit,” or any other common link functions. J is the number of
variables entering the semiparametric model nonparametrically. As in the parametric model, the
link functions play an important role in addressing the problems of the linear probability model (i.e.,
constant marginal effects and predicted probability exceeding beyond the range [0, 1]). Parametric
model matrix XXX∗i also includes a column of one for intercept variable, and βββ is a parameter vector
and f j serves as a smoothing function for covariates zzz j.

In our case, yi is a binary variable (1 = yes, 0 = no) for the off-farm labor allocation
decision and XXX∗i denotes independent variables such as age, education, access to health insurance,
number of children in the household, household net worth, farm ownership, farm size, government
program payments (direct, indirect, and conservation reserve payments), crop insurance, entropy

3 A distribution belongs to the exponential family of distribution if the probability density or probability mass function can
be written as fψ (y) = exp[ {yψ−b(ψ)}

a(φ) + c(y,φ)]. Here b, a, and c are arbitrary functions, φ is an arbitrary ‘scale’ parameter,
ψ is a canonical parameter of the distribution and depends on the model parameter in GLM.
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Table 1. Definition and Summary Statistics (N=5,121)
Variable Definition Mean Std Dev Min Max
Dependent Variables

ofop =1 if the operator worked off farm, 0 otherwise 0.307 0.461 0.000 1.000
ofsp =1 if the spouse worked off farm, 0 otherwise 0.464 0.499 0.000 1.000

Operator and Spouse Characteristics
opage Age of operator in years 55.372 12.027 19.000 92.000
spage Age of spouse in years 52.782 11.870 17.000 92.000
opeduc Years of formal education, operator 13.459 1.913 10.000 16.000
speduc Years of formal education, spouse 13.581 2.195 0.000 16.000
ophthins =1 if the farm operator received health insurance

through off-farm work, 0 otherwise
0.192 0.394 0.000 1.000

sphthins =1 if the farm spouse received health insurance
through off-farm work, 0 otherwise

0.232 0.422 0.000 1.000

Family Characteristics
hhsize06 Number of household members under the age of six 0.151 0.501 0.000 6.000
hhsize13 Number of household members between ages six

and seventeen
0.545 0.997 0.000 7.000

hhnw1 Household net worth ($1000000) 1.974 3.098 0.000 43.402
Farm Characteristics

direct Direct farm program payments ($1000) 8.155 20.983 0.000 237.000
indirect Indirect farm program payments ($1000) 8.485 23.656 0.000 362.986
fowner = 1 if the farm is fully owned , 0 otherwise 0.402 0.490 0.000 1.000
powner = 1 if the farm is partially owned, 0 otherwise 0.490 0.500 0.000 1.000
crppayment Conservation reserve payments ($1000) 0.609 3.703 0.000 70.000
vprod1 Farm size, value of agricultural output sold

($1000000)
0.710 1.630 0.000 27.000

insur = 1 if the farm has crop insurance, 0 otherwise 0.317 0.465 0.000 1.000
entropy Entropy measure of farm diversification 0.144 0.138 0.000 0.582

Local Economic Condition
metro1 = 1 if the farm is located in a metro county, 0

otherwise
0.341 0.474 0.000 1.000

(index of diversification), and farm location. Table 1 includes summary statistics. The vector zzz j
represents variables whose functional form cannot be specified. These variables enter the model
nonparametrically.

In equation (6), the covariates XXX∗ are assumed to have a linear effect. The vector zzz j is nonlinear
and fitted using a nonparametric estimation procedure. The parametric part of the model allows
for the existence of discrete independent variables, such as dummy variables. The nonparametric
terms contain only continuous covariates.4 This model can be solved by using a penalized likelihood
maximization procedure. The details of this procedure are available in Appendix B.

Variable Selection Procedure

Before estimating a model using a semiparametric method, it is essential to identify which variables
should be entered in parametrically and which should be entered nonparametrically. Although a
variable entering nonparametrically can be identified using established economic theories, these
theories sometimes fail to appropriately place variables either parametrically or nonparametrically.

4 The kernel-based nonparametric model is available for dummy or multiple categorical independent variables (Racine
and Li, 2004). The recently developed crs package in R can take both continuous and categorical variables even with the
Spline method (Nie and Racine, 2012).
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For this reason, variables must be categorized by the way in which they enter a model before the
semiparametric model can be estimated.

Research into corresponding hypothesis tests is somewhat scant. We use a method suggested
by Ruppert, Wand, and Carroll (2003, p. 168) to test the linearity of a variable entering the model
nonparametrically. Consider the following models:

Model 1: y = α + β1x1 + f2(x2) + ε
(7)

Model 2: y = α + β1x1 + β2(x2) + ε

where y is a dependent variable and x1 and x2 are independent variables. In Model 1, x2 is entered
nonparametrically and in Model 2 it is entered parametrically. Therefore, the testing hypothesis is:

H0: x2 enters parametrically
H1: x2 enters nonparametrically

The log likelihood ratio (LR) test or contrasting deviance statistic is then:5

(8) LR =−2(LogLikelihood0 − LogLikelihood1),

where LogLikelihood0 is the log likelihood for the restricted model (Model 2) and LogLikelihood1 is
the log likelihood for the unrestricted model (Model 1). The test statistics under the null hypothesis
follow an approximate chi-square distribution, and the degrees of freedom equal the difference in
the number of parameters across the two models. If observed LR is in the upper tail of its null
distribution, then we conclude that the null hypothesis of linearity (parametric form) should be
rejected (Ruppert, Wand, and Carroll, 2003).

Specification Test

Comparisons of the parametric and semiparametric results are another aspect of a semiparametric
analysis. Hong and White (1995), Zheng (1996), Li and Wang (1998), and Hsiao, Li, and Racine
(2007) provide some examples of specification tests. Hong and White (1995) introduced a consistent
test of functional form using nonparametric techniques. The Hong and White test is based on the
covariance between the residual from the parametric and discrepancy between the parametric and
nonparametric fitted values, so it depends on model specification. The null hypothesis is that the
parametric specification is correct against the semiparametric specification. The test statistics T̂n are
given by:

T̂n = (nm̃n/σ̂
2
n − Pn)/(2Pn)

1/2;(9)

m̃n = n−1
n

∑
t=1

ε̂
2
nt − n−1

n

∑
t=1

η̂
2
nt ;(10)

where σ̂2
n estimator for the variance of the error term under H0, Pn is dimension of parameter for

parametric covariates, ε̂2
nt regression error from parametric estimation procedure, and η̂nt is the

residual from nonparametric estimation. Hong and White prove that the test statistics converge to a
normal distribution under the correct specification but grow to infinity faster than the parametric rate
under misspecification. That is, as n→∞, Tn

d→N(0,1) under H0. The hypothesis H0 is rejected for
large values of Tn.

The likelihood ratio or contrasting deviance test can also be employed for model specification
(that is, to compare the specification of parametric and semiparametric models as described in the
previous section). The hypothesis can be tested as:

5 The deviance for a model is simply -2 times the log likelihood, so it also follows a chi-square distribution with the same
degree of freedom of likelihood ratio test.



Pandit, Paudel, and Mishra Semiparametric Method in Agricultural Off-Farm Labor Supply 7

H0: Parametric Model
H1: Semiparametric Model

(11) LR =−2(LogLikelihood0 − Loglikelihood1)

If the observed LR value falls within the upper tail of a chi-square distribution, then we conclude
that the null hypothesis of the parametric model specification should be rejected.

Data

The empirical analysis uses 5,121 observations from the 2006 Agricultural Resource Management
Survey (ARMS) collected by the United State Department of Agriculture/Economic Research
Service. ARMS is a large national data set containing detailed information on the U.S. farm
production sector, including (but not limited to) household labor activities, years of formal education,
household health insurance status, family characteristics (i.e., the number of children present in
the household), farm program payments, income and expenses, and farm type. We choose a set of
variables from ARMS to represent the variables shown in equation (1f). We use education as a proxy
measure for human capital (C) and wage (w). We use CRP, direct, and indirect payments as proxies
for nonfarm income (V ) because they are subsidies provided by the government to farmers. Age,
number of children in the household, and health and crop insurance are used as a proxy measure
for τ . Metro dummy, farm ownership (full owned or partially own), and entropy are proxy measures
of R, which represents farm characteristics. Household net worth is used as a proxy measure for
income, I. The value of production is used as a proxy measure for Pf and r f .

Table 1 presents descriptive statistics of the variables used in the analysis. The data show that
31% of farm operators and 46% of their spouses work off farm. We are interested in the off-farm
labor allocation decision, so we create a new dummy variable for both operators and spouses based
on whether they supply labor to off-farm work. In our analysis, a value of 1 is assigned if the operator
(spouse) works off farm and a 0 is assigned otherwise.

The literature addressing off-farm labor supply (Huffman, 1980; Mishra and Goodwin, 1997)
suggests that off-farm work experience is an important factor affecting off-farm labor allocation.
Unfortunately, the 2006 ARMS data do not contain any information on the number of years of off-
farm work experience. Fringe benefits from off-farm employment, such as health insurance, may
induce operators and spouses to work off farm. In our analysis, a value of 1 is assigned if the operator
(spouse) receives health insurance from off-farm work and a value of 0 is assigned otherwise. The
number of children in a household is divided into two categories: under the age of six and between
ages six and seventeen. Higher levels of education provide better off-farm working opportunities,
so this variable is included in the model as the number of years spent in a formal school setting.
Following previous research, household net worth is used as a measure of the financial wealth
of a household. Financially, well-established (measured by household net worth) farm operators
may have less incentive to work off farm. Government payments also play an important role in
farm operators’ labor allocation decisions (Mishra and Goodwin, 1997; Dewbre and Mishra, 2007).
Mishra and Sandretto (2002) point out that farm program payments stabilize total household income,
thereby lessening the need to work off farm. Accordingly, we include information regarding different
farm program payments such as direct, indirect, and conservation reserve payments in our analysis.
Table 1 shows that for the year 2006, farms received an average $8,155 in direct payments, $8,485
in indirect payments, and $609 in conservation reserve payments.

Farm size plays an important role in the labor allocation decision.6 Operators of small farms
typically participate more in off-farm employment activities, work more hours off farm, and have
a higher off-farm income than do operators of larger farms (Fernandez-Cornejo, Hendricks, and

6 One of the reviewers suspected that farm size and health insurance received from off-farm work might be endogenous.
Our results show that there is no problem of endogeneity. Test results are available upon request from the authors.
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Mishra, 2005). Mishra and Goodwin (1997) argue that operators, whose farm size is large, are less
likely to work off farm because they must spend more time on farm work. We consider the value of
agricultural output as a proxy for farm size. Farm operators who purchase crop insurance are less
likely to work off farm because, a farmer receives indemnity payments in case of crop failure. These
payments restore lost income while also reducing farm income variability. The type of county—
metro or nonmetro—was included in the model to assess the impact of farm location on off-farm
labor force participation among operators and spouses. Such locational variables have been included
in earlier studies of the farm labor supply decision (El-Osta, Mishra, and Ahearn, 2004; Ahearn, El-
Osta, and Dewbre, 2006; El-Osta, Mishra, and Morehart, 2008). We assume farms located in closer
proximity to metro areas are more likely to have operators (spouses) who work off farm, given that
it takes less travel time and offers more employment opportunities relative to a farm in a nonmetro
area.

Results and Discussion

We first test the jointness in the decision making between farm operators and their spouses in the
2006 ARMS data and find it to be nonsignificant.7 Results from the copula test (Clayton copula
functional form, dependence parameter = 1.6078; standard deviation = 1.0446) reject jointness in
labor supply decisions. This allows us to estimate operators’ and spouses’ off-farm labor supply
decision equations separately. Similar to our results, Mishra and Goodwin (1997); Lass, Findeis,
and Hallberg (1989); Lass and Gempsaw (1992); Ahearn, El-Osta, and Dewbre (2006); and El-Osta,
Mishra, and Morehart (2008) did not find any evidences of jointness in labor supply decisions.

The test statistics for categorizing whether a variable enters parametrically or nonparametrically
are determined based on the likelihood ratio test described above. Test statistics are provided in table
2. We find different sets of variables entering nonparametrically in the semiparametric model for
farm operator and spouse. For operators, deviance for age (opage) is significant, but the age-squared
(opagesq) variable is not significant. This means that age squared captures nonlinearity of age and
entered parametrically in the semiparametric model. Deviance for farm size (vprod1) is significant
at a 5% level, an indication that farm size is a nonparametric covariate in operators’ labor allocation
decisions. For spouses, the deviance is significant for age (spage), household net worth (hhnw1),
farm size (vprod1), direct payment (direct), indirect payment (indirect), and entropy (entropy). All
variables entering nonparametrically are significant at the 5% level for both operators and spouses.
These variables have significant effect on off-farm labor supply decision.

Table 3 provides information on coefficients and marginal effects related to operators’ off-farm
labor decisions under parametric and semiparametric models. Similarly, table 4 provides information
on coefficients and marginal effects related to spouses’ off-farm labor decisions under parametric
and semiparametric models. The positive and significant coefficient on operator age (opage) and the
negative and significant coefficient on operator age squared (opagesq) imply that age has an inverted-
U-shape (quadratic) relationship with predicted probability of working off farm. Similar results hold
for spouses. In the semiparametric model for spouses, the curve has a plateau then decreases as age
increases, as shown in figure 2a. In particular, in the operator model, the marginal estimates from the
parametric models imply that a unit change (additional year of age) decreases the probability of off-
farm employment by 0.005, whereas it increases the probability of off-farm employment by 0.023 in
the semiparametric model (table 3). The probability of an operator working off farm starts decreasing
at age forty-three in the parametric model and forty-four in the semiparametric model. In the case of
spouses, the probability of working off farm increases by 0.010 in the parametric model. The peak

7 This jointness test is based on a copula. Suppose F(y1,y2) =C(F1(y1),F2(y2);α) represents the joint distribution of
farm-labor allocation decisions of farm operators (y1) and their spouses (y2). Here, α represents dependence between
marginal distributions F1(y1) and F2(y2); C(·) is a copula function. If α = 0, then the marginal distributions are independent.
Details on the copula method used to test jointness can be found in Genest and Rémillard (2004) and Yan (2007).
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Table 2. Variable Selection for Labor Allocation Model
Operator Spouse

Variable DF Deviance P-value DF Deviance P-value
opage/spage 6.6395 72.9160 0.0000∗∗ 3.0081 79.9710 0.0000∗∗

opagesq/spagesq 3.7450 4.5840 0.2987 1.5286 6.3780 0.0245∗∗

hhnw1 1.5267 2.1282 0.2469 5.4575 23.6130 0.0004∗∗

vprod1 3.8622 185.3800 0.0000∗∗ 4.6466 88.5560 0.0000∗∗

crppayment 6.0814 8.9842 0.1804 0.5949 1.6675 0.1070
direct 3.7458 4.5842 0.2988 3.3025 12.2770 0.0086∗∗

indirect 3.0162 6.6453 0.1851 0.7567 3.3674 0.0451∗∗

entropy 5.7705 8.0165 0.2169 0.5678 958.2500 0.0000∗∗

Notes: Deviance is -2 times the difference between the log likelihood value from linear and nonlinear regression. In the spline-based
regression model, penalties shrink degrees of freedom, so it could be noninteger. The effective degrees of freedom (DF) is
tr[(X ′X + S)]−1X ′X (Ruppert, Wand, and Carroll, 2003; Wood, 2006). All programming was done using R 2.15.0 and package mgcv (see
www.r.project.org; R, 2012). We use contrasting deviance or likelihood ratio test using code: anova (mod.2, mod.1, test= ‘Chisq’). Double
asterisks (**) indicate that the corresponding variables to those p-values are significant at the 5% level.

age for off-from employment among spouses is thirty-three in the parametric model. The findings
support the life-cycle hypothesis in off-farm labor supply for both operators and their spouses.

The coefficient on educational attainment for both operator and spouses (opeduc/speduc) is
positive and significant for both the parametric and semiparametric models. Our results confirm
previous research that suggests both farm operators and their spouses with higher levels of education
are more likely to work off farm (Mishra and Goodwin, 1997). In particular, the marginal effect for
operators (table 3) indicates that an additional year of schooling increases the likelihood of off-farm
work by 0.014 in the parametric model and 0.013 in the semiparametric model. The difference in
the marginal effects is due to smoothing of the farm-size variable in the semiparametric model for
operators. Similarly, the marginal effect for spouses reveals that an additional year of schooling
increases the probability of off-farm work by 0.033 in both the parametric and semiparametric
models (table 4). The likelihood of off-farm participation among spouses is nearly twice that of
operators, ceteris paribus.

Often, nonfarm jobs provide fringe benefits such as access to health insurance, a benefit that
is likely to attract farm operators and their spouses to off-farm employment. Our result shows that
health insurance plays a positive and significant role in the off-farm labor allocation decision for
both operators and spouses. For example, if an operator receives health insurance, then he or she
has a 45% and 31% higher probability of working off farm in the parametric and semiparametric
models, respectively. Again, the difference in the marginal effects is due to the smoothing of the
farm-size variable in the semiparametric model. Consistent with the decision of farm operators, our
results suggest that the probability of spouses working off farm when receiving health insurance
from their off-farm job is 50% higher in the parametric model. As with operators, the probability of
working off farm for spouses also declines (50% vs. 45%) when moving from the parametric model
to the semiparametric model.

As expected, the coefficient on the number of children under age six (hhsize06) for spouses is
negative and significant for both models (table 4). The marginal effects imply that an additional
child under the age of six decreases the spouses’ probability of working off farm by 8% for both
the parametric and semiparametric models. In the case of the number of children between age six
and seventeen (hhsize13), the coefficient is also negative and highly significant. Presence of children
in the household limits the time available for off-farm work among spouses, especially for farm
households, where women have traditionally devoted more time to caring for children. These results
support the findings of Mishra and Goodwin (1997); Goodwin and Holt (2002); and El-Osta, Mishra,
and Morehart (2008).

The coefficient on household net worth (hhnw1) reveals that farm operators and their spouses
with higher net worth are less likely to work off farm, indicating an income effect. Table 3 shows that
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Table 3. Parameter Estimates and Marginal Effects Parametric and Semiparametric Probit
Model: Operator

Parametric Semiparametric
Variable Coefficients Marginal Effect Coefficients Marginal Effect
Parametric estimate

opage 0.07641∗∗∗ −0.00504∗∗∗ 0.09355∗∗∗ 0.02305∗∗∗

(0.01482) (0.00056) (0.01516) (0.00487)
opagesq −0.00088 −0.00107∗∗∗

(0.00013) (0.00014)
opeduc 0.05481∗∗∗ 0.01428∗∗∗ 0.05339∗∗∗ 0.01316∗∗∗

(0.01113) (0.00290) (0.01144) (0.00369)
sphthins 1.355161∗∗∗ 0.45154∗∗∗ 1.24717∗∗∗ 0.30734∗∗∗

(0.05297) (0.01921) (0.05360) (0.01853)
hhsize06 0.03416 0.0089 0.05458 0.01345

(0.04484) (0.01169) (0.04843) (0.01563)
hhsize13 −0.03611 −0.0094 −0.02219 −0.00547

(0.02200) (0.00574) (0.02329) (0.00751)
hhnw1 −0.03184∗∗ −0.00829∗∗ −0.00329 −0.00081

(0.01233) (0.00323) (0.00903) (0.00291)
fowner 0.20705∗∗∗ 0.05476∗∗∗ 0.13649∗ 0.03364

(0.07738) (0.02077) (0.07957) (0.02568)
powner 0.10994 0.0285513 0.09247 0.02279

(0.07421) (0.01921) (0.07606) (0.02455)
vprod1 −0.22706∗∗∗ −0.05917∗∗∗

(0.07778) (0.01984)
crppayment 0.00629 0.00164 0.00574 0.00142

(0.00556) (0.00145) (0.00555) (0.00179)
direct −0.00289∗ −0.00075∗ −0.00037 −0.00009

(0.00171) (0.00044) (0.00155) (0.00050)
indirect −0.00527∗∗ −0.00137∗∗ −0.00218 −0.00054

(0.00211) (0.00055) (0.00145) (0.00047)
insur −0.23932∗∗∗ −0.06179∗∗∗ −0.17335∗∗∗ −0.04271∗∗∗

(0.05273) (0.01348) (0.05386) (0.01738)
entropy −0.019803 −0.00516 −0.22179 −0.05465

(0.18092) (0.04714) (0.17397) (0.05615)
metro1 −0.011387 −0.00296 0.00184 0.00045

(0.04512) (0.01174) (0.04600) (0.01485)
Nonparametric estimate

vprod1 d f = 8.086, χ2 = 313.5

Notes: Hong and White’s test statistic value is 41.3064, which is significant at the 1% level. The LR test statistic of the semiparametric model
against parametric model is 235.01 with 6.5 degrees of freedom, which is significant at the 1% level. Single, double, and triple asterisks
(*, **, ***) indicate significance at the 10%, 5%, 1% levels. Values in parenthesis are standard errors.

the coefficient on full owner (fowner) is positive and significant at the 1% level for operators in both
parametric and semiparametric models, suggesting that full owners are more likely to work off farm
compared to farms operated by tenants (table 3). The marginal effect (0.054) of full ownership in the
parametric model suggests the probability of a full owner working off farm is 5.4% higher compared
to tenants. The value-of-agricultural-production variable (vprod1), a proxy for farm size that entered
nonparametrically, is negative and statistically significant at the 1% level for both operators and
spouses (tables 3 and 4) in the parametric model. This result suggests that as farm size increases, the
probability of operators and their spouses working off farm decreases, which is consistent with the
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Table 4. Parameter Estimates and Marginal Effects Parametric and Semiparametric Probit
Model: Spouse

Parametric Semiparametric
Variable Coefficients Marginal Effect Coefficients Marginal Effect
Parametric variables

spage 0.07124∗∗∗ 0.01001∗∗∗

(0.01676) (0.00057)
spagesq −0.00106∗∗∗

(0.00016)
speduc 0.12502∗∗∗ 0.03344∗∗∗ 0.12902∗∗∗ 0.03348∗∗∗

(0.01046) (0.00266) (0.01126) (0.00448)
sphthins 1.73148∗∗∗ 0.50237∗∗∗ 1.74221∗∗∗ 0.45209∗∗∗

(0.06216) (0.01347) (0.06410) (0.02581)
hhsize06 −0.3151∗∗∗ −0.08429∗∗∗ −0.3028∗∗∗ −0.07857∗∗∗

(0.04705) (0.01247) (0.05089) (0.02005)
hhsize13 −0.06089∗∗∗ −0.01629∗∗∗ −0.06415∗∗ −0.01665∗

(0.02170) (0.00579) (0.02403) (0.00940)
hhnw1 −0.03729∗∗∗ −0.00998∗∗∗

(0.01081) (0.00287)
fowner −0.02084 −0.00558 −0.02672 −0.00693

(0.07478) (0.02001) (0.07794) (0.03092)
powner −0.01208 −0.00323 0.031 0.00804

(0.07044) (0.01883) (0.07373) (0.02925)
vprod1 −0.11215∗∗∗ −0.03000∗∗∗

(0.02161) (0.00571)
crppayment 0.00925∗ 0.00247∗ 0.00764 0.00198

(0.00550) (0.00147) (0.00590) (0.00235)
direct −0.0008 −0.00021

(0.00122) (0.00033)
indirect −0.00481∗∗∗ −0.00129∗∗∗

(0.00119) (0.00032)
insur −0.00692 −0.00185 0.03646 0.00946

(0.05082) (0.01359) (0.05372) (0.02124)
entropy 0.42075∗∗ 0.11255∗∗

(0.16986) (0.04536)
metro1 −0.07543∗ −0.02017∗ −0.04246 −0.01102

(0.04474) (0.01194) (0.04531) (0.01803)

Nonparametric variables
spage d f = 3.461, χ2 = 379.087
hhnw1 d f = 4.099, χ2 = 23.197
vprod1 d f = 8.476, χ2 = 124.822
direct d f = 3.139, χ2 = 11.557
indirect d f = 1.001, χ2 = 9.550
entropy d f = 1.001, χ2 = 2.842

Notes: Hong and White’s test statistic value is 25.55, which is significant at the 1% level. The LR test statistic of the semiparametric model
against the parametric model is 156.66 with 14.17 degrees of freedom, which is significant at the 1% level. Single, double, and triple asterisks
(*, **, ***) indicate significance at the 10%, 5%, 1% levels. Values in parenthesis are standard errors.
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Figure 1. Parametric and Semiparametric Partial Regression Plots of the “Value of
Production” Variable in the Operator Model

findings of Sumner (1982); Lass and Gempsaw (1992); Mishra and Holthausen (2002); and El-Osta,
Mishra, and Ahearn (2004).

As noted earlier, the farm-size variable (vprod1) enters nonparametrically in the semiparametric
model. The effect of farm size on the decision of off-farm labor supply among farm operators is
shown in figure 1. The probability of off-farm work decreases as farm size increases up to $6 million
in production value for operator and spouse. We find no distinct pattern of relationship for higher
values of production. In fact, one observes bumpy fitted curves for both operator and spouse if the
value of production is higher than around $6 million (number of observations represented by small
number—1.54% of total observations or seventy-nine observations in total).8 Figure 2b shows that
the probability of off-farm work decreases for farms exceeding $20 million in production value in
the semiparametric model describing spouses’ behavior.

We also find that the coefficient of conservation reserve payments (crppayment) is positive and
significantly correlated with spouses’ off-farm labor supply. Spouses are more likely to seek off-
farm employment as conservation payments increase. As expected, results for the parametric model
show that operators who receive direct payments (direct) and indirect payments (indirect) are less
likely to work off farm. This finding is consistent with findings from El-Osta, Mishra, and Ahearn
(2004). For spouses, only the coefficient on indirect payments in the parametric model is significant,
indicating an income effect. This finding is consistent with results from El-Osta, Mishra, and Ahearn
(2004); Ahearn, El-Osta, and Dewbre (2006); and Dewbre and Mishra (2007). When examining the
semiparametric model, results show that spouses are less likely to work off farm with an increase in
both direct and indirect farm program payments (figures 2d and 2e). When using the semiparametric
model, direct and indirect payments are no longer significant variables in explaining off-farm labor
supply among farm operators.

8 Although it is possible to reduce the bumpy fitted curve of the variable vprod1 by log transformation, for both the operator
and spouse semiparametric regressions, we did not pursue this approach, as the transformation impacts the magnitude and
significance of other parameters in the model. We thank an anonymous reviewer for pointing out the potential benefits of a
log transformation to get smoother curves.



Pandit, Paudel, and Mishra Semiparametric Method in Agricultural Off-Farm Labor Supply 13

Figure 2. Parametric and Semiparametric Partial Regression Plots of Spouse Model Variables
Notes: Variables entering nonparametrically are (a) age, (b) value of production, (c) household net worth, (d) direct payments, (e) indirect
payments, and (f) entropy.

To assess the impact of crop insurance (insur) on off-farm labor supply, we include a dummy
variable (1 if the farm has crop insurance, 0 otherwise). The estimated coefficient on purchase of
crop insurance is negative and significant at the 1% level for operators in both the parametric and
semiparametric models (table 3). Results indicate that the probability of working off farm among
farm operators who have purchased crop insurance is 6.1% and 4.2% lower in parametric models
and semiparametric models, respectively, compared to operators without crop insurance. A possible
explanation for this result is that farmers who buy crop insurance operate large farms that specialize
in the production of program crops (e.g., corn, cotton, soybeans, wheat). Finally, we incorporate
Theil’s entropy index (entropy) to measure the impact of farm diversification on labor allocation. The
coefficient of entropy is positive and significant at the 5% level for spouses (table 4). The marginal
effect (0.11) of entropy suggests that as farms specialize, the probability of spouses working off
farm increases by 0.11 (parametric model). This is supported by nonparametric estimate in the
semiparametric model (figure 2f). Our result also indicates that spouses are less likely to work off
farm if the farm is located in a metro county. The marginal effect is 0.02 for this variable.
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The parametric probit specification is compared to a semiparametric specification using Hong
and White’s test for both operators and spouses (Hong and White, 1995). The estimated T̃n
statistics and p-values are reported in notes at the bottom of tables 3 and 4. Results show that the
semiparametric model is significant at a 1% level. Hence, one can conclude that the semiparametric
model is a more appropriate estimation procedure to analyze off-farm labor supply than the
parametric model. A likelihood ratio (LR) test was also performed to assess model specification.
In particular, a semiparametric model is superior to a parametric model for operators, as indicated
by likelihood ratio test (df = 6.5, chi-square = 235.01). The superiority of the semiparametric model
also holds in the case of spouses’ labor supply decisions (df = 14.17, chi-square =156.66). Given
the specification test results and figures 1 and 2(a–f), it is possible to say that a parametric model
over/under predicts more than the semiparametric model. Our results support the need to use a
semiparametric model when modeling off-farm labor supply decisions.

Conclusions

We estimate a parametric and spline-based semiparametric model of off-farm labor supply for farm
operators and their spouses. Results from the parametric and semiparametric models were compared
using the likelihood and Hong and White 1995 tests for model specification. Although our results
show that more variables are significant in the parametric probit model than in the semiparametric
additive probit model, the specification tests clearly indicate that the semiparametric model is better
specified. Results indicate estimated parametric- and semiparametric-regression coefficients are
different in terms of value and significance for both operator and spouse. These results imply the
existence of nonlinearity in the off-farm labor supply model, caused by the value of farm production,
age, household net worth, direct payments, indirect payments, and entropy, which can only be
captured using a semiparametric model (figures 1, 2a–f).

Results from this study indicate that researchers need to be careful when modeling not only
off-farm labor supply but also any dependent variable that could be influenced by both linear and
nonlinear independent variables. Consequently, attention should be given to model specification.
In particular, researchers should perform tests that categorize variables as entering a model
parametrically or nonparametrically, which will aid in the selection of the appropriate estimation
procedure. For example, in this study (and in contrast to previous findings), results indicate that the
value of production (a proxy for farm size) entered the model nonparametrically. As a result, the
model should be estimated using the semiparametric method.

Our analysis shows that direct and indirect government payments do not have an impact
on operators’ off-farm labor allocation decision in the semiparametric model. This research is
important due to the looming budget deficits and the need for reduced government spending in
coming decades. Policymakers should not increase government spending in the form of agricultural
subsidies to reduce unemployment in the agricultural sector. Findings suggest that the impact of
government policy on the labor allocation decision may not be what previous studies have found.
The existing literature may be overstating the impact of farm payments on economic well-being of
farm households. Without this new information, policymakers may believe a greater level of harm
may be done through changes in farm program payments.

[Received June 2012; final revision received January 2013.]
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Appendix A: Nonparametric Estimation Procedure

Let us consider a simple nonparametric model—yyy = f (zzz) + ε—where yyy is a response variable, f is a smoothing
function, and zzz is a variable entering the model nonparametrically. The spline-smoothing method depends on
minimizing the residual sum of squares (RSS) between a response variable y and the nonparametric estimate
f (zzz)). The RSS for a variable is given by:

(A1) RSS( f ) =∑[yyy− f (zzz)]2.

The estimate of f that minimizes equation (A1) may use too many parameters, so the spline-smoothing method
requires a penalization factor. Consequently, the minimization of RSS is subject to a penalty based on the
number of local parameters used for spline smoothing (Keele, 2008). Suppose the penalty for a penalized
regression spline method is λ

∫zn
z1
[ f ′′(zzz)]2dz (Wood, 2006). This term is known as the roughness penalty

constraint. The first term (λ ) is the smoothing parameter, and the second term (integrated term) consists of
the second derivative of f (zzz), which measures the function’s rate of change. Specifically, the second derivative
measures the amount of curvature around the maximum of the likelihood function (Keele, 2008). We add a
penalty term in equation (A1), so a spline estimate is given by the minimization of:

(A2) RSS( f ,λ ) =∑[yyy− f (zzz)]2 + λ

∫ zn

z1

[ f ′′(zzz)]2dz,

where spline smoothing is used to minimize the sum of squares between y and the nonparametric estimate.
A very small value of λ gives overfitting close to the data and a large λ value produces a fit similar to the
least-square method. To find an appropriate smoothing value that fits the semiparametric regression model,
we select the smoothing parameter that minimizes an estimate of the expected mean square error. When the
scale parameter of the distribution is known, the minimization of expected mean square error is equivalent to
Mallows’ Cp unbiased risk estimator (Craven and Wahba, 1978). For an unknown scale parameter, one would
use the Generalized Cross Validation Score (GCVS) as suggested by Hastie and Tibshirani (1990). Wood (2006,
pp. 172–174) provides a detailed explanation of the estimation procedure for the smoothing parameter.

Let b j(zzz) be the jth basis function and γ j be the local smoothing parameter, then the smoothing function f
is represented as:

(A3) f (zzz) =
q

∑
i

b j(zzz)γ j.

Following Ruppert, Wand, and Carroll (2003) and Wood (2006, pp. 133–135), we can write the penalty in a
matrix form as:

(A4)
∫ zn

z1

[ f ′′(zzz)]2dx = ΓΓΓ
′SSSΓΓΓ,

where ΓΓΓ = (γ1,γ2, . . . , γq) is the smoothing parameter vector, SSS =

[
02×2 02×q

0q×2 1q×q

]
, with q denoting the

number of knots. Equation (A2) can then be written in matrix form as:

(A5) RSS( f ,λ ) = ||yyy− ZZZΓΓΓ||2 + ΓΓΓ
′SSSΓΓΓ,

where ZZZ =
(
b1(zzz),b2(zzz), . . . , bq(zzz)

)
. Ruppert, Wand, and Carroll (2003) and Wood (2006) have shown that the

penalized least square estimator that minimizes equation (A5) is:

(A6) γ̂γγ = (ZZZ′ZZZ + λSSS)−1ZZZyyy.

For a given value of λ and a set of basis functions, the prediction is given as:

ŷyy = ZZZ(ZZZ′ZZZ + λSSS)−1ZZZyyy;
(A7)

ŷyy = AAAyyy;

where AAA = ZZZ(ZZZ′ZZZ′′′ + λSSS)−1ZZZ is the hat matrix for the penalized spline. The prediction from the above equation
equals the penalized spline prediction, which can be plotted to interpret the effects of zzz on yyy.
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Appendix B: Procedure for Penalized GLMs

Let us consider the semiparametric model in equation (6) in terms of dependent variable yyy. To estimate
such a model, we are required to specify coefficients for the smooth and basis for each function f j.
Suppose ΓΓΓ j = (γ j1,γ j2, . . . , γ jq j )

′ represents the vectors for the coefficient of the smooth term and
ZZZ j = (b j1(zzz j),b j2(zzz j), . . . , b jq j (zzz j)) is a set of basis functions chosen for jth variables entering
nonparametrically. The smoothness function can be represented in a matrix form as:

(B1) f j = ZZZ jΓΓΓ j. j = 1,2, . . . , J.

Equation (6) can then be written as:

(B2) g{E(yi)}= XXX iθθθ ,

where XXX = [XXX∗ : ZZZ1 : ZZZ2 : . . . : ZZZJ ] and θθθ
′ = [βββ ′,ΓΓΓ1,ΓΓΓ2, . . . , ΓΓΓJ ]. Equation (B2) is similar to a GLM model

with likelihood function l(θθθ). In general, the likelihood function can be expressed as an exponential family
likelihood function:

(B3) l(θθθ) =
n

∑
i

log[ fψi(yi)] =
n

∑
i

{yiψi − bi(ψi)}
ai(φ)

+ ci(φ ,yi),

where ψi depends on the GLM model parameters (θθθ ).
If S is a penalty matrix, then the penalized likelihood function in equation (B2) takes the form of:

(B4) lp(θθθ) = l(θθθ)− 1
2 ∑

j
λ jθθθ

′SSS jθθθ = l(θθθ)− 1
2

θθθ
′SSSθθθ ,

where SSS = ∑
J
j=1 λ jSSS j,λ j is a smoothing parameter that manipulates the tradeoff between the model’s goodness

of fit and smoothness, and SSS j is a matrix of known coefficients. Given the values of λ j , the penalized likelihood
function is maximized to find θ̂θθ . The value of λ j is estimated using a cross-validation method (see Wood, 2006,
p. 173) for details on the cross-validation method).


