
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


ESTIMATING EXPONENTIAL UTILITY FUNCTIONS 
 

By Steven T. Buccola and Ben C. French I 

In a recent study for the U.S. Department of Agri
cUlture's Farmer Cooperative Service, we developed a 
framework in which a processing/marketing cooperative 
or other firm might evaluate alternative long-term con
tract provisions for final product sale and raw product 
purchase. The study focused on a California coopera
tive fruit and vegetable processor. Selection of alter
native contract pricing arrangements for tomato paste 
sales and tomato purchases was treated as a problem in 
portfolio analysis. 

• 	 The exponential utility function for money 
has long attracted attention from theorists because it 
exhibits nonincreasing absolute risk aversion. Also, 
under certain conditions, it generates an expected 
utility function that is maximizable in a quadratic 
program. However, this functional form presents esti. 
mation problems. Logarithmic transformation of an 
exponential utility function does not conform to the 
Von Neumann·MorgEnstern axioms. Hence, it cannot 
be used as a basis for best fit in statistical analysis. A 
criterion is described that can be used to select a best
fit exponential utility function, and its application in 
grower utility analysis is demonstrated. 

• 	 Keywords: Exponential, utility, risk. 

BemouIIian utility functions were estimated for a 
 
cooperative management spokesman and a board mem
 
ber, and for eight tomato growers, to identify contract 
 
portfolios that would maximize expected utility for 
 
growers or processors. An important issue in this idell
 
tification process is the utility functional form em
 
ployed, since this form influences the expected utility 
 
formulation that is the basis for portfolio choice. 
 

In this article, we review some of the questions 
raised in selecting a utility functional form, suggest a 
method for fitting exponential forms to utility 
response data, and discuss several applications of this 
method. 

J Steven Buccola is assistant professor of Agricultural 
Economics at Virginia Polytechnic Institute and State 
University, Blacksburg. Ben French is professor of agri
cultural economics at the University of California, Davis. 

Special thanks for their helpful suggestions are owed 
to Robert Jensen and Joseph Havlicek of the Depart
ment of Agricultural Economics, and Raymond Myers of 
the Department of Statistics, Virginia Polytechnic Insti
tute and State University. Responsibility for the article's 
content belong to the authors. 

SELECTING A UTILITY 
 
FUNCTIONAL FORM 
 

Since the development of the BernouIIian money 
utility function, the issue of its proper functional form 
has been discussed with no determinate conclusion in 
sight. 2 Early theorists and practitioners preferred the 
quadratic utility function: 

U 	= a + bM - cM2, b, c > 0 (1) 

where U is utility and M is money, for three reasons. 
If properly constrained, the function conforms to the 
risk averter's requirements of a positively sloping, con
cave function; when combined with linear profit func
tions, it generates quadratic expected utility functions 
that are easily maximized with current programming 
routines; and it is easily fitted by OLS to utility ques
tionnaire data. 

Criticism of quadratic forms began with Arrow's 
and Pratt's identification of a coefficient of absolute 
risk aversion, h (M) = - u"IU'. If this coefficient is a 
declining functiOl. '1.~ M, the decision maker becomes 
more willing to acc~, ~ a gamble with fixed probabili
ties of fixed "small" p~::)ffs as his wealth increases (l, 
pp. 95-96).3 A rising coefficient implies decreased will
ingness, and a constant coefficient, unchanged willing
ness, to adopt this gamble. Intuition suggests that 
declining risk aversion ought to describe many persons' 
behavior, but coefficient Ra (M) in quadratic utilities is 
2cl(b-2cM), which instead rises with M.' 

Alternative forms that are more acceptable accord
 
ing to the hypothesis of declining absolute risk aver
 
sion include the semilogarithmic 
 

U 	 = d + gin M, g> 0, (2) 

2 Utility functions may refer to money wealth or 
money profit, where the latter reflect changes from an 
initial wealth position. Functions discussed in this arti
cle may be applied to either wealth or profit. The em
pirical applications involve profit utilities. 

3 Italicized numbers in parentheses refer to items in 
References at the end of this article. 

• Rising absolute risk aversion is consistent with a 
predilection for hoarding, and hence is not to be ruled 
out of hand. Besides, one may argue that the data and 
not researchers' expectations should determine func
tional form. We do not propose to judge tre merits of 
the hypothesis of decreasing absolute risk dversion. 
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where Ra (M) = 11M; and the negative inverse expo
nential (hereafter called exponential) 

U=K-ee:-:p[-AMJ, K,e,A>O, (3) 

with Ra (M) = A, a constant. In addition, Lin and 
Chang propose in this issue of the journal a polynomial 
specification with variable transformations on U or M; 
in their article, Ra (M) coefficients depend upon the 
values taken by transformation constants. Among the 
more traditional forms, (2) and (3) have not been 
widely used because they are not, as with the quad
ratic, associated with a quadratic and thus tractable 
expected utility function. 

This presumably exclusive advantage of the quad
ratic was, however, undermined as early as 1956. At 
that time, R. Freund demonstrated that exponential 
utility, linear profit function, and normally distributed 
profit generate an expected utility model that is maxi
mizabb by operating with an associated quadratic 
function. Following Wiens' notation, exponential 
utility (3) and normally distributed profit M 'V N(ll, 
0 2 ) produce expected utilityS 

E[U(M)] = K-eexp[-Ap+(A2/2)02]. (4) 

Expression (4) is maximized by minimizing the expo
nent, a quadratic function. No such tractable solution 
procedure, other than use of the Taylor expansion 
with its associated error term, has been offered for the 
semilogarithmic form. For empirical researchers, this is 
an important disadvantage whi.:!h overrides the hypo
thetical superiority of the semilog's declining absolute 
risk aversion. 

There is no difficulty fitting quadratic or semiloga
rithmic forms to utility questionnaire data. In the 
latter case, for example, one merely expresses money 
values (positive only) in logs and regresses utility obser
vations on these logs. A more complicated issue arises 
in fitting exponential forms. Treatment of this issue in 
the current article may be helpful to persons with 
theoretical objections to increasing risk aversion and 
with preference for conveniently maximizable expected 
utility. 

5 Expected utility (4) is computed by appealing t.o the 
primitive form 

E[U (M)] =f"" (K~- (-) exp [-AM]) 

{V2rr: 2 exp [-(M--,u)2/2a 2 ]} dM. 

Terms in the integral are combined and the square com
pleted in the resultant exponent. The indicated form (4) 
then emerges upon appropriate cancellations. 

THEORY OF ESTIMATING 
 
THE EXPONENTIAL PARAMETER 
 

In general only utility parameters encountered as 
coefficients of income probability moments in an 
expected utility model have ultimate importance to 
the decision theorist or researcher. This observa
tion may be inferred from the fact that the 
maximized expected utility model is the hypothesized 
basis of choice under risk, and that, under known pro
gramming methods, only coefficients of income proba
bility moments affect optimal variable levels in these 
models. Since neither K nor e are coefficients of prob
ability moments p, 0 2 in (4), they are in themselves 
irrelevant to decisionmaking. Conversely, a cecision is 
uniquely determined once A, p, and 0 2 are known." 

It would seem reasonable that a regression approach 
to estimating A in (3) would first require A'S removal 
from the exponent. Experience with Cobb-Douglas and 
other variable exponent functions suggests expressing 
(3) in log form to accomplish this. Subtracting K from 
both sides of (3), 

U - K = - eexp [-AM]. (3)' 

Taking natural logs of both sides, 

In (U - K) = In (- e exp [-AM]). (5) 

If utility in (3) is positive, K > e exp [-AM], so 
that K > U. Thus (U-K) < 0, In (U-K) does not exist, 
and (5) cannot be estimated. However, multiplying (3)' 
by -1, 

-U+K eexp [-AM] (3)" 

and 

In (- U + K) = In e - AM (5 )' 

Equation (5)' implies that A i~ the negative of the 
 
observed coefficient of money if the natural log of 
 
(-U+K) is regressed against money. Parameter e is 
 

"Lambda's sole importance for decisionmaking pur
poses does not rest on its status as the exponential utility's 
Ru (M) coefficient. Under semilogarithmic utility (2) and 
normally distributed income M rv N (,u,a 2 ), expected 
utility is, by reference to the Taylor expansion, approxi
mately E[U(M)] = gln,u - (ga 2 )/(2,u2). Here, a decision 
is uniquely determined when g,,u, and a 2 are known, but 
g does not appear in the semilog utility's absolute risk 
aversion coefficient 11M. 
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found as the constant term's antilog. K must be deter· 
mined in advance and it is equivalent to an additive 
adjustment to the original utility scale. 

Because of the logarithmic transformation on 
(-U+K), the estimated values of both e and A depend 
upon the originally chosen utility scale U or the addi
tive adjustment factor K. Presumably, a unique value 
of A reflects the decisionmaker's true aversioll to risk 
at interview time. 7 One procedure for finding this 
value is to alter the utility scale or K and sequentially 
fit (5)' under each set of altered values, with the fit 
yielding the highest R2 providing the best estimate of 
A. This would appear to satisfy a "best-fit" criterion 
 
for ~electing A and remove the arbitrariness of utility 
 
scale selection. 
 

The immediate difficulty with this procedure is that 
(5)' represents a nonlinear, though monotonic, trans
formation on (3)". Von Neumann and Morgenstern 
have shown that the uniqueness of a utility function is 
preserved only under linear transformations U* = a + 
(3U, where a and {3 are constants (5, pp. 24-25). More 
specifically, the value of A providing the best fit to (5)' 
is not necessarily that providing the best fit to (3); 
furthermore if (3) conforms to the axioms of Bernoul
Han utility, (5)' does not. 

The prohibition against nonlinear utility transforma
tions tells us we cannot rely on (5)' as a specification 
for selecting a best-fit A in (3). Goodness of fit must 
refer to equation (3) or a linear transformation of (3). 
This does not imply that a regression approach to esti
mating A is futile. The following procedure, for exam
ple, might be used: (a) assign arbitrary values to K, Co), 
A in (3); (b) generate values of U for each of the 
money levels employed in the original utility question
naire; (c) calculate vertical deviations of predicted points 
from those obtained in the interview; (d) sum the 
squares of these deviations, and select the set K, f), A 
minimizing this sum. 

In connection with the method suggested, note that 
K and e delimit the utility range where money income 
is positive. If M = 0, U = K minus Co); and as M-+oo, U-+K. 
The utility range of positive income M is Co). Thus K, e 
merely serve to accommodate the original utility scale 
selected. Candidates (K minus E-) should be chosen so 
as to approximate the utility intercept as estimated 
from a look at the utility questionnaire plot, and K's 

7 The requirement of a unique A value derives from 
the one·lo·one correspondence it. bears to the optimal 
quadratic program max Z = A/1 + (A2/2) 0 2 , which inee 

turn determines the exponential decisionmaker's maxi
mum expected utility course of action. No such unique
ness is required of the quadratic utilist's coefficients b, 
c in (1). By reference to the Taylor expansion, the latter 
individual's eX";lected utility is E[ U (M) I = b/1 
c(/12 + 0 2 ), the optimal variables of whic;h depend only 
upon the ratio c/b. Thus quadratic utility estimation in
volves discovering a best·fit ratio c/b only. 

should be chosen so as to fali "somewhat" above the 
highest utility value assigned. 

Steps (a) through (d) above essentially involve ex
ploring the S(K, e, A) response surface, where S is sum 
squared errors about the exponential fit. The intent is 
to discover the globally minimum value of S. Several 
procedures have, in the general nonlinear case, been 
proposed for finding this minimum value that do not 
require full factorial exploration of the response sur
face. These include utilization of linear Taylor series 
expan5ions of the nonlinear function, and methods of 
following the steepest negative gradient on the S sur
face. Draper and Smith note that such procedures are 
likely to converge slowly for exponential functions, 
wh icll generally exhibit elongated or "ill-conditioned" 
equi-S eIipses in e and A space (2, p. 284). 

An alternative which avoids both full factorial ex. 
ploration and multiparametel' search procedures is to 
employ log specification (5)' in conjunction with 
steps (b) through (d) outlined above. The researcher 
need only select trial values of K, and for each value 
regress III (-U+K) on M as indicated by (5)'. Calculated 
values e and A are then substituted, along with asso
ciated K levels, into (3) and st2ps (b) through (d) are 
followed as described. Prior inc0rporation of K into 
the utility scale assures that associated sets e and A 
will generate a function falling at least roughly within 
range of the original utility questionnaire responses. 
S(K, CO, A) surface exploration reduces to a single
dimension search since trial values C-) and A are unique
ly related to trial values K. 

TWO GROWER UTILITY 
FUNCTIONS 

Illustrations of the method presented above are pro
vided by two of the grower utility functions estimated 
in the cooperative processor study. Table 1 shows 
growers' utility responses to a Von Neumann-Morgen
stern type of questionnaire, in which dollar values refer 

e '::\ 

Table 1-Ut'ility questionnaire respon~s Of growers 
'.' 1 and 2 

Money values, M9nev' Valu!lS, 
, Utility gtower1., grow!!r .2' 

Utiles Thousand dollar:s. 

100 700 l()OO () , 
 
80 30Q -25 
 
60 200 -62
d 

40 ,-90" ' ,;-100 
20 -150 -:300 
 
o -300 
 -,5()~" ;) 
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to prospective annual incomes. The patience of most 
respondents limited risk responses to four, which pro
vided six data points. Regressions were fitted to these 
data according to specification (5)' and selected K 
values. The results are summarized in table 2 and plot
ted in figures 1 and 2. 

"~,~-"?-~~~-:l[T~ . ....~".>.~ ~~~ ~-'"-'T~":'"-~-"~;' .'-.-- "<' ,~.".~~:~,-~~.~-; 

t'abl~~-'.c-oelfiCi~M eStimate~ pfgrpW~reliPOt:lelltia' 
omo;IIIY;l#iliW fy"!=tiqn l,I=K~'~ e?!~,'(~~MJ 

__"k'~t>1~::~'11i~" , , '-., '" ' 
. \j" :," 

.:()I)Q708 ~,!n8" .. '131.78' 
" ;001002' .984 ' 93.3'1 

;0018j9 ',984.- , 150:57 
"';88:;1 ,.004458 ~;~83.1,2 

Grower 1's responses well approximate an exponen
tial shape, and relative goodness of fit among com
peting parameter values is slight. Parameter set K = 

120, e = 74.0, and A. = .001819 has the highest R2 
under log specification (5)'; but set K = 160, e = 

117.3, and 1\ = .001002 generates the least sum 
squared errors under original exponential specification 
(3). Hence, A. = .001002 is our best estimate of grower 
l's risk aversion coefficient if utility is exponential. 

Grower 2's responses do not well approximate an 
exponential fit but more nearly suggest a cubic shape. 

However, one's philosophical commitment to the hy
pothesis of nonincreasing absolute risk aversion, or the 
structure of the expected utility model which imple
ments the utility information, may justify exponential 
estimation. The discrepancy in goodness-of-fit ranking 
between specifications (5)' and (3) is more marked 
here than in the first case. Set K = 101, e = 27.7, and 
A. = .003240 provides the highest log fit R2, but it 
behaves poorest of the four alternatives as an approxi
mation to the original data. Sum squared errors to the 
original data are minimized by set K = 120, e = 60, A. 
= .001194, so that .001194 is our best estimate of 
grower 2's risk aversion coefficient if utilfty is expo
nential. 

By way of comparison, quadratic forms were also 
fit to the utility response data in table 1. For grower 

1, U = 43.04 + .1265 M - .000064 M2; and for grower 
2, U = 66.13 + .1069 M ~ .0000725 M2 (all coeffi
cients significant at the .01 confidence level). In both 
cases the quadratic function is more concave than the 
corresponding best-fit exponential function. As money 
values increase, the quadratic approaches the exponen
tial from below, crosses it, then approaches the expo
nential again at high money values. In each case, coef
ficients of absolute risk aversion Ra (M) under the 
quadratic specification are, below the point of intersec
tion, lower than under exponential specification (A. 
itself). The coefficients are equal at or near intersec
tion, and the quadratic's coefficient rises above the 
exponential's beyond the point of intersection. With 
grower 1, for example, Ra (M) under quadratic specifi
cation is .000841 at minus $200,000; .001066 at 
minus $50.000 (the intersection point); and .001269 at 
plus $200,000. At point plus $500,000, the quadratic's 
Ra (M) has risen to .002048, approximately double its 
value at intersection point and double the exponential 
parameter (.001002). In a research context, much of 
choice behavior under risk is determined by the abso
lute risk aversion coefiicient. Thus researchers need to 
be wary of not only the utility functional form em
ployed but also the feasible expected profit range of 
the set of risky ventures considered. In the current 
study, exponential and quadratic forms predicted simi
lar choice behavior for eX!Jected profit ranges near the 
intersections of these functions, but highly divergent 
behavior elsewhere. 

PROPERTIES OF THE 
 
ESTIMATOR 
 

The method developed here for estimating the 
parameter A. of an !>.xponential utility function mini
mizes sum squared errors. Hence it is a maximum like
lihood estimator if utility response deviations about 
the regression line have zero meau and constant vari
ance and if they are independently and normally distri
buted. 8 On these assumptions, therefore, the estimator 
is asymptotically unbiased and efficient. However no 
evidence exists that it is unbiased in small samples such 
as those employed in this study. 

Functions such as (5)' estimated under a log de
pendent variable develop concavity under the o,iginal, 
linear dependent variable scale (here, ~U + K). This 
shape results because the first derivative of log values 
with respect to original values decreases as the original 
values themselves increase. However, the rate of de
crease in the, first derivative of log functions declines as 

aThis hypothesis is proven for the general nonlinear 
case by observing that the likelihood function is a nega
tive function of sum squared residuals (2, p. 265). 

40 



UTILES ".
100 • .,. 

X. 

~ . 
/ 

• 
K =101 _____ • 

80 • 
/ 

• 

60 •
/ 

40 

20 

o X~~~~----~----~----~----~______L-____~____~____~____~~ 

-300 -200 -100 o 100 200 300 400 500 600 700 

INCOME ($ THOUS.) 

FIGURE 1. EXPONENTIAL FITS 
 
TO UTILITY RESPONSES OF GROWER 1 
 

41 



100 

UTILES 

80 x 
 

• 
/ 

60 
 

40 x 
 

20 
 

o x • 
-500 -300 -100 100 300 500 700 900 1100 
 

INCOME ($ THOUS.1 
 

FIGURE 2. EXPONENTIAL FITS 
 
TO UTILITY RESPONSES OF GROWER 2 
 

42 



> 
 
larger numbers with constant differences are employed 
in the original scale. 9 Thus, larger values of K reduce 
concavity in functions estimated according to this pro
cedure. Identical K values in the cases illustrated here 
generate identical dependent variable series and, hence, 
highly similar exponential functions. 

To ensure that exponential utility estimates such as 
these do not depend upon the arbitrary utility scale U 
chosen, we note that any linear transformation U* = a 
+ ~U on (3) produces 

U* = a + ~U = a + ~ (K - (-) exp [AM]) 

= a + ~K ~ ~t-) exp [--AM] 

= (a + ~K) - (~(-)) exp [-AMI 

q The second derivative of a natural log function 
y = III X is - 1/x2, the negative sign of which indicates 
the decreasing f'irst derivative of y and the reciprocal 
1{x2, the sign OJ which indicates the decreasing rate of 
this decrease. 

K changes to (a+~K) and e to (~e), but A is unaffect
ed. The independence of A to such utility scale changes 
is only maintained if (3) rather than (5)' is utilized as 
a goodness-of-fit criterion. 
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I n Earlier Issues 

" ... Interest in land classification for the purposes of tax assess
menL has been a subject of recurring importance ... the greatest 
interest and activity in this method of improving property-tax 
assessments has been centered in areas in which agricultural land 
accounts for a large part of total real estate values.... Early 
attempts at classification netted little in the way of permanent 
improvement ... local assessors usually classified the land or shifted 
this responsibility to the individual owner.... Real progress has 
been m'lde in recent years in assembling information on soil capa
bilities and records of farm production.... Attempts to classify 
land on the basis of its use and annual average productivity should 
result in some general improvement il) farm real estate assessments.. 
. . New and unexplored possibilities for improving tax assessments 
on farm property appear to lie not in t.he direction of more accurate 
classification of land but in application of the concept of an in
come-producing entity to the farm. 

Samuel L. Crockett 
Vol. II, No.1, Jan. 1950 
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