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SPECIFICATION OF BERNOULLIAN UTILITY FUNCTION 
 
IN DECISION ANALYSIS 
 

By William W. Lin and Hui S. Chang' 

INTRODUCTION 

A few years ago, Lin, Dean, and Moore reported 
empirical test results of the hypothesis that farmers' 
operational decisions are more consistent with utility 
maximization than with profit maximization (9).2 
They concluded that Bernoullian utility maximization 
explained actual farmers' behavior more accurately 
than did profit maximization. 

• 	 The authors propose two general functional forms, and 
apply them to the specification of utility functions for 
predicting farmers' production response. The poly­
nomial utility functions were rejected, based on the 
result~ of a likelihood-ratio test. The appropriate degree 
of nonlinearity of the utility function can best be deter­
mined by using the general functional forms without a 
priori specification. Further, farmers' utility functions 
may exhibit a decreasing absolute risk aversion. The 
tendency for the Bernoullian utiHty maximization 
hypothesis to predict more risky behavior than that 
actually observed may have been partly due to incorrect 
specification of the utility function. 

• 	 Keywords: Functional forms, Bernoullian utility func­
tion, risk aversion. 

One of the procedures in the above empirical tests 
involves the derivation of Bernoullian utility function. 
Lin, Dean, and Moore employed a modified Ramsey 
model by asking six farm decision makers a series of 
questions in the context of decision games. A linear or 
polynomial function was used to specify the Bernoul­
Han utility function for each of the six farms studied 
(9, p. 504). However, the polynomial utility function 
has recently been criticized because it exhibits increas. 
ing absol ute risk aversion or negative marginal utility. 3 

Generally, researchers agree that a utility function 

I William W. Lin is an economist with ESCS and Hui S. 
Chang is an associate professor of economics with the 
University of Tennessee, Knoxville. 

The authors are indebted to James Seagraves, A. N. 
Halter, Lindon Robison, and Jitendar Mann for their 
helpful comments and suggestions. Any errors remain­
ing are the authors' sole responsibility. 

2 Italicized numbers in parentheses refer to items in 
References at the end of this article. 

3 A utility function exhibits increasing, constant, or 
decreasing absolute risk aversion, depending on whether 
thl' coerricient of risk aversion increases, remains con­
stant, or decreases as income or wealth rise. The coeffi­
cient of risk aversion, as defined by Pratt (11), is rex) = 

should imply a decreasing absolute risk aversion, not a 
constant or increasing one. 

Several pertinent questions thus emerge: In what 
functional form(s) should a utility function be 
specified to imply a decreasing absolute risk aversion? 4 

How can the chosen functional form be estimated? To 
what extent does the polynomial utility function bias 
the predictions of the Bemoullian utility maxim.ization 
hypothesis on farmers' production response? 

Accordingly, our objective is to suggest some 
answers to the above questions. First, several function­
al forms are reviewed for their coefficients of risk aver­
sion. Two general forms for the Bernoullian utility 
function are introduced; and theoretical constraints on 
the parameters and the estimation procedures are dis­
cussed. Second, estimated results for a case-sturly farm 
are reported. Finally, we indicate the extent to which 
the polynomial utility function may have biased the 
prediction of Bernoullian utility maximization hypoth­
esis on farmers' production response. 

ALTERNATIVE FUNCTIONAL 
 
FORMS 
 

Because of theoretical shortcomings of the poly­
nomial utility function, alternative utility functions 
ranging from log linear, semilog, and constant elas­
ticity of substitution (CES), to various exponential 
functions have been suggested lately (3, 4, 8). Table 1 
summarizes these alternative utility functions and the 
implied restrictions on parameters, coefficients of risk 
aversion, and the risk aversion ranges. 5 

All these utility functions require a priori assump­
tions as to their specifications. Recent developments in 
the area of transformation of variables, however, sug­
gest that the appropriate degree of nonlinearity of the 
utility functions can be best specified by sample obser­
vations (1, 12). For example, the utility function can 
be specified to have the following generalized function­
al form: 

- u" (x)/U' (x). In this, r (x) is the coefficient of risk 
aversion and U' (x) and U" (x) are the first and second 
derivatives of the utility function. 

4 We give no specific attention to the utility function 
which contains both convex and concave regions, illus­
trated by Hildreth (7). 

5 Some of the utility functions have been reviewed by 
Keeney and Raiffa (8). 
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Table 1-Alternative utility functions and the coefficients of risk aversion 

Type of 

risk 


aversion 
 ,·functional form Risk averageRestriction Coefficient of risk ;lversion range' 
i:/ 

a,b>O -2cIncreasing b ,;;'x;;'OU(x) =a -f1bx +ex2 e<O b+2ex 
2e 

Constant' U(x) = k -Se-Ax 
A all x

!J 

Decreasing U(x) = a +b log(x +d) x+d x;;'-d 

be2e-ex 
Decreasing U(x) = ax -be-:-Cx a,b, e > 0 a+bee~ex all x 

1-bDecreasing logU(x) ="a+blogx x b < 1 

-(C-1)Decreasing U(x) = (x +b)e O<e<1 x+b x;;'-b 

e+1Decreasing U(x- = (x +b)-t: e>O X+ii x?i<-b 

Decreasing 
e>O 

e -!) 

L.:>Y) = x+elog(x+b) (x+b) (x+e+b) x>-b 

a2e-ilx +'be2e-t:xDecreasing U(x) =-e-ax-be-ex a, b, c > 0 ae- iJX + bee-ex 
all x 

a2e-ilx 
Decreasing U(x) =_e-ax +bx a,.b > 0 ae-ilx +b 

all x 
1


c;Decreasing u(x) = ({Jx-P +c:y)-:; -1 < p < 00 
 (1+p) [~+ all J..'
({Jx-P +:) . x (1 +P)] 

'Wherever the value of x goes beY()l'!d the risk aversion range, the properties of the utility function in terms of risk aversion ed 
may be chan!1 and the utility function probably needs to be reverjfieg. 2 See (2) for an example of this type of utility function. 

MA-l MA-la+(3 -- ­ (1) U' = /3--­A 
UA- 1 

andwhere A is the transformation parameter, U is utility, 

and M is monetary income or wealth. It can be shown 


Athat the coefficient of risk aversion, reM), has the fol­ M -1 (1 1 au)U" (3(A-l) --' - _- . ­lowing form: (3)uA-1 M U aM 

reM) -U" (1 1 au)if=- (A-I) M - U . aM (2) Decreasing risk aversion is associated with a risk 
coefficient which is a declining function of M; that is 
r' (M) < O. If one is inclined to superimpose a 
constraint on the utility function, that the function ex­where 
hibits a decreasing absolute risk aversion, all that is 
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needed is to restrict the transformation parameter (A) 
so that it is negative. Furthermore, the utility function 
satisfies the theoretical constraint of diminishing mar­
ginal utility if the coefficient of risk aversion (r(M» is 
positive; implying 11M> 11u. (au)/(aM) since a neg­
ative A is generally postulated. Finally, this generalized 
functional form implies that risk aversion decreases as the 
marginal utility increases-not an unreasonable prop- .. 
erty for the utility function. Alternatively, the gener­
alized functional form can be specified as: 

(4) 

where 

(V~-1)
u.*1 A 

(M~-l)
M~ = d1_­

1 
__

A ' an (5) 

M~*= 
(M7A-1) 

I A 

and A is a transformation parameter to be estimated. 
It is obvious that if A equals one, equations (1) and 

(4) are the same as the linear and polynomial utility 
functions. It can also be shown that equation (1) is 
equivalent to a log-linear form when A approaches 
zero.· In general, different values of A represent differ­
ent degrees of curvature of the utility functions, There­
fore, equations (1) and (4) are more general functional 
forms which provide greater flexibility in the degree 
and type of nonlinearity than the linear and polyno­
mial utility functions. 

A 
6 (U - I )/A = [exp(log VA) - l)/A = LexpO, log V) 
 

-I)/A. Through the Taylor expansion of exp (A log V)

around ldog V = 0, 
 

(VA - 1)/A = [1 + Alog V + (l/2!) (Alog V)2 

+ (1/3!) (Alog V)3 + .... 

- 1 JlA = log V + (.\/2!) (log V)2 

Therefore, when A = 0, (VA - I)/A = log V' Similarly, 
(MA - 1 )/A = log M and (M2A - 1 )/A = log M2 when A 
= 0. But when A = 0, equation (4) is not estim~ble since 
log M2 = 2 log M and, hence, log M and log M are per­
fectly related. 

Other than transforming both U and M, it is also 
possible to transform only U or M. If only one side of 
the equations is transformed, (1) and (4) are equhllient 
to semilog forms when A. approaches O. In the most 
general case, different values of transformation param­
eters can be applied to different variables. In our 
study, however, we restrict ourselves to equations (1) 
and (4) and some semilog transformations. 

To estimate A along with other parameters in equa­

tions (1) and (4), we first rewrite them in stochastic 

forms: 


(6) 

(7) 

where Wi and Vi are the disturbance terms, assumed to 
be normally and independently distributed, each with 
zero mean and constant variance. Using the maximum 
likelihood method, Box and Cox showed that the max­
imum likelihood for equation (6) or (7) for a given A, 
except for a given constant, is (1, p. 215): 

n 
Lmax (A) = - (nI2) log &2 (A) + (A - 1) i:1 log Vi (8) 

where &2 (A) is the error variance of equation (£) or 
(7). To maximize equation (8) over the entire param­
eter space, we only need to choose alternative values 
for A over a reasonable range and regress U* on M* 
and on M* and M2*, and find the transformation pa­
rameter A that maximizes equation (8). The maximum 
likelihood estimates of {3's can be obtained directly 
from the least squares results of ~. 

Using the likelihood ratio method, an approximate 
(l-a) confidence interval for A can be constructed 
since 2[Lmax (~) - Lmax (1..)] is approximately dis­
tributed as X2 with one degree of freedom (1, p. 216). 
Therefore, the (1-a) confidence interval for A is ob­
tained by finding that value of A on either side of ~ 
such that 

~ 1 2 
Lmax (A) - Lmax (A) = 2" Xl (0') (9) 

REGRESSION RESULTS 

Input data used in our study are those reported by 
Lin (10). Of the six cases investigated by Lin, Dean, 
and Moore, case-study farm 5 was chosen for the cur­
rent study because the data contain no negative obser­
vations on monetary income. All the other cases con­
tain negative observations on monetary income, for 
which the logarithm is undefined. 
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Observations on the utility index of this case, how­
ever, contain four negative values. To utilize all 14­
observations, every utility index was adjusted upward 
by 100 so that no observation would be negative. Such 
a linear transformation does not affect the shape of 
the utility function. 7 

To estimate parameters in equations (6) and (7), 
data on Ui, Mi, and M2 were transformed according to 
equation (5) by A'S that lie between -0.10 and -1.7, at 
intervals of 0.1. The least-squares regressions of U* on 
M* and on M* and M2* were performed on each set 
of the transformed data. Lmax (A) was calculated for 
each regression by using equation (8) with &2 (A) 
taken from the estimated variance of the di3turbance 
term of the regression. Estimated coefficients and relat­
ed statistics for selected values of A for equations (6) 
and (7) appear in table 2. The estimates obtained from 
the linear and second-degree polynomial forms (A.=1), as 
 
well as the estimates for the log-linear form (A.=O) also 
 
appear in the table. These results show that the coeffi­
 
cients are all significant at the 0.01 level and that the 
maximum likelihood estimate of A., ~, is -0.70 when . 
applied to equation (7). Based on equation (9), the null 
hypotheses that the utility function is a second-degree 
polynomial form, a linear form or a dOUble-log form, are 
all rejected at the 0.05 level. Equations (6) and (7) do 

not exhaust other functional forms and they also do 


7 Given the following quadratic utility function, 

U =a + bM + cM2 (I') 

a linear transformation can be expressed as: 

U* = d + eU = d + ea + ebM2 + ecM2 (2') 

or 

not include the third-degree polynomial form used by 
Lin, Dean, and Moore for this case-study farm. Thus, 
othf'r funct;nnal specifications were also estimated with 
results shown in table 3. A comparison of the maxi­
mum likelihood values in tables 2 and 3 reveals that 
equation (7) with A = -0.70 is still the maximum likeli­
hood estimate of the Bernoullian utility function. This 
specification also has the highest R2. This result con­
forms with the recent finding of Granger and Newbold 
(5). They state that the true model, from a set of 
alternative regression specifications involving different 
transformations of the dependent variable and under 
the assumption of normality, is the formulation for 
which R2 is the highest. Estimated results based on 
positive A values all yield lower likelihood values, sup­
porting the theoretical constraint we employed that A 
be restricted to be negative. 

TESTS OF UTILITY VERSUS
 
PROFIT MAXIMIZATION
 

HYPOTHESES
 

Lin, Dean, and Moore tested three alternative be­
havioral hypotheses (Bernoullian utility maximization, 
lexicographic utility maximization, and profit maximi­
zation) by comparing the optimal plans along the 
"after-tax" E-V frontier. For case-study farm 5, lexi­
cographic utility maximization predicts actual behavior 
better than Bernoullian utility maximization and profit 
maximization. The latter two perform equally poorly 
in this case. 

It is of interest to see if the optimal plan derived 
from the Bemoullian utility maximization based on the 
"best" functional specification (~=--.7i.; j predicts the 
actual plan differently. To do this, WE- tI:St express 
expected utility as a function of mean and variance of 
"after-tax" net income. According to Taylor series U* = a* + b*M + c*M2 (3') expansion, the utility function U(M) can be expanded 

where 	 to a function in powers of (M-C) where M is a random 
 
variable (after-tax net income) and C is a fixed value 
 

a* = d + ea 	 (6): 

b* =eb dU(C) 1.U(M) 	 d2U(C)U(C) + (M-C) -- +_ (M-C)2_­
dM 2c* = ec 	 dM2 

1For equation (1'), the measure of risk aversion is, accord­	 + (M-C)3 
d3U(C) 

ing to Pratt: 3! dM3 

r(M) = --U" (M)/U' (M) = -2c/(b + 2cM). 1 d4U(C)+ (M-C)4 -_ +4! dM4For equation (3'), it is: 

r* (M) = -U*" (M)/U*' (M) =-2ec/e(b + 2cM) By letting C equal E(M), expected net income, and by 
taking the expectation of this equation, we obtain the = -2c/(b + 2cM). 
expected utility of plan a as: 
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:!Table 2-Bernoulliah utility functions l!$timlited from the generaliz,ed functional form; 

A' Po (31 (32 R'21 Lmax(A) 

uj = flO .,. fl1Mi 

1.00 

0.00 

-0.10 

-0.20 

.:0.50 

-1.00 

-1.70 

D 86.605 
(6.43) 
3.953 

(80.27) , 
3.283 

(142.8i'lc 
2.767 

(188.27) 
1.760 

1248.75) 
0.989 

(923.591 
0.588 " 

(9643.68) 

2.222 
(6.86) 
0.366 

(23.30) 
0.270 

13J.14) 
Q.190 

(2~\83) 
0:053 

(13.79) 
0.004 

(10.60) 
0.0001 

(14.85) 

;:'1 

0.780 

0.977 

0.987 

0.986 

_0.936
"""I} 

0.895 

0.944 

-49.53 

-37.47 

-34.21 

-35.62 

-4l).Oa 

-58.87 

-66.13 
(; 

uj = (30 + P1M; + (32M2; 
1.00 

-0.10 

-0.50 

-0.70' 

-1.00 

-1.30 

·-1.70 

65.532 
(6.31) 
3.296 

(115.06) 
1.712 

(396.7::J} 
. 1.331 

(865.27) 
0.977 

(2004.35) 
0.764 

(4462.60) 
0.587 

/16097.80) 

5.166 
(6.82) 
0.207 

(2.48) 
0.107 

(23.76) 
0.055 

(32.93) 
0.019 

(31.14) 
0.007 

(25.15) 
0.001 

(21.57) 

-0.038 
(-4.05) 
-0.034 

H.60) 
-0.017 

H2.27) 
-0.007 

(-21.18) 
-0.001 

(-24.121 
-0.0003 

(-21.~) 
-0.0002 

(-19.87) 

0.904 

0.986 

0.995, 

0.9'98 

0.998 

0.998 

0.998 

-43.75 

-34.47 

-30.82 

-28.60 

-31.57 

-36.51 

-41.49 

2 
''A is the corrected coefficient of determination. Figures in parentheses are t-values. 'The maximum likelihood estimate of

lI. since Lmax (A) is maximum at X = -0.70.," 

Table 3-Bernoullian utility functions estimated from other functional forms' 

Utility functions Fi2 
Lmax 
 

Jog U = 4.296 + 0.187 M 
 
(21.74) (3.93) 0.53 -58.52, 

u = 64.455 + 36.058 log M 
0.95(8.60) (15.091 -39.73 

log U = 3.988 + 0.054 M - 0.0005 M2 
0.69(20.61) /4,01) (-2.74) -55.49 

10,,\..1 = " 3.786 + 0.113 M - 0.002,M2 + 0.00002 M3 
0.78(~O.:m . (4.00) (-2.76) .(2.27) -53.25 
 

U = 45.9.92 + 9.673 M - 0.192 M2 + 0.0012 M3 
 
0.96 -38.28(5.10) /5.50) (-3.31.) (2.56) 

'R2 is the corrected co.efficient of determination, Lm<\x is the logarithmic maximum likelihood'value, and figures in paren­
these.s are t.yalues. 2 This is the polynomial functional form reported in (9). 
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2
U [E(M)] +.!. 0 2 d U[E(M)]U(a) 

2 dM2 

1 d 3U[E(M)]
+- gl3! dM3 

1 d4U[E(M)]
+ - g2 + ...4! dM4 

where 

E[M - E(M)]2 0 2 , the variance of the distribu­
tion ofM 

E[M - E(M)] 3 gl, the skewness of the distribu­
tion ofM 

E[M - E(M)4 g2, the kurtosis of the distribu­
tion of M 

Assuming normal distribution of M, the expected 
utility becomes: 

1 d2U[E(M)]
U(a) U[E(M)] + ­ 0 2
 

2 dM2 
 

According to (7), it can be shown that: 

U[E(M) ] 

d2U[E(M)] aUlE(M)] 
dM2 = (X - 1) aE(M) 

1 1 aU[E(M)] I 
• E(M) - U[E(M)] oE(M) I1 

where 

oU[E(M)] U[E(M)]]l-X . [(3 + 2(3 E(M)X] 
oE(M) [ E(M) 1 2 

Based on the results of table 2 at X equals -0.70, we 
computed the expected utility for each of the 13 alter­
native plans (table 4). It is clear that plan 13 (point B5 
in 9, p. 506) no longer is the optimal plan. Instead, 
plans 10, 11, 12, and 13 all yield the same highest 
expected utility index. Thus, any plan lying within the 
segment between L5 and B5 in (9) is considered opti-

Table 4-Computed expected utilities for 31ternative 
. * 2*.#0plans: Ui = Po + P1Mi + 1l2M + Vi. A =-0.70 

Mean Standard . Expected 
Plan income! 

o 

deviation! utility,. 
ElM) OM Ulai) 

4 210 168 236 
5 270 187 242 
6 330 205 246. 
7 390 245 ·248;.c, > 

8 426 283 249 
9 485 31~ 250 

10 520 "353 251 
11 560 410 251 
12 595 465 251 
13 630 517 251 

! Meah income "and standard d~viation are expressed 
in thousands of dollars. 

mal to case-study farm 5. Thus, the Bernoullian utility 
maximization hypothesis could have predicted the 
farmer's production decision better than that reported 
by Lin, Dean, and Moore if a better functional specifi­
cation had been adopted. At the very least, the strong 
preference leaning toward plan 13 as shown by the 
three researchers is now much reduced with the use of 
the "best" functional form. 

CONCLUSIONS 

The empirical results support our hypothesis that 
linear and polynomial specifications of utility functions 
are too restrictive. The log-linear form, although it 
performs slightly better than linear and polynomial 
forms, is still not the best to use. SemiIog forms per­
form even worse than do polynomial. The appropriate 
degree of nonlinearity of the utility function can best 
be determined by applying the maximum likelihood 
method to sample observations without a priori specifi­
cation. The empirical results further suggest some 
limited empirical evidence that farmers' utility function 
may exhibit a decreasing absolute risk aversion. 

The tendency for Bernoullian utility maximization 
hypothesis to predict more risky behavior than that 
actually observed (9) may have been due to incorrect 
specifications of the functional form_ Our study shows 
that this t,endency is subdued considerably with proper 
functional specifications. Obviously, this study presents 
only a very limited evidence in this inquiry. Extension 
of this test to a large number of sample forms is 
needed before our conclusions can be generalized. 
Nevertheless, the study does suggest that future 
research efforts to derive Bernoullian utility functions 
should pay more attention to the specification of the 
functional form. 
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In Earlier Issues 

(Carl) Alsberg's career never broke away from his past. Each stage in his life's journey 
made its contribution and moved him toward the next stllge. His intellectual frontier 
moved from the natural to the social sciences; from pharmacology to biochemistry, on to 
the specialized chemistry of foods and then to the economic and social problems of the 
food supply, until he found himself accepted as an agricultural economist, his spurs 
having been earned by 40 years of contributory related c'!{I~nJ ince. As he recognized no 
barriers in the flow of knowledge, his interests naturally extended into the field of 
international scientific cooperation. Science to him was a tool for universal application. 

As a research administrator Alsberg early learned that you cannot buy research." He 
advised, "Never assign a man to do a research job unless he has a twinkle in his eye and 
wants to do it more than anything else." Moreover, he was an advocate of inductive 
rer :arch in both the natural and the social sciences. He expressed his position in these 
words, "I am convinced that in any science the accumulation of facts is of first impor­
tance ... when the time is right, because of an adequate accumulation of facts, the 
general unifying principle is sure to occur at about the same time to a number of 
persons." 

This led him to hold with respect to the social sciences that there was "too much 
integration, too little differentiation; too much spinning of hypothetical theories without 
regard to their verifiability; too little spade work in digging out facts. If in the social 
sciences, and especially in economics, more attention were devoted to the recording of 
what seem important facts and to the analysis of their significance, I am confident we 
should not need to worry about theory." This line of reasoning led Alsberg to suggest 
that there be "less writing of books and more publication of brief communications." 

"Review of: Carl Alsberg-Scientist at Large (~oseph S. Davis, ed.)" by Joseph G. Knapp. 
AER, Vo!' I, No.3, July 1949, p. 102. 
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