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Abstract

Mean-variance analysis in the form of risk programming has a long, productive history in
agricultural economics research. And risk programming continues to be used despite well
known theoretical results that choices based on mean-variance analysis are not consistent
with choices based on expected utility maximization. This paper demonstrates that the
multivariate distribution of returns used in risk programming must be elliptically symmetric
in order for mean-variance analysis to be consistent with expected utility choices. Then
a statistical test for elliptical symmetry is developed and demonstrated. This test enables
researchers to determine when data will produce significant differences between risk pro-
gramming choices and expected utility choices.



1 Introduction

Models describing optimal decision making under uncertainty have a long and productive

history in agricultural economics research. In recent years, numerical techniques have been

introduced that allow the solution of these models under general assumptions. In part, these

techniques have been developed because of well-known theoretical results that the expected

utility ranking of risky outcomes is consistent with ranking based on mean and variance only

under restrictive assumptions of quadratic utility or normality of random returns. Some

of the numerical techniques that have been introduced in the agricultural economics liter-

ature include: the moment generating function (Collender and Zilberman 1986); separable

programming (Lambert and McCarl 1985); and numerical quadrature (Kaylen, Preckel, and

Loehman 1987).

Despite the availability of numerical techniques that can produce numerical solutions to

expected utility maximization problems, quadratic risk programming continues to be a nu-

merical tool in empirical research (Young and Barry 1987) and mean-variance representations

of preferences continue to be employed in the construction of theoretical and econometric

models (Coyle 1992). One reason for this is that mean-variance preferences are easier to

work with in many analytic derivations. Another reason is that quadratic programming is

a more tractable numerical procedure than general nonlinear optimization and numerical

integration. Traub, Wasilkowski, and Wozniakowski (1988, pp.177–178) show that, in a

worst case, the number of information operations necessary to obtain an ε-approximation to

a general nonlinear optimization problem is m(ε) = θ(ε−d/r), where d is the dimension of the
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domain of the objective function, r is the number of continuous derivatives of the objective

and constraint functions, and θ is a constant. The same authors point out that it has been

proven that an ε-approximation to a multivariate integral requires something proportional to

ε−d/r information operations, where d is the dimension of the domain of the integrand, and

r is the number of continuous derivatives of the integrand. Information-based complexity

theory classifies both of these problems as intractable, meaning that the number of required

computations increases exponentially in the dimension of the problem. The force of these

results for many economic problems is weaker than the general result because of the smooth

functions that are commonly employed in economics. Still, these results should be contrasted

with the result that minimization of convex functions that satisfy certain regularity condi-

tions can obtain an ε-approximate solution in m(ε) = θ
(
ln1

ε

)
computations (Traub et al.).

This is an expression that goes to infinity very slowly as ε goes to zero.

Support for the use of mean-variance analysis in models with a univariate source of risk

has been provided by recent work of Sinn (1983), and Meyer (1987). They show that neither

quadratic utility or normality are necessary for expected utility ranking of alternatives to

be consistent with mean-variance ranking. They showed that the necessary condition is

that the random variables a decision maker chooses among differ only in location and scale.

This result only applies to models where alternatives are represented by univariate random

variables, but Meyer and Raasche (1992) were able to apply this result to returns from stock

portfolios by using the capital-asset pricing model to express the risk of different portfolios

in terms of the non-systematic risk portion of the rate of return. For more general situations
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that do not allow simplification through the capital-asset pricing model, Chamberlin (1983)

showed that elliptical symmetry of multi-variate returns is sufficient for consistency between

expected utility and mean-variance solutions. He also showed that elliptical symmetry is

necessary for consistent ranking of all portfolios including those with short sales, and those

yielding negative wealth.

This paper applies Chamberlin’s results on sufficiency of elliptical symmetry by first

showing that the distribution of final wealth satisfies Meyer’s and Sinn’s location and scale

condition if the distribution of portfolio returns is elliptically symmetric. The major section

of the paper presents the development of a statistical test for elliptical symmetry and demon-

strates the test with a sample agricultural portfolio problem. Some comments to generalize

the results conclude the paper.

2 Elliptical Symmetry, Expected Utility, and Mean Vari-

ance

This section integrates results of Chamberlin (1983), Meyer (1987), and Sinn (1983) to

show that mean-variance ranking of agricultural portfolios is consistent with expected utility

ranking if the joint distribution of returns is elliptically symmetric. An important implication

of this integration is that Meyer’s preference representation and comparative statics (Meyer

1987, pp.423–427) can be applied to portfolio choice problems where the distribution of

portfolio returns satisfies the condition of elliptical symmetry. Thus, for example, the set of
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optimal choices for decision makers with varying degrees of risk aversion can be represented

by the mean-variance, or mean-standard deviation efficient frontier.

Meyer (1987) and Sinn (1983) independently demonstrated that the location-scale con-

dition is sufficient for consistency of expected utility and mean-variance ranking of risky

alternatives. The location-scale condition means that alternatives in the choice set only

differ by location and scale parameters. Many economic models with a univariate source

of uncertainty satisfy this condition because the interaction between the agent’s choice and

the source of uncertainty is linear. Sandmo’s (Sandmo 1971) model of the competitive firm

under output price uncertainty is an example of the type of model that satisfies the location-

scale condition. Meyer (1987) also described the representation of preferences and their

comparative statics in mean-standard deviation space.

In unrelated work, Chamberlin (1983) characterized the portfolio distributions which

cause expected utility to be solely a function of the mean and variance of portfolio returns.

Chamberlin resolves confusion that had persisted in earlier literature by showing that multi-

variate distributions that lead to consistency of expected utility and mean-variance rankings

have the common attribute of spherical symmetry. Spherically symmetric random vectors

have contours of equal density that are hyper-spheres about the origin.

Chamberlin showed that the portfolio distributions have to be related to spherical sym-

metry in the following manner. If there is a riskless asset, then the vector of random portfolio

returns must be a linear transformation of a spherical random vector. Muirhead (Muirhead

1982, p.34) shows that a linear transformation of a spherical random vector is an elliptically
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symmetric random vector. The condition is weaker when there is no riskless asset. In this

case, one of the random returns can have an arbitrary distribution, and the distribution of

the remaining returns conditional on that return must be an elliptically symmetric random

vector. Chamberlin’s results concentrate on the distributions that make expected utility a

function of the mean and variance of returns. His results can be made more useful by com-

bining them with Meyer’s (1987) results on the analytics and comparative statics of choice

in mean-standard deviation space.

If a random vector, X, follows an elliptically symmetric distribution with mean µ and

variance Σ (X ∼ Em(µ,Σ)) then a random variable Y formed by taking a linear combina-

tion of the elements of X is elliptically symmetric. And, if Y = α′X, then E(Y ) = α′µ

and V ar(Y ) = α′Σα (Muirhead 1982, p.34). Further, because Y is symmetric, Z =

(Y − α′µ) / (α′Σα)1/2 is symmetric with mean 0 and variance 1. And, except for location and

scale, α′µ+(α′Σα)1/2 Z is equal in distribution to Y for any α. Thus final wealth from a port-

folio of assets whose joint distribution is elliptically symmetric, satisfies the location-scale

condition.

The analytic tools introduced by Meyer provide a valuable simplification in describing

behavior and comparative statics under uncertainty. And the set of choices can be reduced to

the mean-variance frontier that can be generated with quadratic programming if the location-

scale condition holds. Therefore it would be useful to have a statistical test to determine

if a given set of portfolio data satisfies the elliptical symmetry condition demonstrated by

Chamberlin. The next section develops and demonstrates the use of such a test.
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3 A Statistical Test for Elliptical Symmetry

This section will develop a statistical test for elliptical symmetry that is simple to compute

using Monte Carlo techniques to generate the distribution of the test statistic under the

null hypothesis. The proposed test is consistent with other computer intensive statistical

procedures. In order to motivate the need for a computer intensive generation of the sampling

distribution of the test statistic, the literature on tests for elliptical symmetry will first be

reviewed.

3.1 Tests for Spherical Symmetry

The literature on testing for symmetry of multivariate distributions has concentrated on

spherical symmetry, a special case of elliptical symmetry. In most cases (e.g. finite second

moments) elliptically symmetric variables can be transformed to spherical symmetry. This

is accomplished by centering and sphering. Namely, given data X1, X2, . . . , Xn, it is possible

to obtain centered and sphered residuals, Yi, by the transformation:

Yi = L̂−1 (Xi − µ̂) (1)

where µ̂ is the sample mean and L̂ is the lower triangular Cholesky factor of the sample

covariance matrix Σ̂. The literature on testing uses an unbiased estimate of the covariance
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matrix defined as:

Σ̂ =

∑n
i=1

(
Xi − X̄

) (
Xi − X̄

)′
n− 1

(2)

This estimate of the covariance matrix will be used in the statistical test developed here.

However, if elliptical symmetry fails to be rejected and quadratic programming is used to

generate an expected value-variance frontier, the covariance matrix in the programming

model should be normalized by (n − m − 1), where m is the dimension of the random

vector, instead (n − 1) (Chalfant, Collender, and Subramanian 1990). The Yi’s will have a

distribution that is approximately spherically symmetric.

Eaton and Kariya (1977) derive a uniformly most powerful test of the null hypothesis of

spherical symmetry against the alternative of (nonspherical) elliptical symmetry. This test

can not be adapted to test for elliptical symmetry because our alternatives of interest are

non-symmetric.

Beran (1979) and Romano (1988) propose tests of spherical symmetry based on the

estimated distance of the actual distribution from the family of spherically symmetric dis-

tributions. Beran’s test statistic is

Sn

(
µ̂, Σ̂

)
=

Kn∑
k=1

Mn∑
p=1

[
n−

1
2ak

(
Ri

(
µ̂, Σ̂

))
bp

(
θi

(
µ̂, Σ̂

))]2

Here, {ak : K ≥ 1} is a family orthonormal with respect to Lebesgue measure on [0, 1]

and orthogonal to the constant function, and {bp : p ≥ 1} is a family orthonormal with
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respect to Lebesgue measure on [0, π] × [0, 2π]m−2 and orthogonal to the constants. The

Ri’s are the ranks of the distances ‖Yi‖, divided by n + 1, and the θi’s are angular polar

coordinates of the Yi’s. The summation limits Kn and Mn must be chosen. Beran shows

that this test is equivalent to

∫ 1

0

∫
Sm

(ĝn (r, u)− 1)2 dM(u)dr

where Sm is the surface of the unit sphere in Rm, M is the uniform measure on Sm and ĝ is

an orthogonal series estimate of the joint density of r = F−1
‖Y ‖ (‖Y ‖) and U = Y/‖Y ‖. Here,

F‖Y ‖ is the cumulative distribution function for ‖Y ‖, so r is uniformly distributed on Sm and

independent of r under the null hypothesis. The summation limits Kn and Mn control the

degree of smoothing in the orthogonal series estimator.

Romano’s test statistic has the form

S ′n = n
1
2 sup
V ∈V
‖P̂n (V )− τ

(
P̂n

)
(V ) ‖

where V is a class of subsets of Rm with certain properties, P̂n is the empirical measure of

the data Y1, . . . , Yn, and τ
(
P̂n

)
is the spherically symmetric distribution having the same

radial distribution as P̂n.

The problem of testing the null hypothesis of spherical symmetry is invariant under

monotone transformations of the radial component, so from invariance considerations one

could argue that the test should be based on the maximal invariant, (Ri, Yi/‖Yi‖), where Ri
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is the normalized rank as given above. This has the further advantage that any invariant test

has a simple null distribution — its distribution under sampling from the uniform distribution

on Sm × {
1
n
, . . . , 1}. Both Beran’s and Romano’s test satisfy the invariance requirement.

Both of these tests require certain arbitrary choices — V for Romano’s test andKn,Mn, {ak},

and {bp} for Beran’s test. Since Romano’s test has fewer arbitrary choices it is preferable

on this count. Even so, it seems difficult to select V to achieve invariance under orthogonal

transformations. Beran’s test will not be rotationally invariant because no selection of bp’s

can achieve this.

It is likely that Beran’s test will have low power in small samples, This is because one

will have to pick Kn and Mn very small — 1 or 2, for example. Since the bp ’s will typ-

ically look like the lowest frequency trigonometric functions, only the grossest departures

from uniformity will manifest themselves. Typical agricultural economics data sets do not

have a large number of observations. The typical sample sizes are too small for reasonable

nonparametric density estimation. Romano’s test, with appropriate choice of V , is likely to

have power comparable to the test proposed in the next section.

Finally, both of these tests appear to be very difficult to compute. The five dimensional

choices in our example would require the solution of a high dimensional nondifferentiable

optimization problem to obtain V for Romano’s test. Furthermore, the significance level is

evaluated by Monte Carlo methods, so a practical test should be computable with relatively

few operations.
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3.2 A Nearest Neighbor Test for Elliptical Symmetry

Let F = the collection of all elliptically symmetric distributions which are absolutely con-

tinuous. The hypothesis to be tested is:

H0 : f ∈ F versus

HA : f /∈ F

Let {X1, X2, . . . , Xn} be a sample of observations on an m-dimensional random vector.

Let µ̂, Σ̂ be estimates of the mean vector and the covariance matrix of the data. If Σ̂ is

positive definite (which will be the case with probability 1 if n ≥ m) then it has a Cholesky

factorization Σ̂ = L̂L̂′, where L̂ is lower triangular. Use L̂ and µ̂ to transform the sample

into standardized deviations from means, Yi, as in equation 1. If the observed data, Xi,

comes from an elliptically symmetric distribution, then Yi is approximately a sample from a

spherically symmetric distribution.

From the properties of spherically symmetric distributions it is known that normalized

values of Yi, Zi = Yi/‖Yi‖, under H0 are approximately uniformly distributed on the unit

hypersphere and are independent of the random variables ri = ‖Yi‖ (Muirhead 1982, pages

36–37). The inverse of this transformation provides an easily implemented method for gen-

erating samples from a spherically symmetric distribution. First generate n variables, Zi,

uniformly distributed on the unit hypersphere; then, generate a random sample from some

univariate distribution with nonnegative support to obtain the radius ri, i = 1, 2, . . . , n.
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Then the spherically symmetric sample is obtained by setting Yi = ri · Zi, i = 1, 2, . . . , n.

Let Ri = rank{‖Yi‖}/n. The nearest neighbor test for elliptical symmetry exploits

the property that pairs (Ri, Zi) are approximately uniformly distributed on the product of

{ 1
n
, 2
n
, . . . , 1} with the unit hypersphere. Uniformity means that the radial distance between

nearest neighbors (nodes) that form the shortest path around this space should be similar

for all pairs of nodes. This is in contrast to the case of a nonuniform density where the nodes

will tend to be clustered in groups that correspond to regions of high density. In this case,

distances between nodes in a cluster will be small, but the distance that must be traversed

in moving from one cluster to the next cluster will be relatively large. There will also tend

to be isolated nodes in low density regions which will have large nearest neighbor distances.

In order to find the shortest path it is necessary to solve the travelling salesman problem.

The null distribution of the test statistic will be determined by Monte Carlo methods, and the

shortest path must be determined for each Monte Carlo sample. This makes determination

of the shortest path by solution of the travelling salesman problem impractical because the

solution of hundreds or thousands of travelling salesman problems would be required to

calculate one p-value.

Therefore, the shortest path will be approximated by a method that is less computation-

ally intensive than the travelling salesman problem. Consider the n by n symmetric matrix

S whose elements are distances between points in the data set. Nearest neighbors will be

approximated by choosing the smallest entry from the off-diagonal elements in each column

of S. To avoid double counting the same distance, when an element in row i is the smallest
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entry in column j, j < i, row j will be eliminated from consideration when the smallest entry

in column i is chosen. This will not produce points that lie on the shortest path around

the space, but it will produce points that are nearest neighbors without double-counting the

same pairs.

Tests based on nearest neighbor distances have been used in the analysis of spatial point

processes to test the hypothesis of complete spatial randomness (Diggle 1983). In particular,

Clark and Evans (1954) have proposed a test based on the mean nearest neighbor distance,

which is very similar to the test proposed here.

The distances between nearest neighbors should provide information useful for testing

approximate spherical symmetry of the Yi’s. There are two problems that need to be ad-

dressed: finding an appropriate distance measure; and choosing a good test statistic based

on the nearest neighbor distances.

We propose to use Euclidean distance with a suitable weighting of the radial ranks Ri.

If Z1 and Z2 are independent and uniformly distributed on the unit hypersphere, then:

E‖Z1 − Z2‖
2 = 2− 2E (Z ′1Z2) = 2. (3)

If R1 and R2 are independent and uniformly distributed on { 1
n
, 2
n
, . . . , 1} then

E (R1 − R2)2 =
(
n2 − 1

)
/6n2 ≈

1

6
. (4)

Since the unit hypersphere has dimensionm−1 and the radius has dimension 1, it is intuitive
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to have equation 3 contribute (m−1) degrees of freedom and equation 4 contribute 1 degree

of freedom. Therefore, we propose:

‖ (R1, Z1)− (R2, Z2) ‖ =
[
6 (R1 −R2)2 + (m− 1) (1− Z ′1Z2)

]1/2
(5)

as the measure of distance.

The test statistic is based on the sample mean and variance of the nearest neighbor

distances D1, D2, . . . , Dn derived from a sample X1, X2, . . . , Xn. The minimum distances

are defined as Di = min
j
‖ (Ri, Zi)− (Rj , Zj) ‖2, where j ranges over observation indices for

which (Ri, Zi) has not already been chosen as the nearest neighbor of (Rj , Zj). Figure 1 is

a plot of 100 mean-variance pairs
(
D̄, S2

D

)
from the null model with m = 5 and n = 21,

and the alternative of a Burr distribution with parameter α = 0.25 – Johnson (Johnson

1987) recommends the Burr distribution as a multivariate non-elliptic distribution. The

Burr distribution with parameter α is the distribution of (1 +X/Y )−α where X is a vector

of independent exponentials with mean 1 and Y is an independent gamma random variable

with shape parameter α. Figure 2 is a plot of 100 mean-variance pairs from the same null

model and an alternative called the inflated normal – this non-elliptic distribution is created

by multiplying negative realizations of the first four elements of the random vector by −4.

The inflated normal is non-elliptic because four of the five elements of the random vector

only take on non-negative values. Inflated normal distributions with multipliers of −2 and

−3 were also constructed.

Figures 1 and 2 indicate that a linear discriminant should do a good job of separating the
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null distribution from each of the two alternatives. The systematic difference in the mean

and variance of nearest neighbors is consistent with the preceeding theoretical explanation.

The non-elliptic distributions have a smaller mean and larger variance than the normal

distribution. Examination of other data sets generated from null and alternative distributions

led to a similar conclusion. Table 1 summarizes these results by presenting the best linear

discriminant coefficients for various alternative distributions. In each case, samples of size

1000 from the null and alternative were generated, and the discriminant coefficients were

computed using the procedure discr in Splus (Venables and Ripley 1994).

The test statistic is constructed by assigning weights to the mean and variance of the

nearest neighbor distances that are the medians of the values reported in table 1. This

produces a simple test statistic of the form:

V = 12.83D̄ − 5.46S2
D (6)

where D̄ = 1
n

∑n
i=1 Di, S

2
D = 1

n

∑n
i=1

(
Di − D̄

)2
, and D1, D2, . . . , Dn are the nearest neighbor

distances obtained from the matrix S with elements Sij = ‖(Ri, Zi) − (Rj , Zj)‖2. The null

hypothesis should be rejected for small values of V , because the discriminant line has a

positive slope and places the null distribution to the right of the line. The exact critical

values will be obtained from the empirical distribution of the statistic calculated from the

Monte Carlo sample of the null distribution. A histogram of the null distribution is presented

in Figure 3. The null hypothesis will be rejected for small values of the test statistic, so

critical values of the test statistic will be in the region below 17 for 21 observations from a
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5 dimensional random vector.

Table 3 presents the power of the test against eight alternatives at three levels of signifi-

cance. The power function exhibits good performance that is expected of a statistical test.

The power is an increasing function of the significance level, rising from .9 to .95 for the

Burr distribution with parameter .125 and from .43 to .67 for the inflated normal with an

inflation factor of−2. The power also increases as the alternatives get more non-elliptic. The

Burr distribution is more non-elliptic when the parameter value is smaller. The power grows

monotonically as the Burr parameter decreases. The inflated normal gets more non-elliptic

as the inflation factor grows, and the power increases with the inflation factor.

In general, the value of the power function is large, indicating the ability of the test

statistic to discriminate alternatives from the null distribution. It should be noted that even

the smallest power values of .43 and .53 are relatively good given a sample size of 21 on

a 5 dimensional random vector. Other investigations of the test statistic indicate that the

power grows as the sample size grows. So applications to larger sample sizes will produce

test statistics that are more powerful at distinguishing alternatives. The results for a sample

size of 21 are reported in this paper because this is the sample size in the example that will

be presented in the following section.

15



4 Applying the Elliptical Symmetry Test to Agricul-

tural Data

An important risk management tool for agricultural producers is diversification. Portfolio di-

versification can occur across several dimensions. In some production systems diversification

can be accomplished by allocating land to a variety of crops whose yield and/or price risk may

be negatively correlated. In addition, most producers have access to financial diversification

by allocating investments to various financial assets, whether or not crop diversification is

feasible for them. Other producers may diversify income sources by allocating family labor to

off-farm income generating activities. These examples highlight the fact that an integrated

understanding of the risk management strategies of agricultural producers requires economic

models that include a variety of random returns.

Expected utility representation of decision making in such an environment requires a

multiple integral objective function that can make the derivation of definite comparative

statics difficult or impossible. In contrast, a mean-variance representation of preferences is

analytically tractable and can produce clear comparative statics results. Coyle (1992) is an

example of a model of multiple output production that uses the mean-variance simplification.

When the distribution of multivariate returns is elliptically symmetric, the mean-variance

model provides rankings of alternatives that are consistent with expected utility maximiza-

tion. The test for elliptical symmetry provides researchers a tool to assess the acceptability

and potential costs of a mean-variance model. If the test fails to reject the hypothesis of
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elliptical symmetry support for expected utility, mean-variance consistency is provided. On

the other hand, if the test rejects the hypothesis of elliptical symmetry, then there could be

some significant asymmetries in the distribution of returns that require further investigation.

For example, Young and Barry (1987) analyzed the benefits of financial diversification for

Illinois grain farmers using mean-variance analysis. If the distribution of portfolio returns

in this study is elliptically symmetric, then there is support for the argument that mean-

variance efficient choices are expected utility maximizing. If elliptical symmetry is rejected

then optimal mean-variance portfolios may miss important aspects of utility maximizing

portfolio diversification.

A subset of the portfolio data in Young and Barry (1987) consists of 21 annual observa-

tions (from 1963 to 1983) on two equity instruments: 1) the Standard and Poors 500 common

stock index; 2) a portfolio of small company stocks; returns on three debt instruments: 3)

a municipal bonds index; 4) a certificate of deposit rate; 5) a passbook account rate; and

6) returns to grain farming on 500− 640 acre farms in northern Illinois. The passbook rate

is treated as a risk-free rate. The estimated mean vector and covariance matrix (calculated

as in equation 2) for the five risk rates of return are presented in Table 3. The test proce-

dure described above was applied to this portfolio data. This yielded the following values

for the estimated mean and variance of the nearest neighbor distances: D̄ = 1.40035, and

S2
D = 0.05916. The Monte Carlo analysis of data with n = 21 and m = 5 indicates that these

estimates should be weighted by 12.83 and −5.46 yielding a test statistic value of 17.6435,

with a p-value of 0.308, which indicates that the null hypothesis of elliptical symmetry fails
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to be rejected. This result enhances the analysis performed by Young and Barry by showing

that the optimal portfolio choices are consistent with expected utility maximization.

5 Conclusion

The analysis of behavior under risk and the development of strategies for managing risk is an

important area of agricultural economics research. Expected utility theory continues to be a

good behavioral model of decision making under uncertainty, despite experimental evidence

on the violation of the independence axiom (Bar-Shira 1992). Mean-variance analysis is

consistent with expected utility theory when alternatives only alter the location and/or scale

of final wealth. If a set of alternatives does not satisfy the location-scale condition mean-

variance ranking can be inconsistent with expected utilty ranking. For example, an increase

in variance can make a risk averse decision maker better off if the increase is accompanied

by an increase in negative skewness.

Computational and analytical models of behavior in the presence of multiple sources

of uncertain returns are simpler and more tractable if preferences can be represented as a

function of mean and variance. A sufficient condition for the consistency of mean-variance

analysis with expected utility analysis is elliptical symmetry of the distribution of the vector

of random returns. This family of multivariate distributions has a regular structure that

makes it possible to distinguish them from distributions that are not members of the family.

The structure of the family of elliptically symmetric distributions was used to construct

a test statistic for the null hypothesis that an observed set of random vectors comes from
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an elliptically symmetric distribution. The test rejects the null hypothesis if the normalized

values of the random vector are distributed on the unit hypersphere in a manner that is not

uniform. The test statistic and its null distribution are easy to compute with Monte Carlo

methods. This testing approach is consistent with other computationally intensive testing

procedures, such as the bootstrap (Efron and Tibshirani 1993).

The test was shown to have power to distinguish elliptic from non-elliptic distributions.

The power of this distinction increases as the alternative gets further away from the elliptic

family. And the power increases as the size of the test increases. These properties indicate

that the test should reliably distinguish elliptic from non-elliptic distributions.

The properties of the test were demonstrated for a set of 21 observations on a 5 dimen-

sional random vector, in order to apply it to an example of an agricultural portfolio problem.

The software for calculating the test statistic is easily adjusted for data sets of other dimen-

sions. And the calculations should be performed in a short time for most agricultural data

sets. Investigations with data sets of other dimensions indicate that the power of the test

increases as the sample size grows. Further research will attempt to analytically verify the

consistency of the test, which is hinted at by these numerical results.
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Table 1

Discriminant Coefficients

Alternative Mean Variance

Distribution Coefficient Coefficient

Burr-0.125 12.3654 -4.4143

Burr-0.250 11.7803 -6.5138

Burr-0.375 11.3993 -7.9906

Burr-0.500 11.9495 -7.7026

Burr-0.625 13.2892 -6.5606

Inflated-2 17.4581 -4.1218

Inflated-3 16.3713 -3.1802

Inflated-4 15.5079 -3.5152
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Table 2

Power of Elliptical Symmetry Test Against Alternatives

Alternative 5% 10% 15%

Distribution Pvalue Pvalue Pvalue

Burr-0.125 .9 .93 .95

Burr-0.250 .79 .85 .88

Burr-0.375 .71 .77 .83

Burr-0.500 .61 .69 .75

Burr-0.625 .53 .61 .69

Inflated-2 .43 .58 .67

Inflated-3 .66 .76 .82

Inflated-4 .85 .91 .94
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Table 3

Estimated Mean and Covariance Matrix for Portfolio Returns

µ̂ =



15.87

10.22

22.49

4.95

7.41


=

farm

S&P 500

small stock

municipal bond

certificate of deposit

Σ̂ =



179.87 −91.16 −88.65 −46, 05 −6.67

−91.16 277.33 397.42 62.39 −10.42

−88.65 397.42 931.00 88.29 −8.16

−46.05 62.39 88.29 151.78 −1.78

−6.67 −10.42 −8.16 −1.78 13.44
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Figure 1: Mean and Variance for Null
 and Alternative 1

dot = burr 0.25, box = null
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Figure 2: Mean and Variance for Null
 and Alternative 2

dot = inflated normal, box = null
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