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ABSTRACT

Because of questions concerning.the high costs and effectivencss of Indonesia®s current mix of
policies aimed at promoting rice self-sufficiency, attention has turned to developing more efficient
policies directed towards achieving scif-sufficiency through increases in farmers’ yields. The main
issue addressed in this paper is whether existing yic!ds can be improved. When a yicld gap exists,
either between farms and experimental trials orbetween groups of farms, then the issuc becomes how
toexplain the gapand whatpolics actionshould betaken. The robustness of conclusions is examined
inview of the factthatconclusions obtained in past analysis of theissues have often been inconsistent.
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INTRODUCTION

Akey issue for Indonesian policy-makers is how to maintain rice self-sufficiency, first achieved in 1984, The
achievement of self-sufficiency was due to a mixture of policies promoting extensification fincreases in the
area harvested) and intensification {increases in yields). Extensification took place mainly as a result of
increases inthe arca of land under irrigation. Intensification was the result of the introduction of high-yiclding
seed varieties and the apphication of highly subsidised associated inputs, such as water and fertilisers, These
havebeenhigh-costpoliciesand attentionhastumed towards developing moreefficient ways of achieving self-
sufficiency through increases in yiclds and beuer use of existing irrigation infrastructure, for example.

The main issue to he covered in this paper concems the existence of a yield gap within Indonesian rice
prextuction, that is, whether the existing yields of some farmers could be improved. If such a gap exists, either
between farmers’ yields and experimentalresults or between groups of farmers, then additional questions arise:
what are the explanations for the gap; and can the gup be closed through policy action? Farmer efficieney over
nme will be specifically considered as a factor in any yield gap.

Past analysis of these issues has often resulied in inconsistent conclusions. This paper analyses the
robustnessof the conclusions obtained withregard to choice of models, methods of analysis and form of applied
data,

The next section discusses the models that can be used to determine whether a yield gap exists - nd
possible explanations for 4 5 1eld gap along withalternative methods and forms of data for analysing the model,
Models and methods are then applied to various sets of data from the Cimanuk Basin, Indonesia. Finally, the
paper exarmnes the policy unplications of the analysis.

THE ECONOMETRIC MODEL AND ANALYTIC METHODS

Mode! functional forms

There arc various ways of representng the efficiency of afarm’s operations, for example via production, profit
or cost funcuons The production function, which deseribes the teehnical relationship that traasforms inputs
into outputs, is Lie traditional way of representing farm operations in analysis of tarm cfficiency. Also often
used is the profit function, the complement of the traditional production function approach. Both approaches
will he appticd i the analysis that follows.

Whether production or some ather general function is chosen to represent farm operations, the choice
of specific functional form is important. Withregardto the production function, examples of specific functional
forms relating inputs (o outputs include the linear, Cobb-Douglas (linear in logs) and Constant Elasticity of
Substitutton forms, and various flexible functional forms such as the ranslog. generalised quadratic and
generalised Leontie! forms (see Kopp and Smith 1980 for a general discussion of the various forms). The
parameters in such models may be constant or varying in some specified manner. The choice of specific
functional form is mainly an empirical issue although economic theory does impose some constraints.

Frontiers and envelopes

Inanalysisof yield gaps and farmer efficiency, itis not the average of observed relationships between farmers’
inputs and outputs that is of interest but the maximum possible output that is obtainable from a given
combination of inputs — the frontier production function,




Acrelated concept, but one that will not always correspond, involves the envelope encompassing all the
input-output combinations contained in the sample data. Thie distinction is aliftie like thatimade by Forsund
et al. (1980) between a best-practices frontier (maximum output obiained with respect to the sample) and an
absolute frontier (maximum output obtained with respect 1o all corceivable observations embodying the
currenttechnology). These frontiers are distinguished by Forsund et al. as being, respectively, *non-statistical”
{(noone-sided error distribution and typically 100%-efficient observation(s)) or *statistical’, but Forsund et al.
state that these frontiers would be expecied {o converge as the sample size grows. However, tliere is a time
aspecttosuchconcepts as well. Farms will invariably neveradoptthetechnology being applied inexperimental
trials oronexperimental stationscompletely orimmediately. Yield gaps will be apparent whencomparing farm
and experimental outcomes in the one year, regardless of the sample size. A frontier estimated from a sample
or the population of farms, whether it be non-statistical or statistical, will invariably lie below that
encompassing the experimental observations but will approach it over time as the technology is completely
adopted. Rather than making a *statistical” distinction between a best-practices and absolute frontier, the issue
hiere istomake a distinction inrelation to time and adoption, More appropriate terms would be the current best-
practives and the long-term absolute frontiers.

These concepts could have important policy implications. These will be looked at innnore detail later but
an illustration of their importance can be obtained from conside: ing extension policies, At issue is whether
extension policies need to he targeted to individual needs or to be more generally based. Analysing the
dierributton of fanmer efficiencies relative to 4 current best-practices frontier and the best-practices frontier
teisuve to the long-run absolute frontier gives useful information on these important policy options that would
not be apparent from a tradivonal single frontier concept.

Inefficiencies and yield gaps

The distance a farm lies below its frontier measures the degree of technical inefficiency, that is, it is a residual
measure. The existence of techmcal inefficiency of farms has been questioned. For example, Mueller (1974)
states that “little is known about the role of non-physical inputs, especially information and knowledge, which
influence the firm’s ability 1o use its available technology set fully... Once all inputs are taken into account,
measured productivity differences should disappear except for random disturbances®, This seems to be a
question of what constitutes an appropriate input. In terms of policy analysis, it is somewhat irrelevant whether
extension advice, for example, improves the level of a ‘non-core’ input such as information and hence output
under Mueller’s view, or addresses inefficiencies due 10 a lack of information under a frontier function
approach.

Twao concepts have been introduced, yield gap and technical inefficiency, and L distinctions between
them need 1o be discussed and emphasised. These concepts are also represented diagrammaticaily at the end
of this section (Figure 1). A yield gap is the difference in yields achieved by farmers with their inputs and what
could be obtained as a result of hetter developed application of inputs, either in experimental trials in the same
fields or in neighbourhood experimental stations. Differences between this concept and that of technical
inefficiency can occur for a number of reasons, some statistical and some conceptual. Statistically, comparison
is often made between the average yield of a heterogencous group of farmers, farms and environments and
the best yield from a controlled experimental situation. A truer comparison would he obtained by using
experimental trial results based on farmers’ actual practices (apart from certain input use) and environments,
rather than cxperimental station results. Although some experimental results take cost-benefit aspects into
accountmany experimental station results donot, 5o the comparison s often between a result achieved through



trying to maximise production and one achieved through maximising profits, In fact, it is unlikely that the
population of farms will ever emulate experimental stations, and so comparisons between the two will always
be highly qualitied. Allocative inefficiencies, which result from failure to apply inputs at profit-maximising
levels, can confribute positively or negatively to any yield gap depending on whetlier the inputs are under- or
cverallocated relative to the profit-maximising level. Regardless of the sign of altocative inefficiency,
technical inefficiencies have tended to be the predominant factor in any yield gap. (IRRI Research Highlights
1978).

Variables used toexplainayield gapor inefficiencies could relate to direct causes such as profit-secking
behaviour or the use of improved fechnologies. (Sometimes Jittle distinction is made between the introduction
of a new technology and better application of an existing technology; for example, the specific means of
applying fertilisers, such as briquettes or deep siting, could be classified as either.) Alt -natively, these
variables could relate o secondary factors underlying the direct causes, such as farm size, family size, land
tenure, varieties planted, method of input application, mechanisation, access to irrigation, access to credit and
extension advice and management proxies such as age and education. Some of these are affected by policy
while others are structural in nature. Explanators have been determined by regression or other multivariate
analvsis. such as discriminant analysis, ensuring that appropriate transformations are undertaken so that the
gap or efficiency measures satsfy the assumptions required of the analytic technique.

Forms of frontiers and methodological approaches

One torm of frontier function is the stochastic production frontier, develuped independently by Aigner, Lovell
and Schmidt (1977) and Meeusen and van den Broeck (1977). Functions, being simplified representations of
actual operations, require assumptions regarding the distribution of random etrors before they can be used in
empirical estmation, The usual assumption made in refation (o average functions is a Normal distribution
which is symmetric and bell-shaped, The stochastic frontier incorporates tworandomcomponents: a traditional
random error component, and a component representing the degree of technical inefficiency. Various
distributional assumplions bave heen mags with regard to this additional component, including the half-
Normal and truncated Normal. In the deterninistic frontier, any variation in firm performance is relative to
a single frontier and attributed purely to inefficiency. This ignores the possibility of variation due to specific
factors notunder e finm’s control, sucn as the socioeconomic and physical environment, which are usually
incorporated as random error,

Another frontier approach developed by Kokic et al. (1992) applies the robust regression technique of
M-quantile regression (Breckling and Chambers 1988) to the function representing farm operations, Basically
the teclinique is a generalisation of M-regression (Huber 1981) and weighs positive residuals by a factor 2p
and negative residuals by a factor 2(1-p). For p close to 1, the M-quantile production function represents the
average performance of efficient farms, and for p close to 0 the performance of incfficient farms, A measure
of the jth farm’s performance, Pp with the desirable property of not being dependent on the level of inputs can
be determined using the technigue. Because this approach makes different assumptions to the stochastic
frontier approach (for example, in relation to crror distributions), similar conciusions will suggest that these
assurnptions are robust. Differing conclusions should point to assumptions, possibly critical, that require
greater information or more careful choice, for exaaple whether an observation is wuly an outlier or not.

One of the specific stochastic frontier models used in this paper was developed by Battese and Coelli
(1991). This model can accommodate unbalanced panel data associsted with a sample of N firms over T time
periods and incorporates a simple exponential specification of time varying firm cffects. The associated



computer progam, FRONTIER 2, wasusedtoobtain maximun-likelihood estimates of themodel parameters
and predictors of the efficienciss of individual firms, However, this program has limitations, For example,
when used in conjunction with the full panel of data, the ordering of farms according to efficiency Jevels does
not change from that obtained for the first year whercas using the program one year at a time results in
considerable changes in the order, The computer program LIMDEP was also used to estimate fhie various
frontiers when the limitations of the FRONTIER 2 program were thought to be important, The M-quantile
frontiers were estimated from an SAS program developed at ABARE by Phillip Kokic.

Datz aspects

Frontier functions have been applicd both tocross-sectional and to panel data such as the Cimanuk Basin data
detailed Iater in the paper. The use of panel data has a number of advantages: consistent estimates of technica!
efficiency are more readily obtainable and fewer distributional and independence assumptions are necessary,
forexample. However, the use of panel dataalso introduces anumber of complications such as whether or not
any inefficicneies are time in ariant.

In general, farm survey data on production s used for the analysis. However, it tnay be more appropriate
tocollectdatathatisaimed directly atthe efficiency issue, forexample by asking farmers directly whether price
is & key determinant in the level of fertiliser use, if fentiliser use was found to he a cause of a y'eld pap, Also,
consideration should be given to the use of ficld trials data, for example as a check of the estimated frontier
Or in the esitmation, as greater accuracy could result from having aceess (o the wider spread of input values
used 1z such trials. A difhiculty with the use of such data in the past has been the incquitable comparisons made
between experimental statsens, which operate under ideal conditions and with few constraints on inpats, and
cross-regronal averages of farms operating under real economic condit ons (Pingali et al. 1990).

The cartier concepts of carrent best-practices and fong-term ahss fute frontiers are useful in interpreting
panel data. Analysing the data as a panel might suggest significant degrees of inefficiency, with or without a
significantuniform trend over time. On then unalysing the panel data a year at a time, itmight scea that farmers
are very efficient and that the frontier uself vanes each year (see, forexample, Battese and Coclli 1991, These
outcomes would appear to be internally inconsistent given the traditional concept of a stable frontier. They
would also seem to be inconsistent both with experimental trials suggesting that significantly higher and more
profitable yields are achievable and with prior information showing that no technological change (as distinct
trom the adoption of technology) has taken place over the period. The current best-practices and long-term
absolute frontier concepts enable 4 consistent interpretation of the analytic evidence, They suggest thatin any
year farmers are a homogenous group in terms of efficiency and that over time they maove, although not always
in a smooth fashion, towards a higher stable frontier as they adopt new technology as a group,

Current best-practices frontiers could be estimated from the paneldata. one year at a time. The long-term
absolute frontier could be estimated from the panef data as a whole as fong as there was some modelling of
the adoption rate of the new technology. Alternatively, it could be estitated using experimental trial data,
although this information would need 1 be comparable with farm data, with fertiliser application rates being
determined ona profits basis, for ckample. If the best-practices frontier varies randomly from year to year then
this time variation could be used in the form of the pooled panel data to estimate a corresponding long-term
ahsolute frontier. In this case the long-term absolute frontier would be conceptually like the meta-frontier
discussed by Pitt (1983), except that instead of encompassing individual technologically specific frontiers it
would encompass individual time-specific frontiers.



Another point to be made with regard to data is that in regression analysis often used to estimate the
frontiers some points can have greater influence than others, Regression data diagnostic analysis (Belsley et
al.1980) has been developed to ascertain which data points are influential in determining the estimated
cocfficients, forecasts, ete. by observing the responses of these éstimates 1o changes in the data, This does not
meanthat these data points should be omitted; these points may be the only ones containing certaininformation
whichneedsto beidentified and judiciously used inthemodel déve!bpment.f{‘wc)basic‘cdmpmxenldiagmstics
are the diagonals of the least squares projection matrix (the ‘hats") and the studentised residuals, The *hat®
matrix identifies points of high leverage that may be influential depending on the y values, Two diagnostic
measures, DFBETAS and DFFITS. are respectively the scaled change in estimated coefficients, and fit due
to deleting an observation, and although these are affected by the basic components it 1s invariably necessary
to consider a suite of diagnostic measures to-obtain a full picture,

Diagrammatic representations of various concepts

Figure 1 represents diagrammatically the concepts discussed carlier in this section. A production process is
technically inefficient if maximum output is not produced from 4 given bundle of inputs, This concept is

measured by the ratio of expected output to maximum output, for example 0,/0, in the diagram; that is, a

comparison of output at points C* and €, each with the same level of inputs but C' lying on the frontier function.

Figure 1 Current best-practices and fong-run absolute frontiers, and various measures of inefficiency
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Allpcative inefficiency occurs when the margmal revenue product of aninput is not equal to itsmarginal
cost, implying thatinputs are being used inthe wrong proportions giveninputand output prices and technology.
“This can be defined alternatively as the inabiity to obtain maximum profit from the application of inputs with
a given set of prices and tectinology. Atlocative inefficiency can be measured by the ratio of expected profit
tomaximum feasible profit. Maximum feasible profit can be measured at the technically efficientlevel or the
{possibly technically inefficient) current level, The latter gives a ‘purer” measure of allocative inefficiency and
Jn the diagram is represented by the ratio of the profits at C on G, to the maximum profits given ;P on 2,
that is the profits at point B (@, represents a locus that is a neutral shift of the frontier O, and passes through
the point €). The former is represented in the diagram by the ratio of the profits at C' on Q, to the maximum
profits given P ,P_on @, that is, the profits at point A, It is important to note the statement made carlier that
points that are allocatively inefficient may have either higher or lower levels of production or yields than the
atlocatively efficient point. In other words, in the case of an overallocation of inputs, an improvement in
allocative efficiency could widen any yield gap,

The vombination of allocative and technical inefficiency components is generally referred 10 as
economic inefficiency. It is measured as the ratio of predicted profit at the frontier for the actual fevel of inputs
to the maximuam feasible profits, obtamed by simultancously solving the frontier function and the first order
profit maximisation corditions a: the given input and output prices. This ratio is represented in the diagram as
the ratio of profits at C to the profits at A. In this paper. only technical inefficiency will be considered in any
detail.

The current best-practices and long-term absolute froniiers are alsorepresented inthe diagram, The long-
term absolute frontier, the maximum output obtaned with respect 10 all conceivable observations embodying
the current technology. tncluding expeninienial ohservations, is represented by 0 - The currenthest-practices
frontier. the maximum oblamed with respect 1o the sample in a particular year, is represented by g,.Qvertime,
there would be a sequence of @ s and associated levels of technical and allocative efficiency approaching o,
and assoviated points,

The relationship between the yield gap and measures of ineffiviency can also be appreciated from the
diagram. The gap, 0, - O, is made up of companents due to technical inefficiency (0 - 03, and allocative
mefficiency (1, - 0,y and a component representing the differences between current best practices and long:
term absolute frontieroutputs (0 - 0, ). I the yield gap were 1o be considered inrelation to experimental station
results then it would be wider (0, - 0,), incorporating an additional component assoctated with the non-profit-
seeking behaviour of experimental stations that makes their yields closer 1o the maximum than profit-
maximising yields (0, - 0 ).

APPLICATION TO PANEL DATA FROM THE CIMANUK BASIN

Cimanuk Basin data

The data set used in this study was obtained from the Centre for Agro-Socioeconomic Research (CASER ) and
was collecterd as part of a Rural Dynamic Study in the rice production area of the Cimanuk River Basin, West
Java, Indonesia. The rice production area of the Cimanuk River Basin is characterised by irrigated rice farms
set in an almast uniform agro-climate. Six desa (villages) located in five kabuparen (the administrative unit
hetween district and province level) were cavered in the survey. These villages are listed among the dumiriy
variables defined in the appendix.




The survey was conducted tv/ice i 1977, collecting information on farming practices in the wet season
of 1975/76 and the dry seasor. of 1976 and then.on farm household activities in the wet season of 1976/77. In
1978 asimilar surveyvas undertakentocover farm managementactivitiesinthe dry seasonof 1977, Afollow-
up survey for the 981/82 and 1982 seasons was conducted in 1983 for the same Carms/farmers with the
emphasis onlabo..rutilisation, asset-holding and land tenure arrangements, Altogether a balanced paneiof 171
respondents spread teasonably evenly over the six villages were continuously surveyed over six seasons.

One difficulty with panel data is that, being obtained from farms that have remained in the population
over a period of time, they may not be representative of the population of farms at a particular point in time.
"To address this issue, panc) sample estimates of various farm characteristics derived from the Cimanuk Basin
data were compared with those obtained from other more general samples, Pingali etal, (1990) include farmer
field data for 1980 and 1988 obtained from a sample of 71 households in West Java, Indonesia: the same
province as the Cimanuk Basin, Farm cost structure information for West Java is also available for 1982 from
CBS. These sets of data are compared in Table 1,

Compared with CBS data, CASER panel data for 1982 for the Cimanuk Basin suggest a slightly smaller
yieldand slightly higher seed and fertifiser use, although these differences are within the realm of sample errors.
Compared with Pingali et al. datg, CASER patiel data show on average a smaller yield, larger fertiliser use and
roughly equal labour use in the Cimanuk Basin, although the Pingali et al. yiclds look high when compared
10 CBS data. Thus it would appear that the panel data is reasonably representative of the population of farms
at particular points in time,

Aggregate evidence for a yield gap in Indonesia

Aggregate evidence for certain yield gap differences in Indonesia can be obtained by comparing tie average
of farm level data obained from CBS with multilocational trials data available from the Director General of
Food Crops. Farm level performances will be distributed around the reported averages; thus the comparison
will say nothing about the performance of the more efticient group of farms compared to the trials or compared
t less efficient farms. Farm level comparisons as undertaken later in the paper will show whether a gap exists
between all farms and scientific trials or between more and less efficient farms,

Mululocational farmy trials undertaken in the 1989 season had the following features:

* trials were conducted in central production areas of mono-culture farming systems;

* the highest quality seed, certified HY'V and already adapted to the area, was used;

¢ [fertiliser use was based on the highest incremental yield recommendation in terms of dosage and
unung;

* 1ype and dosage of pesticides followed recommendations for the area; and

+ farmsing systems as intensive as possible in terms of land preparation and nursery, seed and feutiliser
use were implemented. '

The trials were designed (o ascertain whether there were any differcnces between their outcomes and
those of actual farms due to different input usage. Itis important to note ihat the usage of inputs and outcomes
of the trals were driven by the aim to maximise the value of production in relation to fertiliser costs whereas
farm usage of all inputs and outcomes was driven by the aim 1o maximise profits and minimise costs.

CBS data were obtained from # survey covering all of Indonesia excluding Irian Jaya and East Timor
with provincial results calculated by a weighted average method and harvesting area used as the weight. Eiglt
major rice production provinces both on and off Java, together contributing 97 per cent of national production,
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were compared, The provinces were West Java, Central Java, East Java, West Sumatra, Lampung, South
Kalimantan, South Sulawesi and Bali. Results are available for production from both intensification and non-
intensification areas, '

Itcan be seen from Table 2 that in intensification areas there are large yield gaps in all provinces except
Baii which has a gap of only 7.8 qu/hectares (or 780 kilograms per hiectare). Central Java meanwhile has tiie
largest yield gap at 254 qu/hectares (or 2540 kilograms per tiectare), Yield gaps are even greater for non-
intensification areas, although the area affected is mueh smaller (Table 3).

Onereasonforthese yield gaps, alluded to above, could bedifferences in fertiliser use, withusage in trials
and onfarmsbeing driven by different fagtors, ltcan be seenfrom Table 4 that the fertiliserusage recommended
and applied in the trials is significantly greater thun average fertiliser usage on farms. Other reasons for the
gap could be the availability of extension advice or of inputs such as seed, water, fertiliser and credit, as well
as statistical factors such as comparing a best estimate with an average estimate,

Further aggregate information on the existence of a yield gap can be obtained from Pingali et al, {(1990)
who analyse tite gap between individual farms and experimental stations in West Java for the years 1980 and
1983. It would be expected that such a gap would be larger than that between farmers and experimental trials
due to the more ideal conditions experienced on experimental stations end the fact that their yields are achieved
without mput constraints, Nevertheless, long-term declines in yields on experimental stations have been
observed, mainly because of a decline in the paddy environment due to, for example, increased pest pressure
and Juss of nutrients. A decline in the generic potential of breeding materials has also been hypothesised as a
cavse. Looking at fasmers’ yields, national averages have continued 1o rise although yields in traditional rice-
producing provinces have levelled off, Relevant data on average values and coefficients of variation are given
 the following table:

Year Farmen' yield Yield frontier Ratio
kg/ha (9) kg (%) kgMha (%)

1950 4,897(20.7) 10,062(1.8) 0.49(19.9)

198 6,335(21.8) HOL.O06(3.8) 0.63(22.0)

In contrast to the conclusions reached ahove, Pingali et al. conclude that if any gap exists it is mainly
hetween farr  (yields of top-ranking farms matching those of experimental stations), with the gap stemming
trom different farming abilities and access toirrigation rather than from different usages of inputs. These issues
will be anafysed further using the Cimanuk Basin data,

Application to Cimanuk Basin panel data

Earlier applications

The stochastiv {rontier approach has been applied previously to Cimanuk Basin panel data (Erwidodo 1990).

Erwidodo fitted Cobb-Douglas production and profit functions to pooled data with total output per farm as the
dependent variable and total quantity of seed, fertiliser, labour, farm size and a number of dummies (pesticide
use, seed varicties, scason, village) as the independent variables, (The appendix contains a detailed definition
of the variables used inthe analysis.) V.sious tests of model specification and estimates were performed before
analysis of the selected mode! was undertaken . The coefficient estimates for non-dummy variables in the
Cobb-Douglas production function were significant and had the expected sign. The coefficient estimates for
the dummy varjables suggest {hat:
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* pesticide use had no significant effect on production (no significant crop damage due 1o pests or
diseases occurred in the area under study during the survey period);

¢ production was greater in the wet season; and

+ farm size and region made no significant difference to production {the hationwide rice intensification
program was established at the time of the survey).

Estimates of the technical incfficicncy of individual farms were obtained using the method suggested by
Battese and Coelli (1991), The range of estimates was quite small, ranging from 3.4 to 12 per cent, with a quite
low mean level of 6.5 per cent. No significani difference between large and small fanns was determinable in
the level of technical inefficiency. Analysis of the value of the marginal product of a particular input 10 its
marginal factor cost suggests underutilisation of seed and fertiliser and overutilisation of Jabour.

The first step in the analysis was to duplicate the model used by Erwidodo. Initially, a hybrid form of the
Cobb-Douglas stochastic production function was estimated, This form, additive in logs apart from the
potassium fertiliser variable, was used to overcome the difficulty caused by many individual farmers not using
any potassium fertilisers. Zeros in a Cobb-Douglas production function can be handled in a number of other
ways, for example by adding the individual fertilisers (weighted or unwei ghied), or by converting the zeros
to a small positive value or to unity. The appropriateness of the approach will depend on the need for separate
fertiliser estimates and the structure of the untransformed data. Various approaches were used in the analysis.

Alternative models

A general form of the hybrid model was estimated using FRONTIER 2 in comjunction with the panel data, and
then various restricted forms were tested. The preferred model was one in which fanm technical efficiency was
time-invariant and the stochastic distribution had mean zero, both aspecis assumed by Erwidodo (1990).
Parameter estimates were similar to those of Erwidodo (1990) apart from the hybrid parameter associated with
potassium fentiliser. The estimates of technical inefficiency were also similar although the mean value was
slightly higher at 9.6 per cent (Table 5),

A similar uicome was observed when zero observations for potassium fertiliser were replaced by
unity, eftectively resulting in zero entries in a log forat, or when the individual fertilisers were summed.

Al this stage some preliminary analysis was undertaken relating the individual measures of technical
inefficiency toa socioeconomic variable, namely farm size. As may have been expected fromthe earlierresults
on production. farm size was not a significant explanator of 1echnical inefficiency.

The next step was to estimate a stochastic translog production frontier. Fertiliser variables were
aggregated in this model, the weights being determined from a regression of the fertiliser variables on yield.
The form of this model encompasses the Cobh-Douglas form so preference for one form over the other can
be tested via the significance of the cross-terms in the translog form. The F-test of these (erms suggested that
the translog formis preferred. (The R for the translog mode] was 0.885 compared 100,86 for the Cobb-Douglas
madel giving an # value of 7.5 which is significant at the 1 per cent level.)

This preferred model was estimated using FRONTIER 2 and the panel data. Again the preferred form
of this madel was one in which farm telmical inefficiency was time-invariant and the stochastic distribution
had mean zero, Of the Cobb-Douglas terms, labour was not significant and fertiliser was significant but
negatively signed. However, these aspects were halanced by the cross-terms, with the fertiliser-by-fertiliser
term being highly significant and positive, and lahour sign:ficant in conjunction with seed though negative.
The estimates of technical inefficiency were slightly lower, with a mean value of 9.1 per cent (see Table 6).
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Figure 2 Frontler performance measus: Cobb-Douglas versus trapslog production function (panel data)
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The choice of madel would not appear to make a significant difference to the general conclusions of the
analysis. In fact, a mapping of individual farm technical inefficiency measures from the Cobb-Douglas model
against those from the translog model closely follows a straight line 45 degrees from the origin (Figure 2).

Alternative methods

The previous analysis considers various constant parameter model forms within a stochastic production
frontier approach. The M-quanule approach is now applied to Cimanuk Basin data to estimate constant
parameter Cobb-Douglas and translog functional forms in the case of both production and profit. In the case
of the translog functional form, multicollinearity was found to be present; to overcome this prablem the first
few principal components explaining most of the variability were estimated and used in the M-quantile
approach. Panel data were pooled in the analysis. This would seem appropriate given carlier evidence of time
invariance. Sensitivity analysis was undertaken for the key parameters in the M-guantile approach 1o ensure
its robustness. Individual estimates of farm performance in relation to both production and profits vere
compared with each other and with incfficiency measures obtained from the stochastic frontier approach. The
M-quantile approach will always rank farms in terms of their performance even if the hest and worst farms
are not significantly different, Boot-strapping methods would be required to determine any significant
differences. Under the stochastic frontier approach the lack of any significant difference hetween farms is
indicated by a failure to estimate any significant frontier. Key results of the M-quantile approach were that;
* there was marked variation in individual farm performance measures over time, although in no uniform
manner;
* there were differences it individual farm performance measures for different functional forms, includ-
ing the various principal component forms, although this would appear to be more a consequence of
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Figure 3 M-Quantile performance measure; Cebb-Douglas versus transiog production function (panel data)
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the principal components approach to multicollinearity than of the functional forms themselves (Figure
3xand

« there were marked differences in individual farm performance measures for the M-quantile approach
and in inefficiency measures for the stochastic frontier approach. (In fact, a number of farms had upper
extremes for one measure and lower extremes for the other, suggesting that the treatment of outliers
could be critical to the measure obtained.

Year-by-year analysis

The result obtained from M-quantile analysis that individual farm performance measures differed markedly
from year 10 year — something unable to be ascertained from analysis using FRONTIER 2 — leads to
-econsideration of earlier analysis of the current hest-practices and long-term absolute frontiers concepts.
Estimates for individual years were undertaken for a Cobb-Douglas stochastic production function with half-
Normal errors after testing this specification against translog and exponential errors specitications (see Table
7).

Stochastic frontiers could not be estimated for the middle four ‘years’; that is, farmers as a group appear
fully efficient during the dry seasons of 1976 and 1977 and the wet scasons of 1976-77 and 1981-82, The only
consistent trend in the estimated coefficients was for the fertiliser variable to increase year by ye:u (see Table
8).

Estimates of individual farm inefficiencics where available ranged from 6 to 40 per cent with a mean
value of around 15-16 per cent Given the earlier gap between average farm and experimental station yields
of around 50 per cent in the early 1980s, this range suggests a significant gap would exist between best farm
and experimental station yields contrary (o the conclusion reached by Pinguli et al.
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Figure 4a M-Quantile versus Frontier performance measure {Cobb-Douglas) (1975/1976 wet season)
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Figure 4b M-Quantile versus Frontier performance measure (Cobb-Douglas) (1983 dry season)
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M-quantile analysis was also undertaken onan annual basis for the Cobb-Douglas production function,
and estimates of the 95 per cent M-quantiles were produced (s¢e Table 9), Although there are some miarked
variations in these estimates over time. on average they correspond reasonably well with estimates from the
stochastic frontier approach. A number of tests showed thatthere were significance differences between these
estimates over time. (For example, the Kruskal-Wallis test, which is a non-parametric version of a one-way
analysis of variance, was highly significant.) Individual farm performance measures were plotted against
individual farm efficiency measures for those years in which a frontier could be estimated (Figures 4a and 4b).

As with similar analysis of pooled data, there were some marked differences in individual farm
pedormance measures for the M-quantile approach and in inefficiency measures for the stochastic frontier
approach, with a number of farms lying in the upper left comer of the figure especially in the 1983 dry season.
Generally though, the situation for both the 1975/76 wet season, and the 1983 dry season is that there isa good
overall correspondence between the two sels 9f measures,

Data diagnostics

Comparison of the M-quantile and stochastic frontier approachies suggests the need to undertake some outlier
or regression data diagnoste analysis, Such diagnostics currenily do not exist for stochastic frontier models,
although these could be derived i a hasic form by noting the effect on parameter estimates and forecasts of
dropping cach data pewnt, Because the majarity of the annual models were average production functions
estinated by ordinary least squares, or close to it the diagnostics applicable to such models were estimated
as prelumnary amalysis of this ivsue. There were 81 points with large DFBETAS and DFFITS. These points
were not copsistent over the years, however, 52 farms having only one outlying point across the six seasons
and only one tarm hiving more than three outlying points across the six seasons. Farms that had high levels
of efficiency were usually assocated with upper 1ail outliers in the DFFITS (a residual measure similar to
efficiency measures). and vice versa. This situation appeared to apply uniformly when both M-guantile and
fronuer measures were avarlable (see Table 101,

The correspondence between the two measures and the approprate data diagnostic was good. The points
where the correspondenve was not good between the two teasures were pot mfluential points, Whether the
pomt s a true outhier and should theretore be excluded from the analysis is unportant as both approaches treat
these points as influental Detatled analysis of the charactenstics of the individual data points (Seaver and
Tnantis 1989) would be required before a decision on the cutlier status of an individual data point could he
made.

Future analysis

The ahove analysis shows the importance 1n analysing yield gaps and inefficiency measures of considering
generad models and al! available data, cither directly or via the analytical method. These a -ects have not been
covered fully in the analysis undertaken in this paper. For example, consideration should be given to models
representing non-neutral shifis in technology (for pxample, a random coeffivients model) to see if these more
general specifications would give greater insight into the efficiency of individual farms over time. If these
models fit the duta significantly better than constant parameter models then significant frontiers that had been
swamped by the larger residual noise of the constant parzmeter models could be revealed. The residual noise
in the constant parameter models appears to be large, with s of around 90 per cent and the inefficiency of
farms ranging from 61040 per cent. Considerationsiiould also be given to incorporating relevant experimental
trial information into the estimation of the frontier functions and inefficiency measures. The characteristics



of influential data points in the estimation of frontier functions and inefficicncy measures should be analysed
to determine whether these poirits are true outliers and need 10 be excluded from the subsequent analysis or
not (see Seaver and Triantis 1989). Finally, if progressin closing any yield gap is to be made, then individual
measures of efficiency need to beexplained in terms of variables thatmay be affected by policies. The greater
robustness of measures obtained by the above approach may lead to the identification of more significant and
stal..» “xplanators of the yield gap and inefficiency measures than have been observed in the past,

CONCLUSION

1t was stated in the introduction that the main purpose of this paper was to consider the existence of g yield pap
in Indonesian rice production, giving specific consideration to changes over time and to robustness. This was
addressed by analysing panel data from the Cimanuk Basin in Wes( Java,

Aggregate analysis suggested that there was ayield gap, atlcast between the average yieldsof farms and
{he best yields obtaned from experimental trials using more advanced technologies, This outcome seemed at
odds with initial analysis of farm inefficiency using a stochastic frontier approach which suggested that any
inefficiencies were small. These outcemes werereconciled by introducing concepts that distinguished between
the current best practices of farms and the long-term absolute frontiers achieved in experimenta trials using
more advanced technologies. These concepts have important policy implications. For example, the above
results suggest that inefficiency is important, but 1n a general rather than a farm-specific sense. The yield gap
could be closed by providing better extension (o transfer the technologies applied in the experimental irials
rather than extension advice targeted at particular groups of farms.

The robusiness of the analysis was investigated by comparing a Cobb-Douglas and a translog model
specificaton as well as stochasue fronuer and Mequantile regression approaches, and by considering the
mfluence of individual data pormis. There seemed to be little difference between the measures abtained from
enther mundel specification, However, as only constant parameter forms were considered, the choice of
specificabons was somewhat hmited. The yield gapeould be viewed as heing due to different technologies even
when the basic technology. for example lugh-yielding vaneties, is the same. This is hecause the specific
mplementation of technology, for example the apphication of fentilisers (broadeasting, briquette, deep siting,
eie.), 1s evolving. In such cases a specification with time varying parameters could be more appropriaie. The
use of different methods did not illustrate major variatons in efficiency measures hut did illustrate the
impuortance of considering the analysis on a year-hy-year basis. The differences were investigated in terms of
the mfluential data points identified from regression data diagnostics and it was suggested that the reatment
of nfluenual data points was fundamental to the farm efficiency or performance measure ohtamied.

The analysis in the paper is incomplete. A fuller analysis would include more flexible model specifica
tions, sucls as those with varying parumeters. Relevant experimental trial infonnation reflecting the fong-tenm
patential yield of farms should be incorporated int voatier analysis and measures of mefficiency. Influential
data points i the estimated frontiers should also be assessed o deiermine whether or not they are true outliers
and thus should be excluded from the analysis. Once robust measures of efficiency have beer obtained these
should be analysed in terms of possible explanators, especially those that can be influenced by policies.,

Key policy options 8 1t have been used or considered as vehicles for closing yield gaps or addressing
inefficiencies mclude inpm subsidies, infrastructure investment, extension advice and research. The most
likely cundidate for addressiag the gap beiween farmers” yields and those obtained from experimental trials
is extension policy. The analysis in this paper suggests that improved extension should be considered from a
general perspective rather than being targeted towards groups oi farms, as no one group stands out as bemg
more efficient than any other.

16



References

Aigner, D.J., Lovell, C.AK. and Schmidt P. (1977), *Formulation and estimation of stochastic frontier
production function models®, Journal of Econometrics, 6; 21-37.

Battese, G. E. and Coclli, T.J, (1991), *Frontierproduction functions, technical efficicncy and panel data; with
application to paddy farmersin India’, Working Papers in Econometrics and Applicd Statistics, No, 56,
Department of Econometrics, University of New England, Armidale,

Belsley, D.A. etal. (1980), Regression Diagnostics: Identifying Influential Data and Sources of Collincarity,
Wiiey, New York,

Breckling, 1. and Chambers, . (1988), ‘M-yrantiles’, Biometrika, 75:761-71.

Erwidodo(1990), *Pancl dataanalysis on fanm level efficiency, inputdemand and outputsupply of rice farméng
in West Java, Indonesia’ Unpublished PhD thesis, Michigan State University, EastLansing, Michigan,

Forsund, F. R. et al.(1980), *A survey of frontier production functions and of their relationship 1o efficiency
measurersent”. Journal of Economieirics 13:5-125, :

Huber, P. L (19813, Robust Statistics, Wiley, New York.

IRRI Research Highlights (1978). IRRI, Los Banos, Laguna, Philippincs.

Kokic, P. et al. (1992), ‘A measure of production performance’, paper submitted to American Journal of
Agricultural Economgs.

Kopp. R. 1. and 8mith, V. K. (1980, * Frontier production function estimates for steam electric generation: a
comparative analysis’, Southern Economic Journal, 47: 1049-50,

Meeusen, W.and van den Broeck, J. (1977), *Efficiency estimation from Caobb-Dauglas production functions
with composed error’, Imemational Economic Roview, Vol. 18, No. 2; 435-444,

Mueller. 1. (1974), *Onsources of measured technicad efficiency: the impactof information”’, American Journal
of Agnicultural Economics, 56, 730-38.

Pingati, P.L., et al. (1990y, *The post-green revolution blues in asian rice production —- the diminished gap
between experiment statton and farmer yields”. International Rice Rescarch Institute, Manila, Phil ip-
pines.

Pitt, M. M. (198%), “Farm-ievel fertilizer demand in Java: a meta-production function approach’, American
Agricultural Beonomies Association,

Seaver, B. L. and Trianus, K. P.(1989), *The u.plications of using messy data to estimate production-frontier-
based techmcal efficiency measures’. Business Economic Statistics., 7; 49-59

17



Appendix

Definition of variables

GRKG:
KGS:
KGN;
KGP:
FERT:

D7

DY:
Dlts

Gross output of rice (kg).

Seed {kg)

Urea (kg)

Phosphate (TSP, kg)

KGS plus KGP

Total Tabour (including family and hired labour, hours)

Cultivated farm size (hevtares)

dummy variabie of pesticide use, 1 if farmer uses pesticides and 0 otherwise
dummy HYV varieties, 1 if HYV and 0 otherwise

dumimy MV varieties, 1 if MV and 0 otherwise

dummy variable of season, 1 if wet season and 0 otherwise

dummy variable of farm size, 1 if farm size greater than 6.5 ha and 0 otherwise
dummiy village, 1 if desa Lanjan kabapaten Indramayu angd 0 otherwise

dumuny village. 1 if desa Gunung Wangi Kabupaten Majalengka and 0 otherwise
dummy village, | if desy Malausma kabupaten Magalengka and 0 otherwise
dummy village, 1 i desa Sukaambit kabupaten Sumedang and 0 etherwise
dummy village,

I8




Table 1: Comparison of farm \iévelxestimaies*

Cimanuk Basin data ‘ ~£§BS: Pingalietal, @
To76r77 1677 1G6182 7968 Av. 1982 1980
Yield (kg/ha) 2513 2,350 ,4,197' 8969 3207 4,34 4897 (207)
Seed (kg'ha) 40.6 372 422 378 394 354
N  (kg/ha) 2200 1927 2684 2500 2327 1933  94.3 {27.6)
P (kg/ha) 63.0 559 1197 1108 874 827
Labour (Bhrdays) 1032 1081 1223 1134 1117 104.6 (29.5)

4 Coefficients of vatiation in brackets




Table 2 Yield gap with BIMAS (intensification) wetland rice in eight major Indonesian

rice production provinces, 1989

Yield {t/ha) o

. . Yield gap
Province Trigls 3}  Farms b) Percent ¢) (tha)
Java
West Java 7.32 5.03 68,7 229
Central Java 7.67 513 66.8 254
East Java 7.32 527 72,0 2,05
Off Java
West Sumatra 6.51 4,52 69.¢. 1.89
Lampung 645 4.18 64.1 227
South Kalimantan 511 283 854 2.28
South Sulawesi 6.09 4.28 70.3 1.84
Baii 5.83 505 857 0.78
Notes - a DG of food crops.

b CBS’s cost structure.
¢ Percentage of farms to trials.




Table 3 Yield gap for non-intensification areas in eight major Indonesian rice production

provinces
T “Vield (Uha)

Yield gap
Province Trials @) Farms b) Percent ¢) (t'ha)
Java
West Java 7.32 3,21 439 411
Central Java 7.67 3.36 43.8 4.31
East Java 7.32 293 40°C 4.40
Off Java
West Sumatera 6.51 3.49 53.6 8.02
Lampung 6.45 3.03 47.0 3.42
South Kalimantan 5.11 231 452 2.80
South Sulawesi 6.09 2.69 44,2 3.40
Bali 5.83 3.75 64.3 2.08
Notes: a DG of Food Crops.

b CBS's Cost Structurs.
¢ Percentage of famrers to trials.



Table 4, Fertiliser recommended and used on wetland rice (intensification} in eight major ﬁcé»zproducﬁon :

provinces ,

Recommendation (kg/ha)a) Used (kghale)  Gap {ka/ha, %)
Urea TSP Offer Total Urea TSP Ofhier Total  Urea TSP Other  Total
West Java 250 125 113 488 228 141 65 434 22 -6 48 54
(8.8) (12.8) (424) (11.1)
Cenlral Java 250 125 12§ 500 237 113 38 388 13 12 87 111
(5.2) (96 (69.6) (22.2)
East Java 300 113 125 538 292 100 a5 427 8 13 20 111
, (27) (11.5) (72.0) (20.6)
W. Sumatra 200 100 118 413 141 118 51 308 59 116 62 108
(20.5) (16.0) (54.9) (25.4)
Lampung 182 83 118 388 167 134 60 361 25 -5 5 27

3

(18.0) (61.4) (46.9) (7.0)
S, Kalimantan 142 108 50 300 106 72 19 197 36 36 31 103
{254} (33.3) {62,0) (34.3)

S. Sulawesi 225 88 126 439 167 67 25 260 58 21 101 18O
(25.8) (23.9) (80.2) (41.0)
Bali 250 100 125 475 250 77 36 363 O 23 89 112

(0.0) (23.0) (71.2) (23.6)

Notes: a) DG of focd crop Fertifiser dosage recommended In 19€8.
b) CBS's cosi structure, 1988,




Table 5a  Maximum likelihood estimates of stochastic Cobb-Douglas
production function (panel data)

 Coefficients t-ratio ’
Constant 4,9697 263531
InKGS 01551 5.7144
In KGN (L1257 6.9972
In KGP 0.0711 G616
InLAB 10,2289 78315
In LAND 04271 13,7819
Di 0.0138 0.4756
D2 0.1403 2.6215
D3 0.1735 44328
D4 {0444 2.0330
D3 00315 0.8431
D6 00334 -0.6675
D7 -0.0254 -0.4300
D8 -0.0647 -1.0363%
DY 0.0260 0.4467
Do 0,0877 1.4526
ol =0’ +0’ 0.1314 160518
Y= 0": / (yf 0.1285 2.3580

Log-likelihood function = -367.60

Chi-square test of one sided error (0‘3 ) = 6.00 with one degree of freedom

Note: The dependent variable is GRKG in log form, ()‘,2 is 1id normally distributed random

3 : . .
errors and OF is non-negative truncated normally distributed random errors,

Table 5b Frequency distribution of farmers based on level of technical inefficiency
from Cobb-Douglas production frontier,

Technical inefficiency Number of farms Frequency distribution (%)
< 5% b 2.92

5% <ug 0% 104 60,82

9% <ug15% 50 29.24

¥5% over 12 7.02

Mean 9.58

Minimum 3.50

Maximum 21.98

Total number of farms 171 10,00




Table 6a  Maximum likelihood estimates of stochastic translog
production function (panel data)

_ Coefficients t-ratio
Constant 64539 3.8560
InKGS 1.0244 3.0505
tn FERT 0.5138 -2.6624
InLAB 0366 -(,0693
In LAND 0.8534 24049 ’
In KGS*In KGS -0.0479 -1,9544
in KGS*In FERT 0.0502 17918
In KGS*In LAB -0.1452 24172
o In KGS*In LAND 0.1286 2,5754
| In FERT*In FERT 0.0422, 6.6480
In FERT*In LAB -0.0092 -0.3325
In FERT*In LAND 01274 -4.0510
in LAB*In .AB 0.0596 12721
In LAB*In LAND 00245 0.3899
In LAND*In LAND 0.0201 0.8160
DI 00195 0.6986
D2 0.1072 2.0238
D3 0.1826 4.7590
D4 0.0391 1.8377
D3 0.0121 0.2913
D6 -0.0281 -0.5864
D7 0.0531 0.9533
D8 00109 -0.1925
: DY 0.0709 1.2832
D10 0.1444 2.5926
ol =0 +0; 0.1239 16.0622
yY=o0,/0! 0.1212 2.2142

Log-likelihood function = 340,56

Chi-square test of one sided error = 5.4271 with one degree of freedom

Note: The dependent variable is GRKG in log form, Gf is iid normally distributed random

2, . A
crrors and O, is non-negative truncated norimally distributed random errors,




Table 6b  Frequency distribution of farmers based on the level of technical
inefficiency from translog production frontier

Technical inefficiency Number of farms Frequency distribution (%)
< 5% 8 4.68

5% <u<10% 115 67.25

10% <u s 15% 39 22.81

15% over 9 5.26

Mean 9.08

Minimum 3470

Maximum 20.89

Total number of farms 171 100.00




Table 7 Specification test: translog versus Cobb-Douglas production function

Season Restricted model __Unrestricted model Calculated Translog preferred?
(Cobb-Douglas) Translog F values
R? R?
1975776 wet 0.9209 0.9275 1.3382 No
1976 dry 0.8663 0.8976 44933 Yes
1976/77 wet 09134 0.9241 20723 No
1977 dry 0.8834 0.8948 1.5930 No
1982/83 wey 09372 0.9444 1.9036 No
1983 dry 0.9356 0.9393 0.8960 No

Note : The critical value for the F distribution at 1% significance level is 2.32.




Table 8a Maximum likelihood estimates for parameters of stochastic Cobb-Douglas

production function (half-normal)

1975776 Wet 1976 Dry  1976/77 Wet 1977 Dry  1982/83 Wet

1983 Dy
{OLS) (OLS) (OLS) (OLS) ;
In KGS 0.0737 0.1321 0.1167 0.1672 0.1776 0.0999
(12043)  (2.3670) (2.1650) (2.7210) (2.8320) (1.5348)
In FERT 0.0785 0.1440 0,1696 0.165 0.2595 0.2849
(3.0818)  (4.0280) (6.1120) (5.3850) (4.5950) (5.5700)
InLAB 0.1875 0.2935 0.3459 0.2049 0.0267 0.1755
(29052  (3.9040) (6.2200) (2.9560) (04160) . (2.8037)
In LAND 0.6823 0.3980 0.3380 0.4408 0.5895 0.5514
(7.9974)  (6.0350) (6.2890) (6.1280) (8.0390) (7.2916)
Constam 6.1961 4.4354 44559 34112 6.235 6.1745
(12.4259)  (5.7040) (7.4570) (8.7770) (10.6070)  (11.8K1%)
R? based on OLS 09209 0.8663 0.9134 0.8834 0.9372 09356
Breusch-Pagan-Godfrey test based on QLS
Z: t&.t:t with 13d.f. HLeS51 27.0400 31.3860 25,5280 18.0090 23.1350
Frontier 2 diagnostics
ol =0l +0° 0.0954 (291200 0.1055 (3.0826)
Y=0./0; 04875 (14388) 0.4953 (1.5648)
Log-likelihood funcuon 97176 -17.7291
Chi-sguare test of one
sided error with 1 d, 1. N.481% 04674
LIMDEP Diagnostics
r=.o +o° 1.308Y (5.7200) 0.3248 (5.5680)
vy=0l/0’ 0.9753 (1.3830) 0.9907 (1.3900)

Notes: 1) The dependent variable is GRKG in log form. The coefticients reported for the stochastic model are
the estimates from FRONTIER 2, which are found to be quite similar 1o those from LIMDEP,
Dummy coefficients are not reponied. Figures in parentheses are t values.

2) The critical value for % (13)q s is 22.4 and for %> (1) s is 3.84.



Table 8b Frequency distribution of farmers based on the level of technical inefficiency from
Cobb-Douglas production fronticr (1975/76 wet season)

Technical incfficiency Number of farms Frequency distribution (%)
< 5% 0 0
5% <u s 10% 27 15.79
0% <us 15% 72 42.11
156 <u 5 2% 41 23.98
20 < u £ 25% 22 12,87
254 over 9 5.25
Mean 15,12

Minimum H,32

Masimum 40,05

Towl Number of Farms 171 10,00

Table 8¢ Frequency distnbution of fammers based on the level of technical
mefficiency from Cobb-Douglas production frontier (1983 dry seasom)

Techmen) melficiency Numnber of farms Frequency distribution (%)
< &y 0 4]

8% <y 10¥ IR 1153

105 < u s 15% 7 42.69

154 <y ¢ 0% 54 3158

0% <« u = 259 I8 10.53

25% over 8 4.67

Mean 15.88

Mimmum 6.07

Mazimum 37.42

‘Tot} Number of Farms 171 100.00




Table 9: 95% M-quantile production frontier parameter estimates a

Season Seed

Niediliser Pledtiliser Labour Land  Constant
1 0.04 0.10 0.06 0.21 0.78 6.48
2 0.29 0.19 0.05 0.39 0.04 3.74
3 0.12 0.18 0.04 0.22 0.42 540
4 .04 019 -0.04 0.00 0.71 7.16
5 0.04 0.18 0.08 0.06 0.59 6.56
8 -0.00 0.18 0.06 0.27 0.64 £.03

a Dummy variable estimates not included.




Table 10 a Performance measures and outliers (1975/76 wet season)

(U=Upper tail, L=Lower tail)

1D | Efficiency Measures | HAT | DFFITS DFBETAS
; ;,M-(juami!e’ Frontier | Matrix| Upper| Lower Inteccept KGS FERT LAB LAND
s | 100 | 092 | u u L u
6 100 093 | outier] U u u
16 002 070 L L . u L
28 | 000 0.74 L U L
35 0.00 0.79 outlier L L
37 | IOO | 091 | outicr U L
39 | 093 , 081 g
47 | 100 092 _ L u
95 | w0 | 093 L U L
101 1.00_ 092 U L u
106 0,03 0.7 L u L
114 " 0.00 0.74 L U L
ng ] 1o 0.93 u u u
k19 Q_??. 092 i outhierf U
141 | o068 | o0m | L | U L
142 011 077 L ]
143 0.00 0.60 L U
144 _007 0.73 v L | u
s | 002 072 U L | u
151 | 093 0.91 U L | u
162 | o7 087 | outlier
i61 | 100 0.94 u u u




Table 10 b Performance measures and outliers (1983 dry season)
{U=Upper tail, L=Lower tail)
D |_Efficiency Measures | HAT | _ DFFITS DFBETAS
1 M»quax’xﬁfel :Fruntn‘er Matrix| Upper| Lower Intercept KGS FERT LAB LAND

2 | oe | oo | L | U u L

18 000 | 063 ' L_| L L

24 090 | 091 u_| L | u

38 006 o077 | L U L
st | 090 | 095 louter| U u LU
__61 0.00 075 L u L
73 | o087 | 080 u u

86 ;000 | o064 | L | L | u
1o | oo | 06 L U L L |u lu '
_u3 | ooor | o0vi L u %
125 | 092 | 092 lu |

139 | 0w 071 ’ L L u L
12 | 0o | 093 u u L L L ‘

162 | 000 0.69 ' L U u L ‘
La6s | o095 | oo4 u L | u u L
L 167 | 093 | 093 | u L] u

170 | 000 0.65 L L |t L

171§ 69 | 0o L | u

Note: The SAS program was used to estimate the various diagnostic statistics for outliers. For a detiiled definition of HAT matrix,
DFFITS and DFBETAS, please sce Besley et al. (1980).






