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• 
AN APPROACH TO UNIQUE SOLUTIONS FOR CONSTANT-ELASTICITY 
COMMODITY MODELS 

By Gerald E. Plato* 

Unique solutions are more difficult to guarantee for commodity 
models that have nonlinear simultaneous equations than for 
those with linear ones. The nonlinear case requires determination 
of uniqueness before a solution is attempted while uniqueness in 
the linear case is determined as a byproduct of the solution pro-
cedure. Unique solutions are important because they are neces-
sary for unambiguous results (that is, results that can always be 
duplicated). This article explains an approach for guaranteeing 
unique solutions for commodity models specified with a non-
linear equation type often used in economics, the constant-elas-
ticity equation. This choice allows researchers the option of 
using secondary data sources (parameter estimates) in developing 
commodity models. 
Keywords: Nonlinear commodity models, unique solutions, 
Newton's method. 

INTRODUCTION 

An ongoing task for economists is to explain the be-
avior of market prices and quantities, and to forecast 
d project them. The theory of general equilibrium, 

involving equations that simultaneously determine many 
prices and quantities, has been available for aiding in 
these functions since the 1870's. Shortcuts of obtaining 
the necessary data for these equations are now available 
for empirical applications (9, 6).' Also, high-speed com-
puters are now available and can be used in conjunction 
with trial and error methods derived from those of Gauss 
and Newton for solving complex nonlinear models (8, 
10). Thus, general equilibrium theory and recent techno-
logical advances provide researchers willing to assume 
constant elasticities the option of using secondary data 
sources in developing models that simultaneously deter-
mine many commodity prices and quantities. 

These trial and error procedures do not guarantee 
unique solutions. Uniqueness has been a long-time con-
cern in general equilibrium theory. It is well recognized 
that a system of excess demand (demand minus supply) 
equations describing one less than the total collection of 
markets has an equal number of independent equations 
and unknowns. Further, this equality is not sufficient to 
guarantee a unique equilibrium solution (7, p. 350; 11, 
p. 160). Recently, a number of economists have devel- 
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Italicized numbers in parentheses refer to items in Refer-
ces at the end of this article. 

oped sufficient conditions for uniqueness of the general 
equilibrium model. Results provided by Arrow and Hahn 
(4) in this effort were used in developing an approach 
for guaranteeing unique solutions for a commodity pro-
jections component model. This model is specified with 
simultaneous and constant-elasticity equations. It is used 
in ERS to make commodity projections and it is part of 
the National Interregional Agricultural Projections 
Model (NIRAP) (5, p. 47). 

The purpose of this article is to explain the approach 
used to guarantee unique solutions for this commodity 
projection component model. The first step in the 
approach involves a discussion of the determination of 
uniqueness in commodity models with linear simulta-
neous equations. Next, the use of a trial and error pro-
cedure, the Newton algorithm, in solving nonlinear com-
modity models is explained and its use for solving linear 
commodity models is discussed as being a special case. 
Finally, uniqueness in the linear case is extended to the 
commodity projections component model. This exten-
sion is based upon calculations used in finding an equi-
librium solution by the Newton algorithm. 

LINEAR COMMODITY MODELS 

Let the following equation represent a commodity 
model containing N commodities specified with linear-
simultaneous equations: 

BP + r-  X = 0 . 	 (1) 

The model is shown in the form of excess-demand 
(demand minus supply) equations. B is an N by N coeffi-
cient matrix for the commodity prices in the N by 1 P 
vector. I—  is an N by K coefficient matrix for the exoge-
nous variables in the K by 1 X vector.' If the B matrix is 
nonsingular, the solution can be found by equation 2 
below: 

P = -13-1  E X. 	 (2) 

2  Since the model is not concerned with all possible com-
modities, the Nth + 1 commodity is considered to be the num-
eraire or an aggregate of all the commodities omitted. 
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In the linear case, trial and error procedures are not re-
quired; one iteration produces the equilibrium solution. 
Also, if B is nonsingular, the solution is unique.' How-
ever, obtaining uniqueness like stability is more elusive 
for nonlinear models. 

SOLUTION PROCEDURE FOR NONLINEAR 
COMMODITY MODELS 

The Newton algorithm can be used to solve nonlinear 
commodity models.' The algorithm proceeds by finding 
successive improvements in an initial guess of an equilib-
rium price vector.' An improvement is calculated by 
solving for P minus Po  or A P in the following set of 
equations: 

f(Po, X) + B(Po, X) (P-P0) = 0 
	

(3) 

where: 

f(P0, X) equals the vector of commodity excess 
demands at the initial guess of equilibrium prices, 
Po, or at the prices calculated in the previous 
iteration, X represents the exogenous variables at 
preselected levels; 

B(PQ , X) is an N by N matrix of first partial deriva-
tives of excess demand equations with respect to 
commodity prices evaluated at initial guesses of 
the equilibrium prices or at the prices calculated in 
the previous iteration and at the preselected levels 
of the exogenous variables; 

and P equals the "improved" vector of commodity 
prices. 

Equation (3) is based on the Taylor series expansion 
about the price vector Po. This expansion for the excess 
demand equations is shown below in equation (4): 

f(P, X) = f(Po  + A P, X) 

= f (Po, X) + (Po, X) (P-P0) 

+ f (Po, X) (P -P 0)2  + f" (Po, X) (P-P0)3  

= 0 	 (4) 

5  If equilibrium quantities are desired, they can be found by 
substituting the solution (equilibrium) prices into the commodi-
ty supply or demand equations. 

'This method has been widely used in economics to solve 
nonlinear models (1, 2, 3, 8, 14). 

As with linear commodity models, the levels of the exoge-
nous variables determine the equilibrium price vectors. For non-
linear models, a set of values for the exogenous variables may 
determine more than one solution vector. 
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The vector P of improved prices in equation (4) is 
assumed to be the equilibrium price vector (that is, the 
price vector that makes all the excess demand equatioie 
equal to zero). For equation (3), all squared and higher 
order terms shown in equation (4) are assumed equal to 
zero. 

Solving the linear system in equation (3) would give a 
vector of prices that would eliminate excess demands if 
the system of equations followed the linear tangents 
rather than the underlying nonlinear curves. However, 
since the excess demand curves are nonlinear, the P vec-
tor of commodity prices that is calculated may not be 
close enough to an equilibrium solution. In fact the 
Newton algorithm may fail to move the commodity 
prices closer to equilibrium. If failure occurs, the price 
changes can be dampened by an arbitrary proportion or 
new starting values for the endogenous variables (i.e., the 
commodity prices) can be selected. When "close" to an 
equilibrium solution, the effects of the squared and 
higher order terms in equation (4) become small. The 
linear tangents then sufficiently approximate the under-
lying nonlinear curves and the Newton algorithm can 
proceed unaided to achieve the desired closeness to equi-
librium. Prior to the second and following iterations by 
equation (3),vector Po  is set equal to P. 

If a linear model is solved using equation (3), only 
one improvement in prices (that is, one iteration) would 
be needed and the solution obtained would be the same 
as for equation (1). In the linear case, the initial guesses 
can be set equal to zero and the A P would equal the 
equilibrium prices. 

As with linear simultaneous equations, uniqueness foil, 
nonlinear-simultaneous equations depends on the B 
matrix. In the remainder of this article, I discuss suffi-
cient conditions to impose on the B matrix that will 
guarantee unique solutions for constant-elasticity com-
modity models. 

GUARANTEEING UNIQUENESS IN 
CONSTANT-ELASTICITY 
COMMODITY MODELS 

Arrow and Hahn (4, p. 234) have shown that a 
unique solution is guaranteed if the matrix of partial de-
rivatives with respect to prices B (Po, X) has a dominant 
diagonal for every conceivable set of commodity prices. 
A dominant diagonal matrix can be defined as: 

N 

	

I bfj.1 di > El 	di 1= 1,2, 	 , N 
r=i 	j=1 

(5) 

where i's indicate rows, j's indicate columns, b's are 
matrix elements, and d's represent a set of positive num-
bers (12, p. 311). It is shown below that one can guaran- 
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tee this kind of matrix and, hence, unique solutions for 
constant-elasticity commodity models. 

Each element in the matrix of first partial derivatives 
(matrix B in equation (3)) is calculated by equation (6) 
in the constant-elasticity case: 

[(E.D.0 (di) - (E.S.0 (Si)J 
	

pi  (6) 

where: 

EXDi 

E. Sly 

di 
Si 

= excess demand equation for commodity i; 
= price of commodity j; 

demand elasticity of commodity i with 
respect to price of commodity j; 
supply elasticity of commodity i with re-
spect to price of commodity j; 
quantity of commodity i demanded; and 
quantity of commodity i supplied. 

The restrictions of weak gross substitutability (WGS) 
and degree zero homogeneity can be used to help insure 
that equation (6) will always produce a dominant diago-
nal matrix. WGS (4, p. 227) is defined by inequality (1): 

a EXD 	 a EXD- z 
	 _>-- 

 
O, i*j and 	 < 0 i=j 

	

a13 	 a P. 

	

/ 	 / 
(1) 

This assumption excludes complementary price relation-
ships. Because the demand and supply equations have 
constant elasticities, the homogeneity condition is guar-
anteed by assuring that: 

N+1 
E E.D.ij + E.I.i = 0 and 

j=1. 

N+1 
E E.S.ij = 0, 1=1, 2, 	 , N 	 (7) 

j=1 

where EL, i is the income elasticity of demand for com-
modity i. (E.D.ii and E.S.i j are as defined in equation 
6.)6  The homogeneity restriction was imposed by Bran-
dow (6, p. 13) and by George and King (9, p. 8) on their 
demand equations in this manner. 

Inequalities (2) through (5) show how a dominant 
diagonal matrix can be guaranteed. First, inequality (2)  

is guaranteed by WGS and degree zero homogeneity. 
Also, inequality (3) 

N  
I> 	IE.D.ij I i=1, 2, .... , N 

i=j 	j=1 
i*j 

is guaranteed by these two restrictions, if income elas-
ticities are not negative. Negative income elasticities do 
not pose a problem for food commodity models. For ex-
ample, George and King (9, p. 51) and Brandow (6, 
p. 17) have only one negative income elasticity among 
49 and 24 food commodities, respectively. 

Inequality (4) 

N 
I > I E 	- 

j=1 	
(4) 

i*j 

is guaranteed by inequalities (2) and (3). Also, inequality 
(5) 

N 
I E.D --d. - E.S.--s. I > I E (E.D.ijdi - E.S.iisi) 1 (5) qj 1 	q 1 

i=j 	 j=1  
ikj 

is, in turn, guaranteed by inequality (4). 
The left-hand side of inequality (5) is equal to the 

absolute value of the numerator in equation (6), when 
i=j (that is, the numerator for a diagonal element in the 
B matrix). The right-hand side of inequality (5) is equal 
to the summation of the absolute values of the numera-
tors in equation (6) over j from 1 to N, excluding i=j 
(that is, the sum of the absolute values of the N-1 off-
diagonal numerators for the same row in the B matrix). 

If the B matrix is post-multiplied by a diagonalized 
matrix of the prices used in its calculation (that is, the 
diagonalized matrix of p•'s in equation (6) which corre-
spond to the d's equation (5)), inequality (5) is guar-
anteed for all i's. Thus, the requirement for a dominant 
diagonal matrix is fulfilled. Consequently, uniqueness is 
assured. 

Demand, supply, or both may be divided into com-
ponents without reversing inequality (5) and, conse-
quently, without destroying the guarantee for a domi-
nant diagonal matrix. For example, in the commodity 
projections component of the NIRAP model, demand is 
divided into food demand, feed demand for livestock, 
export demand, and other use demand; and supply is 
divided into U.S. supply and imports. 

a EXDi 
by 	aP- 

(3) 

- 
ij 

• 
(2) CONCLUDING REMARKS 

The impetus for this article came from the need to 
determine how to guarantee unique equilibrium solu-
tions in the commodity projections component of the 

6  See footnote 2 for an explanation of the Nth + 1 commodity. NIRAP model. This component is used to make equi- 
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N 
E-S•ij I> E I E.S.ij I i=1, 2, 	 , N 

i=j 	j=1 
ij 



librium projections of commodity prices and quantities 
under alternative scenarios that include prespecified 
levels of the required exogenous variables. The com-
ponent model is also used in a comparative static manner 
to evaluate the effects of changing the level(s) of only 
one or several related exogenous variables (for example, 
see 13). Unique solutions in both of these uses are neces-
sary for unambiguous projections; that is, projections 
that can always be duplicated. 

Other procedures may be needed to prove uniqueness 
for nonlinear commodity models specified with different 
equation forms. A number of other sufficient conditions 
for guaranteeing uniqueness can be found in the litera-
ture on general equilibrium theory (in 4, for example). 
Perhaps some of these sufficient conditions can be ful-
filled in other nonlinear commodity models, which 
would thereby guarantee unique solutions. 
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