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LEAST SQUARES ROBUSTNESS WHEN THE ERROR TERM 
IS MISSPECIFIED IN COBB-DOUGLAS TYPE FUNCTIONS 

By Terry N. Barr and James F. Horrell* 

The Cobb-Douglas type function has a multiplicative determi- 

nistic form, Y = 00431X2I32, 	, X2k, which can be used to 

analyze certain economic structures. The usual error specification 
for this function is that the error term enters multiplicatively 
with lognormal distribution. This specification permits use of a 
natural logarithmic transformation and the usual linear least 
squares estimation techniques with slight modifications. The 
study reported on investigates the effect of an error misspecifi-
cation on the estimates of the parameters. In particular, is there 
a significant bias in the estimates of the parameters ifh, 02, ... 
13k when the logarithmic transformation is applied to data gen-
erated using additive errors? Monte Carlo techniques were used 
to generate empirical distributions of the estimates to be ana-
lyzed with analysis of variance (ANOVA) techniques. Evidence 
suggests bias would exist but not of the magnitude, in most 
cases, to greatly challenge previous economic evaluations based 
on regressions using Cobb-Douglas type functions. Though this 
may be a source of consolation for many analysts, it should be 
noted that any conclusions that loglinear estimation yields 
satisfactory estimates in the presence of additive errors must 
still depend on the peculiarities of the sampling experiment. 
Keywords: Production functions, econometrics, error misspeci-
fication. 

The question for the researcher is how serious is the 
bias in estimation if the assumption of the multiplicative 
error is incorrect and additive errors are present? Gold-
feld and Quandt (5, pp. 251-57) have proposed a 
method of estimation devised to account simultaneously 
for additive and multiplicative errors. Although the 
technique appeared manageable and the results reasona-
ble, a number of interesting statistical questions remained 
open. In particular is the question of the need to know 
more about the consequences of misspecification of the 
error terms. The problem is also discussed in many econ-
ometrics texts (3, pp. 213-18) (11, pp. 591-94). This 
article is designed to provide some insights into this 
question. 

Two error specifications which are the most prevalent 
in the literature are: 

Yi = (30Xi3leui 
	

U is N(0, a2) 	 (2) 

INTRODUCTION 
01w Y• = )3 X- 	• W is lognormal with mean 

e1/2°.  v2  (3) 

Economists have traditionally used the following 
Cobb-Douglas type functions in studies of demand and 
production (4, pp. 464-72).' 

	
Suppose the true model which generated the Yi's is 

= 00X1
01

X2
02 	

Xni3n (1) 0  
Yi = 00Xi

1 
 Vi 	V• is N(0, 172I) (4) 

The error specification typically facilitates the use of the 
logarithmic transformation and the usual least squares 
estimation techniques with slight modifications (6, pp. 
1034-38). The multiplicative error assumption can be 
rationalized through the multiplicative central limit 
theroem. But its pragmatic justification, namely allow-
ing the Cobb-Douglas form to be intrinsically linear, has 
been eroded with the advance of nonlinear estimation 
techniques (2, pp. 101-102). 

*Terry N. Barr is an economist with the National Economic 
Analysis Division, ERS, and James F. Horrell is an associate pro-
fessor of business administration at the University of Oklahoma. 

' Italicized numbers in parentheses refer to items in Refer-
ences at the end of this article. 

But the specification used for estimation is the tradition-
al model of (2). The conclusions will apply equally well 
to (3) but notational convenience dictates the alterna-
tive form. Employing the natural logarithmic transfor-
mation, equation (2) becomes 

Qn Yi  = Qn)30 + )31i2nXi + ui 	 (5) 

Upon examination it is clear that (5) is a linear model 
and the OLS estimates of on/30 and )31 are given by 

1 n 	1 n  
crib° = — E QnYi -bi— I 2/Ai = QnY -bii2nX (6) 

n i=1 	n i=1 
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• b1= 	2nX) (2nYi - 2nY) / 
	

(7) 	E[/1(1 + Vi  /130Xig1)] 

iE 
1 
 (2nXi - 2nX)2  

= 

By noting that 

E (2nXi - 2nX)k = k E (2nXi - 2nX) = 	= 0 (8) 
i=1 	 i=1 

we have, upon simplifying (7) 

b1 = E (2nXi - 2nX)2nYi / E (2nXi - sznX)2  
i=1 	 i=1 

Note from (4) that 

2nYi = 2/1130X13i1  (1 + vi  / 00,41) = 

OlinXi Qn(1 Vi  1-3044 

Substituting (10) into (9) and using (8) yields 

b1 = [.31 iE 
1 
 (2nXi - 2/1X) 2nXii / D + [ 

i
E
1 
 (2nXi 

- 2nX) 2n(1 + Vi /13041  )1 / D 

where D = iE 
1 

 (2nXi - QnX)2. The coefficient on a1 
n 

= 

reduces to 1, thus 

01 E(bi)= 01+ 	(2nX• - 2nX)E[ 
i = 
E 	 2n(1 + Vi/ 00Xi )j/ 

	

1 	1  

E (2nXi - 2nX)2  
i=1 

Looking at the term on the right-hand side of (11) 
that has the expected value operator, E, applied to it, we 
note the following. Analytically it is impossible to 
assume a multiplicative error term and make a logarith-
mic transformation when the error term is actually addi-
tive and normally distributed unless the error term, 
when negative, does not dominate the deterministic part 
of the model. For analytical purposes, it is necessary to 
truncate the error term distribution so that taking the 
logarithm of negative numbers can be avoided. Thus to 
obtain the expected value of b1, it is necessary to evaluate 

00 I 
= K 	 (1 + Vi /130Xii31) 

(Vi -11)2] 
exp [-1/2 	a 	dV • 

This evaluation will be carried out empirically with 
the use of Monte Carlo and ANOVA techniques. The 
Monte Carlo technique will be employed to generate em 
pirical distributions of the estimates in accord with two 
specific stochastic functional forms. 

Functional Form I: 	Yi = g0Xi
gl 
 Vi 

Functional Form II: 	Yi =130X131. X132. V• 
11 2t 1  

Once construction of the distributions is complete, 
analysis of variance (ANOVA) techniques employing 
factorial models can be utilized to analyze the effects 
on parameter bias of varying the sample characteristics. 

DATA GENERATION AND MONTE CARLO 
APPLICATION 

To illustrate the generation of the sample data for 
regression analysis, consider the single-variable model 

Yi = g0Xi°1  Vi 

The value of the deterministic part of this model, namely 

gl )30Xi , is generated for each possible combination of )3 
value, X range, and sample size identified in table 1. For 
all combinations the value of )30 remains at 4.0. 

For example, utilizing the first variant of each charac-
teristic, a set of Y's would be constructed for130 = 4, 
131 = .5 in which Xi takes on values uniformly in the in-
terval [5, 15] with a sample size of twenty, (i = 1, . . , 
20). All of the generated (X, Y) points would lie on the 
graph of the function Y = 4)0. For example, if X = 5, 
the nonstochastic Y = 8.94. The Monte Carlo technique 
is used to obtain the probability distribution of estima-
tors of any parameter for comparison with the true value 
of the parameter. By repeatedly adding random error 
values Vi from a known distribution to the deterministic 
portion of each combination and performing regression 
analysis, we derive an empirical distribution of each esti-
mator. 

(9)  

(10)  
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• Table 1.-Sample characteristics for functional form I 

values X range Sample size Error variance 

1. = 
2. 132  = 
3. 133 = 

.5 
1.0 
1.5 

1.55x615 
2. 5 5x685 

1. n = 
2. n = 

20 
40 

1. 02  = 
2. 02  = 
3. a` = 
4. a2  = 
5. a2  = 
6. a2  = 
7. 02  = 
8. 02  = 

4 
9 
16 
25 
36 
49 
64 
81 

(96 possible combinations) 

Although the generation of the independent, normally 
distributed random observations Vi with desired variance 
would appear conceptually easy, in actuality it involves 
a considerable amount of justification. The reader inter-
ested in this problem and its subtleties is referred to (13, 
pp. 39-61). 

For each combination of sample characteristics and 
the corresponding unique deterministic data set, a total 
of 100 different sets of independent error values based 
on the error variance are created and added. The result 
is 100 different data sets for each of the 96 combinations. 
Applying least squares analysis to each set yields 100 
estimates of 01 for each of the 96 possible sample com-
binations enumerated in table 1. (The total is 9,600 
regressions, not including one replication for a2  = 16). 
Each of these sets of 100 estimates constitutes, under 
slightly different conditions, a small empirical distribu-
tion of the estimator 01, and each provides a sample for 
estimating E(0.1) = 01+ bias. Since we know the actual 
value of i3i, we can subtract it from our estimate of gi, 

loo 
namely, 0-  = 1/100 	

* i =1 al 1
• The difference, bi, provides 

a good estimate of the bias created in estimatingh 
under conditions of error misspecification. The 13 are 
presented in table 2 for each of the respective combina-
tions. 

A similar process was followed in generating Monte 

Carlo results for functional form II, Yi + 00X gl  X2i2  + 

However, the 1,444 total combinations were based on 
fewer error variance levels and dual 0-values and X-range 
values (table 3). The /3 correspondingto each combina-
tion are shown in table 4 (14,400 regressions). 

HYPOTHESES OF INTEREST 

In examining the results of the Monte Carlo experiment 
a number of hypotheses are of interest. Those listed be-
low that do not have an alternative hypothesis explicitly 
stated should be assumed to have, for an alternative hy- 

pothesis, Ha: There exists at least one inequality. Bias 
refers to the estimates of the respective irs. 

1. H0: All b1 wilsyki are equal' 
2. H0: The biases due to the levels of "return to scale" 

averaged over all other factors are equal 
3. H0: The biases due to the different sample sizes 

averaged over all the other factors are equal 
4. H0: The biases due to the different "regions of the 

independent variables" averaged over all other 
factors are equal 

5. H0: The biases due to the different "error variances," 
averaged over all other factors, are equal 

6. H0: There are interactions in the factors of the 
experiment 

vs Ha: There are no interactions in the factors of the 
experiment 

The hypothesis stated in 6 is ambiguous because a number 
of different interaction hypotheses can be stated. At this 
point, it is unnecessary to state them specifically; it is 
only essential to point out that such hypotheses need spe-
cial consideration. 

If equality is accepted in these hypotheses, it is perti-
nent to ask if the common value is different from zero 
and, if so, in what direction is it different. If equality 
is rejected, then obviously some of the biases are differ-
ent from zero and only the differences need to be inves-
tigated. 

It can be shown that rejection of any of the hypoth-
eses, 2, 3, 4, 5, and 6, will not indicate the acceptance or 
rejection of hypothesis 1. If there is interest in other 
hypotheses, the model must be reclassified and an addi-
tional analysis of variance performed. 

A completely randomized design involving a factorial 
treatment arrangement was taken from statistical theory 
to assess the general impacts and to test hypotheses 2 
through 6. Cost factors in generation of the data have 
prevented obtaining a complete replicate of the experi-
ment that would be necessary to test hypothesis 1. 

'This is a standardizing transformation of the kki to satisfy 
assumptions of ANOVA factorial models. A more detailed jus-
tification appears later in the article. 
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Table 2.-Monte Carlo results for functional form I 

0=.5 a = 1 (3 =1.5 

Variance Mean of Os Standard deviation Mean of gs Standard deviation Mean of (is Standard deviation 

4 .5160 .1373 .9959 .0508 1.4995 .0191 

9 .5214 .2156 1.0137 .0715 1.5010 .0267 

16 .5393 .2709 .9995 .0914 1.5025 .0376 

16 .5560 .2952 1.0113 .0950 1.5013 .0383 

n= 20 	 25 .5429 .3855 1.0337 .1308 1.5060 .0524 

36 .5332 .5973 1.0713 .1689 1.5135 .0575 
49 .5667 .6756 1.0295 .2114 1.5201 .0761 

64 .4736 .5968 1.0195 .2273 1.4980 .0796 

81 .4268 .5701 1.1304 .3394 1.5039 .0869 

5<x<15 
4 .5134 .0945 1.0075 .0352 1.5001 .0144 

9 .5324 .1554 1.0163 .0590 1.5013 .0207 
16 .5215 .2344 1.0010 .0684 1.5022 .0266 

16 .5854 .2319 1.0196 .0714 1.5061 .0278 

n=40 	 25 .5993 .3348 1.0170 .0904 1.5039 .0319 

36 .5377 .3163 1.0377 .1124 1.5091 .0456 

49 .4646 .3410 1.0582 .1358 1.5162 .0422 
64 .4825 .4285 1.0681 .1744 1.5060 .0561 
81 .3916 .4183 1.0596 .1859 1.5158 .0682 

4 .5100 .0512 1.0015 .0130 1.4996 .0042 

9 .5191 .0795 1.0035 .0182 1.5011 .0058 
16 .5201 .0953 1.0030 .0285 1.5010 .0075 

16 .5340 .1108 1.0020 .0234 1.4993 .0083 

n=20 	 25 .5334 .1278 1.0013 .0279 1.5007 .0096 
36 .5636 .1810 1.0075 .0451 1.5004 .0123 

49 .5876 .2075 1.0039 .0500 1.5002 .0133 
64 .5411 .1762 1.0126 .0529 1.5040 .0172 
81 .5555 .2275 1.0041 .0610 1.5016 .0184 

5<x<85 
4 .5029 .0274 1.0010 .0093 1.4999 .0031 
9 .5098 .0526 1.0006 .0147 1.5000 .0054 
16 .5324 .0800 1.0011- .0237 1.4991 .0067 
16 .5151 .0625 1.0039 .0205 1.4995 .0073 

n=40 	 25 .5537 .1111 1.0077 .0250 1.5009 .0088 
36 .5548 .1149 1.0064 .0299 1.5029 .0107 
49 .5556 .1330 1.0029 .0364 1.5032 .0118 
64 .5526 .1415 1.0134 .0412 1.5009 .0137 
81 .5610 .1806 1.0058 .0477 1.4996 .0149 

I 
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Table 3.—Sample characteristics for functional form II 

values X range Sample size Error variance 

1. 01  = .25 02  = .25 (5x15) x (5x15) n = 20 02 = 9  

2. /3i  = .4 132  = .1 (5x15) x (5x85) n = 40 02 = 25 

3. 01 =.5  02 = .5  (5x85) x (5x85) = 49 

4. 01  = .9 6= .1 a2  = 81 
5. 131 = .75 152 = .75 
6. )31  = 1.4 02  = .1 

(1,444 possible combinations) 

EMPIRICAL RESULTS 

Empirical Distributions and ANOVA Models 
Consider the data layout in tables 2 and 4, in which 

the entries are /3 values. Each is in a cell characterized by 
four subscripts, i, j, k, and 1, where i denotes the ith 
"return to scale," j denotes the jth "region of the inde-
pendent variable," k denotes the kth "sample size," and 
1 denotes the 1th "error variance." 

From an examination of the data layout, it is appar-
ent that a completely randomized design involving a 
factorial treatment arrangement should be used. For 
functional form I, ANOVA will be applied, and, recog-
nizing the presence of two responses under form II, 
MANOVA techniques will be used. For more informa-
tion on both techniques, see (7, 8, 10). The distribution 
of kid indicates that certain transformations must be 
made to these data to realistically satisfy the normality 
of the factorial model. Since iTijki is a mean of 100 
estimates, kid is normally distributed with variance 

2ijkl 
 

a  	, where crzifid is the variance of 	The variance 
100 

of kid is not known, but a good estimate of a2ijkl based 
on 100 observations is s2iiki• So kki is distributed ap- 
proximately N(gi h UV) a2ijk//1°0) and, consequently, 
(01:jk/ - 0i) isijk/ is approximately distributed N(billa/siiki, 
1/100). 

Since there are no a priori reasons for making strong 
assumptions concerning interaction and there is gen-
erally only one observation per cell, the analysis will pro-
ceed in stages. The first stage will be to use a three-way 
factorial analysis of variance model on a transformation 
of the data in table 2 that corresponds to: 

• The three levels of "return to scale" /3 = .5, 1.0, and 
1.5; 

• The two "regions of the independent variable" 
5s Xs 15, 5 < Xs 85; 

• The two "sample sizes" n = 20, n = 40. 
The "error variance" is a2  = 16 with two replications. 

Based on the conclusions of the first stage, we will 
use a modified four-way factorial model on the trans-
formed data excluding only that part of the data that  

was generated to use as a replicate in the factorial model 
of stage one. 

On the basis of the conclusions of the first two stages, 
the selection of a multivariate factorial model for analyz- 

ing ing the second functional form Yi = )30X ii 1  X2i  02  + Vi 
can be made. The results of the Monte Carlo application 
to this functional form appear in table 4. 

Functional Form I Y = 0 X13 1  
In the first stage the concern is the degree of interac-

tion of effects among the sample characteristics consid-
ered: 

1. Return to scale =cci (i = 1, . . . , 3) 
2. Region of independent variable = vj (j = 1,2) 
3. Sample size = ak (k = 1,2) 
4. Error variance = 8/ (/ = 1, 	, 9) 
To find out if there are interactions among the char- 

acteristics that will require making allowances for them, 
the analysis begins by holding the error variance fixed 
and varying factor 1, factor 2, and factor 3 where the 
assumed model is 

Y  ijkm = 	uj + 7k + (ccu)ij (°̀ 7)ik 0)7)jk 

("7)ijk fijkm 
	 (12) 

i = 1, 2, 3 	j = 1, 2 	k = 1, 2 	m = 1, 2 

Since this model provides no estimate of error if there is 
no replication, two sets of values were obtained for the 
error variance a2  = 16. Consequently, we have a three-
way factorial model with two observations per cell. 

It is not realistic to assume that the e's are distributed 
independently N(0, o2). More realistically, we should 
assume that e NCO, u2E), where E is a diagnonal 
matrix. Consequently, the 13 values which appear in the 
tables have been transformed for ANOVA by subtracting 
out the actual value of the parameter and dividing by the 
estimated standard deviation. 
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I 

Table 4.-Monte Carlo results for functional form II 

2 

o 
= .25 0 - 25 0=.4 = 0=.5 c = .5 

Mean 	Standard 
of 9s 	deviation 

Mean 
of 0s 

Standard 
deviation 

Mean 
of Os 

Standard 
deviation 

Mean 
of 0s 

Standard 
deviation 

Mean 
of 9s deviation 

Mean Standard 

9 	.3107 	.2050 .2889 .2176 .4151 .1674 .1061 .1947 .4950 .0669 .4984 .0568 

25 	.3281 	.4320 .2391 .4595 .4504 .3980 .1874 .3705 .5131 .1213 .5019 .1002 

49 	.2296 	.5820 .3609 .5020 .4314 .5992 .1893 .5359 .5056 .1686 .5337 .1387 

81 	.2367 	.6684 .2203 .5896 .2713 .5980 .0635 .6270 .5364 .2364 .5389 .2217 

9 	.2811 	.1500 .2770 .1473 .4289 .1621 .1297 .1436 .5050 .0468 .5054 .0479 

25 	.2544 	.2738 .2920 .2972 .3973 .2811 .2031 .2488 .5161 .0811 .5069 .0714 

49 	.2783 	.3626 .2225 .3834 .2918 .3817 .1512 .4389 .5383 .1299 .5142 .1263 

81 	.2815 	.4328 .2100 .4513 .3086 .4532 .1609 .4001 .5429 .1563 .5446 .1472 

9 	.2483 	.0708 .2534 .1292 .4168 .0813 .0937 .1109 .5027 .0204 .4989 .0428 

25 	.2708 	.1588 .2591 .2411 .4275 .1318 .1153 .2119 .5035 .0325 .5033 .0638 

49 	.2846 	.2163 .2894 .3713 .4138 .1871 .1034 .3632 .5052 .0491 .4948 .0910 

81 	.3085 	.2960 .3020 .4954 .4508 .2279 .1133 .4389 .5136 .0623 .5146 .1067 

9 	.2589 	.0458 .2764 .1138 .4102 .0514 .1045 .0888 .5020 .0129 .5014 .0249 

25 	.2702 	.1061 .2702 .2025 .4387 .1175 .1025 .1642 .5012 .0233 .5032 .0454 

49 	.2748 	.1356 .3041 .2750 .4604 .1557 .0740 .2388 .5077 .0378 .5043 .0570 

81 	.2618 	.1853 .2786 .3963 .4372 .1629 .1022 .2997 .5163 .0450 .5247 .0839 

9 	.2556 	.0560 .2594 .0545 .4099 .0693 .0988 .0603 .4999 .0125 .5014 .0135 

25 	.2734 	.1017 .2523 .1013 .4256 .1217 .1077 .1134 .5052 .0220 .5007 .0198 

49 	.2859 	.1721 .2948 .1559 .4658 .1883 .1100 .1427 .5096 .0366 .5052 .0328 

81 	.2943 	.2146 .2755 .1951 .4207 .1790 .0897 .1965 .5067 .0425 .4985 .0402 

9 	.2538 	.0430 .2549 .0437 .4071 .0449 .1019 .0371 .4997 .0060 .4943 .0096 

25 	.2604 	.0707 .2591 .0709 .4254 .1157 .1135 .0791 .5003 .0119 .5009 .0158 

49 	.2803 	.1047 .2955 .1305 .4438 .1361 .0858 .1177 .5031 .0196 .5043 .0238 

81 	.2679 	.1557 .2734 .1547 .4600 .1469 .1061 .1364 .5030 .0254 .5120 .0332 

0=.9 0 0=.75 0=.75 0=14 0= 1 

2 
Mean 	Standard Mean Standard Mean Standard Mean Standard Mean Standard Mean Standard a 
of 0s 	deviation of Os deviation of 0s deviation of 0s deviation of 0s deviation of 0s deviation 

9 	.9129 	.0765 .1090 .0533 .7509 .0230 .7529 .0216 1.4064 .0266 .1022 .0204 

25 	.9113 	.1176 .1016 .1053 .7574 .0383 .7535 .0324 1.4082 .0522 .0952 .0383 

49 	.9552 	.2524 .1182 .1621 .7494 .0533 .7506 .0463 1.4100 .0640 .0926 .0494 

81 	.9859 	.2462 .1249 .1836 .7643 .0755 .7589 .0607 1.4050 .0794 .0938 .0605 

9 	.9122 	.0569 .0963 .0410 .7477 .0151 .7511 .0159 1.3981 .0220 .0983 .0165 

25 	.9214 	.0844 .1026 .0654 .7516 .0290 .7538 .0328 1.4066 .0344 .0963 .0246 

49 	.9171 	.1343 .1110 .0971 .7560 .0329 .7593 .0387 1.4041 .0482 .1022 .0362 

81 	.9606 	.1964 .1492 .1941 .7518 .0569 .7566 .0539 1.4066 .0676 .1094 .0418 

9 	.9033 	.0219 .0953 .0294 .7500 .0063 .7511 .0103 1.4000 .0060 .0997 .0073 

25 	.9009 	.0312 .0963 .0419 .7488 .0112 .7494 .0174 1.4002 .0111 .1002 .0138 

49 	.9095 	.0462 .0897 .0690 .7509 .0159 .7518 .0312 1.4013 .0127 .0997 .0158 

81 	.9142 	.0733 .0849 .0955 .7525 .0190 .7501 .0305 1.4029 .0208 1.0161 .0269 

9 	.9014 	.0143 .0990 .0158 .7496 .0041 .7505 .0076 1.4004 .0049 .0991 .0038 

25 	.9005 	.0229 .1053 .0262 .7503 .0079 .7504 .0143 1.4001 .0095 .0990 .0064 

49 	.9095 	.0340 .0974 .0372 .7497 .0087 .7508 .0160 1.4030 .0107 .1003 .0082 

81 	.9144 	.0585 .1018 .0507 .7524 .0129 .7505 .0251 1.4015 .0157 .0996 .0138 

9 	.9006 	.0239 .1007 .0112 .7504 .0032 .7500 .0031 1.3984 .0096 .0995 .0031 

25 	.9061 	.0477 .0985 .0218 .7501 .0052 .7503 .0053 1.3998 .0173 .0993 .0049 

49 	.9099 	.0618 .1014 .0306 .7504 .0091 .7502 .0065 1.4059 .0223 .0996 .0070 

81 	.9233 	.0796 .1062 .0354 .7508 .0096 .7495 .0087 1.4017 .0306 .1001 .0081 

9 	.9008 	.0146 .1000 .0087 .7496 .0026 .7497 .0018 1.3995 .0049 .1000 .0028 

25 	.8999 	.0281 .0995 .0171 .7501 .0043 .7500 .0031 1.4002 .0077 .0997 .0044 

49 	.9035 	.0313 .1036 .0212 .7500 .0066 .7502 .0049 1.4010 .0102 .0998 .0054 

81 	.9167 	.0466 .0972 .0300 .7510 .0084 .7506 .0051 1.4001 .0152 .0994 .0078 

at = 20 

5x15 x 5x15 

at = 40 

at = 20 

5x15 x 5x15 

at = 40 

n = 20 

at = 40 

at = 20 

5x15 x 5x15 

n = 40 

at = 20 

5x15 x 5x85 

at = 40 

at = 20 

5x85 x 5x85 

at = 40 
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The analysis of variance results in table 5 indicate 
that no significant interaction effects of the second or 
third order occur in the three variables "return to scale," 
"sample size," and "region of independent variable." 
There exists the possibility that a "return to scale -
region of independent variable" interaction exists, since 
the F-ratio of 2.28 would be significant at a probability 
level of approximately .175. The F-ratio 7.88 indicates a 
probability greater than .99 that "return to scale" affects 
the bias. 

Table 5.-ANOVA for a three-factor factorial with 
replication: functional form I 

Degrees Sum 
Factor of of Mean F-ratio 

freedom squares squares 

1 2 .18863 .09431 a7.88 
2 1 .00124 .00124 .10 
3 1 .00716 .00916 .60 

12 2 .05454 .02727 2.28 
13 2 .00676 .00338 .28 
23 1 .01348 .01348 1.13 

123 2 .01400 .00700 .58 
Error 12 .14366 .01197 

Total 23 .42947 

aSignificant at .01 level. 

The means for the levels of "return to scale" are 
.2449, .1051, and .0310 for 0 = .5, 0 = 1, and 0 = 1.5, 
respectively. Hence, the bias is greatest when the return 
to scale is lowest and least when the return to scale is 
greatest. The means for the levels of "return to scale" 
are independent, unbiased estimates of the biases due to 
their respective levels. In theory, the error variance in 
the ANOVA is independent of the means; consequently, 
Tukey's T method can be used as a followup analysis to 
determine the nature of the differences in levels of bias 
corresponding to the levels of "return to scale." The T 
method indicates that the mean response for 13 = .5 and 
for i3 = 1 differ at approximately the .06 significance 
level and the mean response for 0 = .5 and for 13 = 1.5 
differ at the .01 significance level. 

Since the "return to scale" factor is quantitative, we 
can consider the functional form of the response curve 
for this factor. When there are just three treatments, the 
sum of squares can only be split into two quantities, 
linear and quadratic responses. The total sum of squares 
for "return to scale" is .18863, and the sum of squares 
for linearity and for a quadratic response are .18286 and 
.00577, respectively. This would suggest a linear 
response curve. 

Since the results of the ANOVA suggest that a signifi-
cant interaction exists between "return to scale" and 
"region of independent variable" we now incorporate it 
and a fourth variable "error variance" into the model. 
The new model is 

Yijkl = + 	+ + + 5 1+  (c( v)ij + 	+ (v5)11 . 
+ (75  )1c1 Eijkl 
	

(13) 

i = 1, 2, 3 	j = 1, 2 	k = 1, 2 	1= 1, 2, .. . , 8 

Note that third and fourth order interactions do not 
appear in the model. There are two reasons: (1) in the 
first stage, higher order interactions seemingly did not 
exist, and (2) each higher order interaction that can be 
safely assumed out of the model causes an increase in 
the stability of the estimate of the error variance. It 
should also be noted that the significant interaction 
effect found in the first stage, (ccv)ii, remains in this 
model. 

The distribution of e is again most realistically 
assumed to be N(0, 0-2E); consequently, the j3 must be 
transformed for the analysis. 

The results of the analysis of variance for the second 
stage are presented in table 6. 

Table 6.-ANOVA for a four-factor factorial without 
replication: functional form I 

Degrees Sum 
Factor of of Mean F-ratio 

freedom squares squares 

2 .15087 .07544 a5.825 
2 .04364 .04364 3.370 
3 .04205 .04205 3.247 
4 7 .29436 .04205 a3.247 

12 2 .53364 .26682 a20.604 
14 14 .24608 .01758 1.357 
24 7 .06162 .00880 .680 
34 7 .05405 .00772 .596 
Error 54 .69913 .01295 

Total 95 2.12544 

aSignificant at .01 level. 

Table 6 F-ratios indicate significant main effects for 
"return to scale" and "error variance" and a very signifi-
cant "return to scale - region of independent variable" 
interaction. 

The presence of the interaction complicates the mak-
ing of inferences concerning main effects. Mean values 
for a "return to scale" across "region of independent 
variable" classification appear below: 

Data range 13 = .5 13= 1.0 Q = 1.5 

5<x<15 .0568 .2233 .1192 
5 < x < 85 .3090 .1408 .0775 
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Data range 0= .5  = /3 =1.5 

5 < x < 15 .1501 .1332 .0584 
5 < x < 85 .2610 .1203 .0296 

Even with this restriction of the data, the interaction 
effect is still present. Thus, the general inferences remain 
valid, namely that analysis of the main effects due to 
"return to scale" must be tempered by the effects of the 
region of the independent variable. 

The overall means for 0 = .5, 0 = 1, = 1.5 are respec-
tively .1829, .1820, and .0984. The followup compari-
son, again using Tukey's T method, indicates the biases 
for /3 = .5 and 0 = 1 are not distinguishable, but both are 
different from the bias for 0 = 1.5 at the .01 level. The 
decrease in error for larger "return to scale" values, par-
ticularly when the X region is larger, results from two 
factors. First, as the error variance decreases, the model 
becomes deterministic and the logarithmic transforma-
tion becomes more appropriate. Second, when the deter-
ministic portion of Y dominates the standard error, 
there is a negative bias (as pointed out earlier). This bias 
should tend to counteract the positive bias reflected in 
the earlier stages of this analysis. 

The means for the error variances 4, 9, . , 81 are, 
respectively, .0640, .1438, .0977, .1971, .2399, .2080,  

.1617, and .1232. An orthogonal breakdown for the 
"error variance" sum of squares appears below: 

linear 	  .05500 
quadratic 	  .15779 
cubic 	  .01507 
remainder 	  .06650 
total 	  .29436 

This indication of a quadratic response for "error 
variance" reflects the truncation difficulty mentioned 
earlier. As the error variance increases, the misspecifica-
tion of the error term becomes increasingly serious. 
When the error standard deviation effectively over-
shadows the deterministic portion of Y that corresponds 
to small values of X, the general level of the Y observa-
tion increases and pushes the estimates of 0 in the oppo-
site direction. Hence, the bias goes down. 

The T method followup indicates that adjacent values 
are not distinguishable at the .1 level. 

Functional Form II Y = 00413102  
Analyzing the empirical distributions in table 4 for 

functional form II presents a new difficulty. Functional 
02 form II, Yi =003(01  // X2/  + Vi, has two "return to scale" 

parameters, and as a consequence, the data are in two 
dimensional vector form. It cannot be assumed that the 
estimates of 01 and 02 will be independent; therefore, 
it will be necessary to use multivariate analysis of vari-
ance (MANOVA) techniques to analyze the consequence 
of misspecifying the error term.3  

The results, using a four-way multivariate factorial 
analysis of variance model with two responses, are pre-
sented in table 7. 

From the MANOVA table the following observations 
can be made: 

• "Return to scale" main effect significant at the .01 
level 

• "Range of the X variables" main effect signifi-
cant at the .01 level 

• "Error variance" main effect at the .10 level 
• "Return to scale-range of the X variable" interac-

tion significant at the .01 level 
• "Return to scale-error variance" interaction signifi-

cant at the .10 level 
• "Range of the X variable-error variance" interac-

tion significant at the .10 level 
The presence of the interactions, of course, compli-

cates a straightforward assessment of the main effects. It 
does seem reasonable, however, that the "return to scale" 

'There are several possible tests for analyzing data under 
MANOVA assumptions. The likelihood ratio tests are used in 
this study. For a complete treatment see (1, chapter 8). 

40 	
The value that conspicuously contributes to the inter- 

action effect is .0568. This mean is the result of averag-
ing 16 0 values generated when 0 = .5, 5 < x < 15, n = 20, 
n = 40 and a = 2, 3, . , 9. When a took on the values 
7, 8, and 9, the distribution of the error term at the lower 
end of the region 5 < x < 15 was a truncated nor-
mal distribution. The truncation was in the neighborhood 
of 1 standard deviation away from the mean. To illustrate, 
consider the error distribution when x = 5.0625 and a = 9. 
Since Y = 4X•5  = 9.00, it is clear that if negative values 
were allowed, the distribution of Y = 4X•5  + c would be 
normal with mean 9 and variance 81. However, the loga-
rithm transformation demands positive Y values, so the 
generation process would not allow any error values 
smaller than -9. Thus, the error density at a = 9 is 

f(e) = [1-F (-9)]3 Nriiit -lexp I --e2/18 . 

Such an error distribution will tend to increase the 
level of the Y values in the lower part of the region of 
the independent value. The problem is not as severe at 
the upper end of the region since the deterministic 
portion of Y is larger. Consequently, the estimated slope 
in the linear equation is lower than it would be without 
the truncation problem. 

The truncation difficulties can be partially removed 
by limiting the error standard deviation to values less 
than 6. Under this subset the mean values become: 
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Returns to scale 
Region of 

independent 
variables 

01  = 1.4 

132 = •1  

01  = .4 

132 = -1  

.1369 

.1293 

.2164 

.0935 

.1040 

.1187 

.1131 

t.0297 

.1671 .1530 .0216 .0910 

.0753 -.0564 .0371 -.0465 

.1125 .1409 .0325 .0213 

.0983 .0327 .0027 -.0664 

5x15 
x 

5x15 

	

.0995 	 -.0328 

	

.0738 	 .1728 

5x15 
x 

5x85 

	

.1370 	 .2322 

	

.1095 	 .0024 

5x85 
x 

5x85 

	

.1731 	 .2408 

	

.1692 	 .0252 

131 = .25  
132 =.25 

= .5  
132 = -5  

= .9  
132 = .1  

01 = .75 
132 = .75  

Table 7.-MANOVA for a four-factor factorial: 
functional form II 

Degrees 
Factor U-statistic Approximate 

F-statistic 
of 

freedom 

0.250339 a5.7921 10 58 
2 .629761 a3.7717 4 58 
3 .912625 1.3882 2 29 
4 .687525 b1.9916 6 58 

12 .226585 a3.1923 20 58 
13 .911772 .2741 10 58 
23 .906933 .7258 4 58 
14 .305862 b1.5624 30 58 
24 .539751 b1.7455 12 58 
34 .888048 .5912 6 58 

123 .499383 1.2038 20 58 
124 .338052 .6959 60 58 
134 .524836 .7353 30 58 
234 .872698 .3405 12 58 

aSignificant at the .01 level. bSignificant at the .10 level. 

factor will affect the bias and, further, that the "region 
of the X variables" would similarly affect the bias in the 
estimates of return to scale. It is not clear, however, that 
changing the error variance will affect the bias as long as 
the ratio of the deterministic part of Y and the error 
standard deviation remains at a reasonable level. 

The error standard deviation may be so large that a 
truncated error distribution is effectively at work on the 
lower end of the deterministic curve. If so, certainly the 
"error variance" will affect the bias of the estimates of 
return to scale. The mean vectors for error variances 9, 
25, 49, and 81, respectively, are [.0788, .0277], [.1068, 
.0397], [.1437, .0673], and [.1507, .0745] . Realizing  

the effect of the truncated error distribution and conse-
quently allowing for its effect, we can note that the 
means for 49 and 81 error variances should be somewhat 
greater than they are. Hence, discounting the truncation 
factor, the "error variance" main effect will be more sig-
nificant, and increasing the error variance does increase 
the bias resulting from error misspecification. 

Table 8 gives the mean vectors associated with the 
"return to scale" and "region of the X variables" classi-
fication. To see the interaction effect in table 8, note the 
behavior of the vectors in the two "wide range" rows as 
the "return to scale" increases. Contrast this behavior 
with the behavior of the vectors in the "narrow range" 
row as the "return to scale" increases. This interaction 
effect can be partially explained by the truncation prob-
lem and partially by the domination of the standard 
deviation of the error by the deterministic part of Y for 
the higher "return to scale" values. Hence, this interac-
tion effect is at least somewhat inherent in the misspeci-
fication of the error. 

The cell means for the "range of the X variable" 
levels 5x15 x 5x15, 5x15 x 5x85, and 5x85 x 5x85, 
are respectively, [.1062, .0931], [ .1202, .0436] and 
[.1337, .0315]. The vector [.1062, .0931] is dis-
tinguishable from the other two vectors. And although 
some interaction effects are immersed in these means, it 
seems that areas of limited size for the "range of the X 
variables" will increase the bias in estimating the return 
to scale when the error is misspecified. Note that to 
speak of the size of the region is somewhat misleading, 
since the principal determinant of the effect is the level 
of the deterministic portion of the curve. 

The cell means for the subsets of "return to scale" 
levels .5, 1.0, and 1.5 are, respectively, [.1365, .1175], 
[.1467, .0668], [.1388, .1009], [.1701, .0233], and 
[.0527, .0529], [.0751, -.0475]. An examination of 

Table 8.-Mean vectors associated with return to scale and region interaction 

144 
	 • 



• 

• 

these means reveals the overall decrease in bias resulting 
for higher levels of "return to scale." Thus, seriousness 
of the bias created by error misspecification for an in-
creasing return to scale is less than for a constant or a 
decreasing return to scale. 

CONCLUSIONS 

The factors considered in the foregoing analysis were 
"return to scale," "region of the independent variables," 
"sample size," and "error variance." The sample sizes exam-
ined gave no indication of having distinguishable effects on 
estimate bias. The "error variance" does affect the bias and, 
generally speaking, it causes an increase in the bias as the 
error variance increases. The "region of the independent 
variable" affects the bias in the estimates in a couple of 
ways. First, if the region is small and the level of the de-
terministic portion of Y does not totally dominate the error 
standard deviation, then the bias is positive and can be 
substantial. Second, if the region is large and, conse-
quently, the deterministic portion of Y dominates the 
error standard deviation for a good portion of the region, 
the bias effect will decrease. In cases where the determi-
nistic portion dominates almost entirely, the bias 
becomes quite small and it can be negative. The "return 
to scale" affects the bias in a manner similar to the 
"region of the independent variable" in that return to 
scale affects the deterministic portion of Y. Consequently, 
as the "return to scale" level increases, it causes the 
deterministic portion to dominate the error standard 
deviation, and the bias is not serious. As the "return to 
scale" level decreases, the bias can be substantial. 

These conclusions are by no means unexpected, but 
one is impressed by the robustness of the least squares 
technique under error misspecification of this type. A 
cursory review of tables 2 and 4 indicates that, except 
under the most difficult conditions with regard to vari-
ance, the bias generally is not significant enough to affect 
the empirical application of the corresponding elastici-
ties. The evidence suggests bias would be present but not 
of the magnitude, in most cases, to greatly challenge pre-
vious economic evaluations based on regressions that use 
Cobb-Douglas type functions. While this is a source of 
consolation for many analysts, it should be noted that 
any conclusion that loglinear estimation yields satis- 

factory 
 still depend on the peculiarities of the sampling experi-
ment estimates in the presence of additive errors must 

ment (9, p. 445). 
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