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Smallholder Technical Efficiency With
Stochastic Exogenous Production Conditions

Abstract

There is a large literature on the estimation of frontier production functions, much of it applied to low-income

agriculture.  However, much of this literature largely ignores nature’s role in agricultural production.  Because

exogenous, natural production conditions (e.g., rainfall, soil quality, pest infestation, plant disease, weed

growth) are rarely uniform or symmetrically distributed within a population or a sample thereof, this omission

generally leads to downward bias in producers’ estimated efficiency and to biased estimates of both the

parameters of the production frontier and the correlates of true technical inefficiency.  Using  panel data from

464 traditional rice plots in Côte d’Ivoire, we show that controlling for stochastic, exogenous, natural

production conditions in estimating the production frontier significantly increases smallholder rice farmers’

estimated efficiency, whether estimated using parametric, stochastic or nonparametric, nonstochastic

methods.  The resulting frontier parameter estimates are also more consistent with theoretical predictions than

are those of a frontier estimated without controlling for exogenous production conditions.  Conventional

estimates of technical efficiency may then mislead policymakers’ perceptions of overall efficiency levels and

of the sources of such inefficiency.

Key words: Africa (Sub-Saharan), Ivory Coast, production frontiers, agricultural productivity, rice.
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1.  Introduction

In his classic “poor but efficient” hypothesis, Schultz (1964) argued that traditional farmers, given a

long period of time to learn their production processes, will identify their respective optimal input and

output bundles.  Schultz then suggested that agricultural development policy adopt an expansionary approach

with respect to smallholder production frontiers as the most cost-effective means to increase the welfare of

low-income farmers around the world.  This vision helped guide the Green Revolution and much ongoing

research on improving crop production technologies in the developing world.  But countless empirical studies

have refuted Schultz’s claim, finding widespread technical inefficiency among smallholder producers and

consequently recommending that policy makers reallocate scarce resources toward redressing apparent

obstacles to farmer technical efficiency through improved extension work, farmer education, land tenure

reforms, etc.  Today, several international agricultural research centers and national agricultural research

systems face funding crises, and there appears less consensus than there was a quarter century ago within the

development community about the relative importance of advances in crop production technologies to the

improvement of smallholder welfare.

This paper speaks to this issue by reconsidering the estimation of production frontiers in low-income

agriculture heavily dependent on stochastic, exogenous production conditions.  In particular, we show that the

omission of measurable exogenous arguments to a production function (e.g., pest and weed infestation, plant

disease, rainfall) leads to inflated estimates of plot-specific technical inefficiency, and to biased estimates of

both the parameters of the production frontier and of the correlates of technical inefficiency, which might be

used for targeting extension interventions.  We demonstrate these results empirically using a panel data set of

rice farmers in the west African nation of Côte d’Ivoire to estimate production frontiers using both stochastic,

parametric and nonstochastic, nonparametric estimation methods.
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2.  Natural Variability, Production Frontiers, and Technical Efficiency

There are industries (e.g., banking, semiconductors) in which firms have considerable, or even

complete control over the physical production environment.  Such is not the case in traditional smallholder

agriculture, which responds strongly to natural conditions that vary markedly over time and space.  The

stochastic, natural environment conditions the results of farmers’ production decisions.  Otherwise identical

producers — same technology, same ability — will produce different quantities of grain if faced with

different rainfall, plant disease, weed, or other natural production conditions.1

This fundamental feature of smallholder agriculture should inform the estimation of production

frontiers, but rarely does.  We attribute this oversight primarily to the absence from most farm production

data sets of detailed, farm- or plot-specific information on the natural conditions facing producers.  Lack of

data causes analysts to omit potentially relevant exogenous, natural variables.  But with what consequence? 

If the econometrician does not control explicitly for environmental variability, he or she is ultimately

comparing all producers against the (probably small) subset of producers facing the best realized exogenous

production environment.  Since natural variables are likely important to smallholder productivity, it is

reasonable to suspect the result will be omitted variables bias in the estimated parameters of the production

frontier.2  We will show that the omission of relevant stochastic exogenous production inputs also yields

downward bias in the estimated technical efficiency of production units and bias in the estimated relationship

between technical efficiency and various

indicators that might be used to target remedial interventions. 

In slightly more formal terms, suppose farmer i generates output, Yi, from a production frontier

                                               
1
  It is also likely that exogenous conditions influence input allocation of land, labor, fertilizer, etc.  In this

paper, for the sake of degrees of freedom in estimation, we maintain the hypothesis of separability between traditional
and natural inputs.  An obvious extension of this work is to relax that assumption.

2  Furthermore, since these omitted variables are likely correlated with variables included as regressors, there
will likely also be an endogeneity problem.  We do not address this problem directly in the paper.
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defined over endogenous inputs, Xi, and exogenous states of nature, Wi, adjusted for the farmer’s

technical inefficiency, ui (ui  ≤ 0) where i = 1, …, N̂ .  Output is strictly monotonically increasing in both

X and W3.  This relationship may be estimated as either a nonstochastic frontier, Y # = # f (X;W) + u, or,

given mean zero, symmetric sampling and measurement error, v, in the data, as a stochastic frontier,

Y = f(X;W) + u + v.  (The production unit is said to be technically efficient only if ui = 0.)  Because the

literature has generally paid little attention to the exogenous shocks affecting output, the relation

typically estimated is instead Y = g(X) + û  + v̂ .  The first problem to recognize is that if Y indeed is at least

partly a function of W, then the g(⋅) estimates suffer obviously from omitted variable bias.  Note that f(X;W)

= g(X) if and only if Y and W are uncorrelated.

The second problem arises from the stochasticity and potentially asymmetric distribution of W.  If

there is variation in sample in W, then a nonstochastic frontier fitted without controlling for W will

necessarily generate iû < ui (recall uI ≤  0) for any ith production unit for which Wi<W*, where W* is the

optimal realized value of any element of W in the sample.  So when there exists variation in sample in natural

conditions, there will be downward bias in the estimated technical efficiency because E[ iû ] < ui for those

production units experiencing suboptimal realized environmental conditions.

This problem exists even when estimating a stochastic frontier, albeit under slightly less general

conditions.  Assume for the moment that X and W are uncorrelated, that W has distribution Φ(w) in sample,

and that v has distribution ϒ(v) (usually the normal).  When W is omitted from the regressors in estimating

f(⋅⋅)—hence in estimating g (⋅)—its effects on Y will then be picked up in the composite error term, û  + v̂ . 

A necessary — but not sufficient — condition for the totality of the effect of W to be captured by the

                                               
3 In this analytical section, for the sake of clarity we assume W represents states of nature ordered from worst

to best, hence the monotonicity of Y in W.  In practice, such an ordering may, however, require a nonmonotonic
transform of the raw, underlying data (e.g., for rainfall) since moderate measures may be optimal.  In the empirical
section to follow, we will work with polynomial functions of the raw data, implicitly relaxing the assumption of
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statistical residual, v̂ , and not to affect the technical efficiency estimates, û , is that the Φ and ϒ distributions

differ from one another only by location and scale parameters.  In general, Φ(w) can be represented as a

mixture of two distributions, Γ and ϒ, the latter potentially transformed by a location parameter, α, a scale

parameter, β, or both, such that Φ(w) = γΓ(w) + (1 − γ) ϒ(α + βw), for γ∈[0,1].  If γ > 0, then the efficiency

parameter estimates, û , will capture part of the effect of the omitted exogenous variables, W because of the

deviation from location and scale differences introduced through Γ.  If Φ(w) is asymmetric and ϒ(v) is the

conventional normal (or another symmetric distribution, perhaps student-t), then it must be the case that γ>0,

since there is more than a location-scale difference between the two distributions.  Under the standard

assumption of symmetrically distributed measurement and sampling error, v, an asymmetric distribution for

Φ(w) implies û  is a biased and inconsistent estimator of u because  Ε[ iû ] ≠ ui for some production units

(unless f(Xi, Wi) = g(Xi), implying that Y and W are uncorrelated).  In particular, the bias will be downward,

Ε[ iû ]< ui , i.e., technical efficiency will be understated.

The third problem arises with respect to identifying the correlates of true technical inefficiency, u. 

While knowing the extent of technical inefficiency prevailing in a sector is useful, policy makers often also

like to know the correlates of technical inefficiency so as to target interventions appropriately and thereby

reduce inefficiency in the sector.  The second-stage relation to be estimated is thus

u = h(Z) + ττ, where Z is a vector of farmer characteristics and practices, and ττ is a white noise error term.

However, the second-stage relationship is commonly estimated as û  = j(Z) + ô̂ .  If the efficiency parameter

estimates generated by a model omitting W, û , are biased estimates of the true u in population, then j(⋅) will

likewise yield biased and inconsistent estimates of the relationship of interest, h(⋅). 

Since, in general, f(X;W) ≠ g(X), u ≠ û , and h(Z) ≠ j(Z), misleading policy implications may be

                                                                                                                                                      
monotonicity with respect to W.
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drawn from estimated frontier production functions that omit stochastic exogenous conditions.  One clear

implication is that this omission is likely to lead to an overstatement of the prevalence and degree of

technical inefficiency among smallholders highly dependent on stochastic exogenous natural conditions to

agricultural production.  That overstatement may lead to underemphasis on the need for research designed to

shift outward the production possibility frontiers currently facing traditional producers.

In the remainder of this paper, we show how the omission of measurable stochastic exogenous

conditions, W, alters the frontier production function estimation results in one particular case: rice in the west

African nation of Côte d’Ivoire.  We estimate the primal production function rather than dual cost or profit

functions primarily because of the myriad inferential problems associated with using observed market prices

in estimating the production behaviors of smallholders most of whose labor, land, and animal traction

allocation decisions do not involve market transactions (Barrett 1997). 

3.  Data

The data used come from the farm management and household survey (FMHS) fielded by the West

Africa Rice Development Association (WARDA).  WARDA FMHS tracked 120 randomly selected rice-

producing households in Côte d’Ivoire, 1993-95, encompassing 1,218 individual plots, 589 of which were

planted in rice.  Twenty-two surveys were administered annually and are described in detail in WARDA

(1997).  Due to nonsystematically missing data or mechanization (we study only traditional rice farmers, the

subject of Schultz’s “poor but efficient” hypothesis), 464 of the 589 rice plots are used in the estimation

reported in the next section.

One comparative advantage of the WARDA FMHS is its inclusion of quarterly plot-level

measurements of exogenous stochastic conditions, such as rainfall, pests, weeds, plant disease, plot slope,

and soil quality.  Sample descriptive statistics are presented in Table 1 for the key explanatory variables:
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land, adult family labor, adult hired labor, child labor, animal traction, fertilizer, erosivity, soil fertility, soil

aptitude for rice, pest infestation, weed density, weed height, plant disease, topographic location, plot slope,

number of days of rain, and rain volume.  As is evident, there is relatively little use of either animal traction

or chemical fertilizers—this is prototypical smallholder, traditional cropping—and considerable variability in

area and labor use patterns, as well as in natural environmental conditions.

The previous section pointed out that if the stochastic natural environmental conditions of production

are not symmetrically distributed, then their omission will lead to biased estimates of plot-specific technical

efficiency.  As reflected in Table 1 and shown graphically for a few variables in Figure 1, these exogenous

variables are asymmetrically distributed, with statistically significant positive skewness.  So the problems

identified in the previous section appear relevant in this data set, which affords an uncommon opportunity to

check the consequences of the omission of measurable exogenous states of nature.

4.  Stochastic, Parametric Production Frontier and Technical Efficiency Estimation

Much of the frontier production function estimation literature follows the stochastic, parametric

approach pioneered by Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977).  In this

approach, one specifies a priori a functional form for the production frontier and probability density

functions for the asymmetric technical inefficiency parameter and the symmetric error term.  We employ a

modified form of the generalized Leontief production frontier and a half-normal probability density function

for the technical inefficiency parameter, u.4  In order to demonstrate the consequence of omitting exogenous

production conditions, we estimate the frontier with and without those W variables.  The traditional, or

“short” specification, omitting W (i.e., Y = g(X) + û  + v̂ ),  may be written:

                                               
4  The presence of many zero-valued observations precludes use of the transcendental logarithmic form, and

the standard generalized Leontief, using square rather than cube roots, failed diagnostic tests. Hence the choice of this
particular functional form.  We also estimated this using exponential and truncated normal distributions for the technical
efficiency parameter and obtained qualitatively identical results.  For more detail on the specification testing, see
Sherlund (1998).



10

where β0, βk, γkj (j,k = 1,...,K) are parameters to be estimated.  Output (Y) is rice production, in kilograms.

The inputs (X) are land, measured in acres; familial labor, measured in hours; hired labor, measured in hours;

child labor, measured in hours; animal traction, measured in hours; and chemical fertilizer usage, measured in

kilograms.  The error term, v̂ , is assumed to be iid, normal.

We assume separability of X and W in order to conserve degrees of freedom in estimating the “full”

specification, also as a modified generalized Leontief production function.  This may be written:
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where δr (r = 1,...,R) are parameters to be estimated in addition to those listed above.  The exogenous W

variables included are categorical variables for erosion, where one indicates erosion is a problem, zero, that it

is not; fertility, where one is good fertility and three is poor; soil aptitude, rated one to three, as with fertility;

slope, measured in percent incline; pest infestation, ranked from one, no pest problems, to  seven, severe pest

problems; weed density, where one is no weed density problems and five is severe; weed height, where one is

no weed height problems and five is severe; plant disease, where one is no plant disease and nine is severe;5

topographic location dummies, where the base is upland; annual days of rain; and rainfall volume, in

centimeters per year.

Parameter estimates for both the short and full specifications are reported in Table 2 (t-ratios

presented in parentheses).  The statistical superiority of the full specification is apparent statistically in the

likelihood ratio test statistic, 233.9, which has a p-value equal to 0.000 against the χ2(20) distribution. 

                                               
5  The insect infestation, plant disease, and weed density variables are based on decile categorical observations,

i.e., a “2" score means 11-20% of the plot was affected, a “7" means that 61-70% was affected, etc.
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Following the work of Jondrow, et al. (1982), we calculated plot-specific output measures of technical

efficiency, θi∈[1,∞), where θi represents the multiple by which the ith plot’s output could be expanded using

the same inputs on the production frontier.  The empirical distribution of these θi are plotted in Figure 2a for

both the short and full specification, and descriptive statistics are  reported in the two leftmost columns of

Table 3.  The unambiguous reduction in estimated technical inefficiency appears as first-degree stochastic

dominance of the full over the short specification’s distribution and as a nontrivial reduction in the median

and the moments of the θi distributions.  This demonstrates our claim that the omission of relevant

measurable exogenous production conditions biases upward estimates of technical inefficiency when the W

are assymmetrically distributed.  The policy implications are significant, because the less the apparent

technical inefficiency, the greater the need for research to generate outward shifts in the production

possibilities frontier.

The omission of exogenous production conditions not only biases estimates of technical efficiency, it

also affects the estimates of the parameters of the production frontier.  This is somewhat apparent in Table

1's raw parameter estimates, but appears more readily in Table 4, where output elasticity estimates are

reported for the six discretionary (land, familial labor, hired labor, child labor, animal traction, and fertilizer)

at the sample means.  The qualitative picture is similar across both specifications.  Land is the key input to

production, animal traction and chemical fertilizers contribute little, and output is significantly more

responsive to family adult labor than to either hired adult or child labor.  But in this sample, omission of

relevant measurable exogenous shocks to production increases output elasticities nearly 30 and 80 percent

with respect to familial and hired labor, respectively.  And the elasticity estimates for both child labor and

animal traction are negative in the short specification, but positive—albeit of low magnitude—in the full

specification. 

In these data, the improved parameterization of the production frontier has the added advantage of
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eliminating some inconsistencies between the parameter estimates and basic hypotheses of economic theory. 

When we check for monotonicity across the data, we find it is commonly violated in the short specification

with respect to child labor in more than 80 percent of the sample, and with respect to animal traction in one-

third (Table 5).  Under the full specification, monotonicity holds almost universally, failing to hold only with

respect to animal traction in 2.5 percent of the sample.  In both specifications, however, the principal leading

minor determinants of the Hessian of g(⋅) routinely fail to satisfy the conditions of negative semi-definiteness,

implying violation of the quasi concavity assumption.6  While concavity is satisfied with trivially greater

frequency in the full specification, this inconsistency with the postulates of producer theory motivates us to

repeat the production frontier estimation exercise using an alternative method.

5.  Nonstochastic, Nonparametric Production Frontier and Technical Efficiency Estimation

The previous section showed that the omission of relevant measurable exogenous production

conditions biases upward estimates of technical inefficiency and adversely affects the estimated shape of a

production frontier estimated using stochastic, parametric methods.  A second major branch of the production

frontier estimation literature employs the nonparametric, data envelopment analysis (DEA) technique.  DEA

requires no a priori assumptions regarding either the functional form of the production frontier or the

probability density functions of the technical inefficiency term, merely imposing basic weak monotonicity and

concavity properties, thereby obviating problems of inconsistency between estimation results and theory, as

the last section showed can occur with parametric, stochastic frontier estimation (Färe, Grosskopf, and

Lovell, 1994).  The main drawback of DEA is its assumed lack of measurement or sampling error, i.e., it is a

nonstochastic method.

The output-oriented, variable returns to scale, strong disposability DEA model may be written:

                                               
6
 Many observations come close to satisfying the conditions for quasi-concavity, e.g. having one determinant of

the wrong sign by < 1 × E − 8.  Indeed, at a tolerance level of 0.0001 (0.01) quasi-concavity is universally satisfied in
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θ*(X i,Yi |VRS,SD) = Maxθ,z θ, (3a)
Subject to: θ⋅Yi ≤ z⋅Y, (3b)

z⋅X ≤ Xi, (3c)
Σi zi = 1, (3d)

z ∈ R N
+ , where i = 1,...,N, (3e)

and z is the activity vector indicating to which plots the ith plot is being compared.  The resulting output

measure of technical efficiency is bounded from below at one, ∗θi ≥1, and represents the multiple

by which output may be expanded, holding the input bundle constant, had the ith plot been fully

efficient.  Excluding constraint (3d) yields the analogous output-oriented, constant returns to scale, strong

disposability DEA model.  However, applying Banker’s (1996) test we reject the null hypothesis of constant

returns to scale (at the 99.977 percent confidence level) in favor of the variable returns to scale specification

(Sherlund 1998).

We estimate plot-specific technical efficiency scores using the linear program of equations (3a)–(3e)

under both the short and full specifications introduced in the previous section, now relaxing the functional

form assumption but imposing weak monotonicity and concavity.  The effect of controlling for exogenous

production conditions becomes more apparent in these data when using DEA than when using the parametric

method of the previous section.  As shown in Figure 2b and the two rightmost columns of Table 3, inclusion

of exogenous production conditions substantially shifts the empirical distribution of estimated plot-specific

technical efficiency scores, lowering the mean ∗θi  estimate from 2.3278 to 1.1798.  Of perhaps greater

practical importance, once measurable exogenous conditions are controlled for, the nonparametric DEA

method finds 71 percent of plots exhibit perfect technical efficiency, ∗θi  = 1.  This stands in stark contrast to

the implication of the short specification DEA results, which suggest the median plot could increase output

                                                                                                                                                      
the full (short) specification.
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92 percent, given current inputs, by improving productive efficiency.  The downward bias in technical

efficiency estimation when one fails to control for exogenous production conditions can thus have a dramatic

effect, as clearly demonstrated by the DEA results in these data.  The implications for agricultural research

policy could be quite significant. 

6.  Correlates of Technical Inefficiency

Our concern is not just that the incidence and degree of smallholder technical inefficiency is prone to

overstatement by the omission of exogenous production conditions from frontier production function

estimation.  We are also concerned about biased subsequent inference about the correlates of true technical

inefficiency.  In order to design effective agricultural development policy to ameliorate apparent smallholder

inefficiency, policy makers must know the sources of peasant farmer inefficiency.  This is commonly done by

estimating a second-stage relationship between the technical inefficiency estimates, û , and suspected sources

of technical inefficiency, Z.  Statistically significant correlates of technical inefficiency are then used to target

policy interventions intended to improve efficiency levels.  Nevertheless, because omission of relevant

measurable exogenous variables leads to an upward bias in technical inefficiency estimates it may also

generate  spurious estimated relationships between true technical inefficiency, u, and Z, and therefore

potentially misleading policy recommendations based on the estimated but incorrectly specified second-stage

relation.

We demonstrate this by regressing the natural logarithm of output-oriented technical efficiency

scores on a vector, Zi, of plot-specific managerial characteristics (e.g., age, gender, education, and

experience) and plot-specific managerial practices (e.g., type of seed used and the number of crops and plots

cultivated).  For sample descriptive statistics, refer to Table 1.  The regression model may be written:

ln( ∗θi ) = ψ + Ziα + Wiρ + ττi, (4)
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where W is the earlier-used vector of measurable exogenous shocks, τi is a Gaussian white noise error term,

and ψ, α, and ρ are estimable parameters.  Note that because ∗θi ≥ 1, ln( ∗θi )≥ 0, so we estimate this as a

Tobit model.7 

We first run the short second-stage specification prevailing in the literature, using the ∗θi  generated

by the short first stage regression (i.e., omitting exogenous production conditions) and restricting ρ to be

equal to zero.  Then we estimate the full specification, (4), using the full first stage regression (i.e., including

exogenous production conditions) to ascertain the effects of both using the biased technical efficiency

parameter as the regresand and omitting the W variables from the regressors of the second stage regression.

The results are reported in Table 6.

The likelihood dominance criterion non-nested specification test (Pollak and Wales 1991) strongly

favor the full specification models over the short specification models for both the parametric and

nonparametric cases, confirming in these data our claim that the omission of exogenous production conditions

is problematic for inference on the correlates of smallholder technical inefficiency.  But the estimation results

do not yield results that are robust to choice of modeling method.  With the exception of like findings that the

(few) holders of professional degrees are economically (and at the ten percent level, statistically) significantly

more inefficient than other smallholder rice producers, the DEA and stochastic, parameter model results vary

from one another.  The instability of these parameter estimates across techniques and the relatively low

magnitude of the estimated technical inefficiency of most production units, once one controls properly for

exogenous production conditions, underlines the challenge of appropriate targeting of extension and farmer

education efforts to improve sectoral productivity in traditional, smallholder agriculture. 

                                               
7 Because the stochastic production frontier approach does not yield technical efficiency scores of one (perfect

efficiency), the Tobit model using those θ estimates collapses to the OLS model.
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Moreover, a striking finding of the DEA results reported in the rightmost column of Table 6 is that

no managerial characteristic or managerial practice variable is statistically significantly related to estimated

technical inefficiency at the 95 percent confidence level or higher.  A likelihood ratio test of the null

hypothesis that managerial characteristics and practices, Z, jointly have no statistically significant relation to

estimated technical efficiency once proper control is made in the second stage regression for exogenous

production conditions yields a test statistic of 21.01, with a p-value of 0.178 against the χ2(16) distribution. 

We cannot reject the null hypothesis that managerial characteristics and practices are unrelated to technical

efficiency estimated under the full, unbiased specification.  This result, like those of the preceding two

sections, suggests that these Ivorien rice farmers are largely managerially efficient. The results reported in

Tables 3 and 6 thus suggest a need to focus on research to expand smallholder rice production frontiers if

productivity is to increase appreciably in this particular setting.

6.  Conclusions

This paper is motivated by a concern that the empirical literature on technical efficiency estimation of

smallholder agriculture largely ignores that production decisions are made in and data are drawn from highly

stochastic production environments largely beyond the producer’s control.  We first explain why prevailing

empirical methods, using either econometric or programming techniques, may yield biased and inconsistent

estimates of technical efficiency, production frontiers parameters, and the relationship between estimated

technical efficiency and managerial characteristics and practices.  This may have serious implications for

policy makers relying on statistical inference from such models to guide resource allocation in agricultural

development.  We then demonstrate the relevance of our concern to the case of smallholder rice production in

the west African nation of Côte d’Ivoire.  Using plot-level panel data, we show that controlling for observable

exogenous production conditions yields significantly lower estimates of technical inefficiency, more intuitive
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(e.g., positive) output elasticity estimates, and the finding that managerial characteristics and practices are

effectively unrelated to estimated technical inefficiency.  Using nonparametric methods, the median Ivorien

rice plot appears perfectly technically efficient.  This is quite a different story than that either prevailing in

most of the existing literature or which one obtains by using conventional methods omitting exogenous

production conditions from both the first stage frontier estimation and second stage estimation of the

correlates of technical inefficiency.

These results have significant policy implications.  Conventional methods of estimating production

frontiers, technical inefficiency in production and the correlates of technical inefficiency suggest that the

traditional Ivorien rice farmers we study are highly inefficient, leaving open the question of whether scarce

agricultural development funds are best spent to develop improved technologies or to teach farmers how to

use existing technologies better.  By controlling for variation in observed exogenous production conditions,

however, we find instead that there is relatively little technical inefficiency at the level of rice plots, and the

inefficiency that does seem to exist is not strongly correlated with targetable farmer characteristics or

practices.  Schultz appears to be right when one compares Ivorien rice producers against the estimated

stochastic production frontier they actually face, given their idiosyncratic realization of the environmental

conditions vector, Wi, rather than against the state-unconditional best-practice frontier, which implicitly pits

them against colleagues enjoying considerably more favorable realized exogenous shocks to production.
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Figure 2a. Empirical distributions of plot- Figure 2b. Empirical distributions of plot-specific
technical efficiency parameters, specific technical efficiency parameters,
estimated by a stochastic parametric frontier estimated by data envelopment analysis
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Table 1
Descriptive Statistics

Units of Measure
Mean

Standard Deviation
Skewness

Minimum
Maximum

Production kilograms
1676.4541

1399.1367
2.1546

46.6200
10094.0175

Land Area ares (100 m2)
94.1020

80.8435
2.7984

4.1300
710.0000

Familial Labor hours
470.4610

400.3348
1.6097

0.0000
2545.5000

Hired Labor hours
298.4638

262.1401
1.9130

0.0000
1984.0000

Child Labor hours
408.2386

640.0552
2.3759

0.0000
3662.0000

Animal Traction hours
10.9253

28.7920
3.9397

0.0000
213.0000

Fertilizer Use kilograms
17.5175

51.9609
3.5552

0.0000
350.0000

Erosion problems 0=no, 1=yes
0.3879

0.4873
*** 0.4615

0.0000
1.0000

Fertility of plot soil 1=very, 2-okay, 3=poor
1.7694

0.6472
*** 0.2643

1.0000
3.0000

Aptitude of plot soil 1=very, 2-okay, 3=poor
1.4741

0.6118
*** 0.9203

1.0000
3.0000

Slope of plot percent
4.1929

4.7081
2.2963

0.0000
27.0000

Pest infestation rate 1=10-20% ... 7=71-80%
2.4526

1.1587
*** 1.6834

1.0000
7.0000

Weed density rate 2=5-20% ... 5=60-100%
3.1034

0.8370
*** 0.2235

2.0000
5.0000

Weed height 1=<50% ... 5=>125%
2.8944

0.9669
*** 0.3420

1.0000
5.0000

Plant disease rate 1=10-20%...9=91-100%
3.4353

2.2419
1.2603

1.0000
9.0000

Hydromorphic fringe 0=no, 1=yes
0.0280

0.1650
*** 5.7388

0.0000
1.0000
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Lowland topography 0=no, 1=yes
0.2866

0.4522
*** 0.9467

0.0000
1.0000

Irrigated plots 0=no, 1=yes
0.0022

0.0464
*** 21.5407

0.0000
1.0000

Rainfall days days
93.1509

26.4520
0.4210

67.0000
132.0000

Rainfall quantity centimeters
134.4516

15.1513
-0.1249

108.8300
158.3500

Modern rice variety percent of seed planted
50.6430

49.8700
-0.0244

0.0000
100.0000

Experience years
6.0366

3.6790
0.8458

0.0000
22.0000

Gender 0=male, 1=female
0.1853

0.3886
*** 1.6248

0.0000
1.0000

Age years
47.4957

12.3479
0.1266

20.0000
87.0000

Elementary education 0=no, 1=yes
0.0668

0.2497
*** 3.4810

0.0000
1.0000

Secondary education 0=no, 1=yes
0.0776

0.2675
*** 3.1683

0.0000
1.0000

Some college
education

0=no, 1=yes
0.0539

0.2258
*** 3.9647

0.0000
1.0000

Completed college 0=no, 1=yes
0.0065

0.0801
*** 12.3555

0.0000
1.0000

Professional education 0=no, 1=yes
0.0129

0.1130
*** 8.6504

0.0000
1.0000

Unique rice plots number
1.6616

0.8277
*** 1.1807

1.0000
4.0000

Unique crops number
2.7220

1.4332
0.3598

1.0000
6.0000

*** = statistically significant at the 99% confidence level.
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Table 2
Stochastic Production Frontier Estimates

(t-ratios in parentheses) Short Specification Full Specification

Constant 0.0059 (0.004) -3.6753 (-0.314)

Land (L) ** 1.5557 (2.407) *** 1.7685 (3.379)

Familial Labor (FL) 0.3518 (1.222) 0.3631 (1.468)

Hired Labor (HL) 0.3294 (1.524) 0.1789 (0.948)

Child Labor (CL) 0.1724 (1.111) ** 0.2628 (1.982)

Animal Traction (AT) -0.1711 (-0.509) 0.1192 (0.386)

Fertilizers (F) 0.1144 (0.247) 0.4190 (1.259)

L⋅L -0.0227 (-0.107) -0.0039 (-0.022)

L⋅FL 0.0705 (1.063) 0.0494 (0.793)

L⋅HL 0.0296 (0.415) 0.0251 (0.381)

L⋅CL -0.0052 (-0.147) -0.0102 (-0.284)

L⋅AT -0.0214 (-0.208) -0.0304 (-0.353)

L⋅F 0.0462 (0.604) 0.0798 (1.204)

FL⋅FL -0.0307 (-0.985) -0.0038 (-0.108)

FL⋅HL -0.0139 (-0.597) -0.0212 (-0.922)

FL⋅CL -0.0124 (-1.002) ** -0.0261 (-2.080)

FL⋅AT ** -0.0727 (-2.189) -0.0344 (-1.237)

FL⋅F -0.0305 (-1.000) -0.0320 (-1.134)

HL⋅HL -0.0058 (-0.219) 0.0210 (0.804)

HL⋅CL -0.0110 (-0.906) -0.0091 (-0.739)

HL⋅AT -0.0178 (-0.519) -0.0131 (-0.430)

HL⋅F ** -0.0610 (-2.102) -0.0293 (-1.200)

CL⋅CL * -0.0230 (-1.810) 0.0047 (0.366)
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CL⋅AT *** 0.0544 (2.636) ** 0.0377 (2.126)

CL⋅F 0.0264 (1.172) -0.0068 (-0.355)

AT⋅AT 0.1929 (1.500) 0.0581 (0.482)

AT⋅F 0.0299 (0.555) -0.0709 (-1.622)

F⋅F 0.1614 (1.178) 0.0389 (0.368)

Erosion -0.1896 (-0.862)

Fertility -0.1841 (-1.519)

Aptitude 0.0307 (0.250)

Slope -0.0638 (-1.279)

Slope2 0.0024 (1.099)

Pests *** -0.8476 (-3.162)

Pests2 ** 0.1029 (2.507)

Weed Density *** 1.9615 (3.466)

Weed Density2 *** -0.3126 (-3.751)

Weed Height 0.1768 (0.391)

Weed Height2 -0.0135 (-0.183)

Plant Disease -0.0338 (-0.214)

Plant Disease2 -0.0160 (-1.044)

Hydromorphic Dummy 0.6643 (0.887)

Lowland Dummy * 0.3983 (1.903)

Irrigated Dummy -2.7088 (-0.001)

Rain Days *** 0.4078 (3.209)

Rain Days2 *** -0.0020 (-3.142)

Rainfall ** -0.2506 (-2.334)

Rainfall2 ** 0.0008 (2.006)

σ 1.6311 1.3005
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λ ***0.9523 (3.713) *** 1.0601 (4.205)

ln(L) -801.26 -684.29

***, **, * = statistically significant at the 99, 95, and 90 percent confidence levels, respectively.
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Table 3
Production Frontier Technical Efficiency Summary Statistics

Estimation Method Stochastic, Parametric DEA

Specification Short Full Short Full

Mean 1.3140 1.2552 2.3278 1.1798

Median 1.2496 1.2013 1.9206 1.0000

Standard Dev. 0.2699 0.2104 1.4209 0.4146

Skewness 6.0010 4.8336 2.0618 3.3328

Relative Kurtosis 61.6568 36.2383 6.2162 13.2858

Minimum 1.0358 1.0221 1.0000 1.0000

Maximum 4.7498 3.4067 11.1443 3.9617
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Table 4
Output Elasticity Estimates*

Short
Specification

Full
Specification

Land 0.801 0.802

Familial Labor 0.190 0.146

Hired Labor 0.125 0.070

Child Labor -0.004 0.010

Animal Traction -0.011 0.0002

Fertilizer 0.025 0.021

*--estimated at the sample means
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Table 5
Tests of Concavity and Monotonicity

(frequency with which assumption holds in sample)

Short
Specification

Full
Specification

Monotonicity:

Land 1.000 1.000

Familial Labor 1.000 1.000

Hired Labor 1.000 1.000

Child Labor 0.184 1.000

Animal Traction 0.655 0.949

Fertilizer 1.000 1.000

Concavity
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Table 6
Second-Stage Estimates of Correlates of Technical Inefficiency

Short Specifications Full Specifications

Stochastic,
Parametric

Nonstochastic,
Nonparametric

Stochastic,
Parametric

Nonstochastic,
Nonparametric

Constant *** 0.3208 (3.48) -0.1537 (-0.52) -1.1839 (-0.98) * 13.4708 (1.70)

Modern -0.0020 (-0.46) -0.0172 (-0.98) -0.0012 (-0.32) -0.1091 (-0.03)

Modern2 1.9×10-5 (0.44) 1.7×10-4 (0.95) 1.4×10-5 (0.39) 0.0011 (0.03)

Experience -0.0080 (-1.38) 0.0141 (0.77) -0.0061 (-1.18) 0.0095 (0.29)

Experience2 3.9×10-4 (1.11) -0.0011 (-1.04) 1.1×10-4 (0.36) -9.8×10-4 (-0.48)

Gender *** 0.0766 (3.69) 0.0582 (0.89) *** 0.0639 (3.11) -0.1442 (-1.17)

Age 9.7×10-4 (0.27) -0.0083 (-0.74) -0.0013 (-0.42) 0.0129 (0.74)

Age2 -8.8×10-6 (-0.25) 8.8×10-5 (0.78) 1.5×10-5 (0.47) -7.4×10-5 (-0.45)

Elem. Edu. 0.0202 (0.71) 0.0066 (0.08) ** 0.0581 (2.35) 0.0229 (0.17)

Sec. Edu. -0.0056 (-0.19) 0.0371 (0.39) 0.0159 (0.62) 0.1007 (0.68)

Some Coll. 0.0301 (0.96) -0.1650 (-1.55) 0.0276 (1.00) 0.2371 (1.63)

Comp. Coll. -0.0695 (-0.80) -2.3462 (-0.03) -0.0841 (-1.12) -1.7765 (-0.03)

Prof. Deg. *** 0.2190 (3.47) 0.1516 (0.79) *** 0.1783 (3.22) * 0.5074 (1.82)

Plots -0.0546 (-1.32) 0.2073 (1.53) 0.0048 (0.12) 0.2180 (0.91)

Plots2 0.0101 (1.12) ** -0.0664 (-2.19) -0.0039 (-0.45) 0.0661 (-1.18)

Crops -0.0110 (-0.43) ** 0.1808 (2.20) * 0.0403 (1.72) 0.1360 (0.95)

Crops2 0.0015 (0.37) * -0.0223 (-1.74) -0.0047 (-1.30) -0.0165 (-0.75)

Erosion 0.0139 (0.646) * 0.2192 (1.65)

Fertility 0.0064 (0.50) ** -0.1559 (-2.09)

Aptitude -0.0042 (-0.32) * -0.1563 (-1.84)

Slope 0.0016 (0.31) -0.0377 (-0.74)

Slope2 -7.7×10-5 (-0.39) -0.0016 (-0.33)
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Pests 0.0293 (1.20) 0.0988 (0.69)

Pests2 -0.0044 (-1.31) -0.0066 (-0.34)

Weed Density 0.0086 (0.15) -0.5470 (-1.53)

Weed Density2 -4.3×10-4 (-0.05) 0.0561 (0.98)

Weed Height 0.0295 (0.70) 0.1926 (0.75)

Weed Height2 -0.0054 (-0.81) -0.0492 (-1.09)

Plant Disease 0.0169 (1.14) 5.1×10-4 (0.01)

Plant Disease2 -6.5×10-4 (-0.45) 2.6×10-4 (0.03)

Hydromorph -0.0271 (-0.70) ** -0.4925 (-2.18)

Lowland *** 0.0578 (3.09) -0.1174 (-1.01)

Irrigated 0.0122 (0.09) -1.4348 (-0.01)

Rain Days 0.0087 (0.69) -0.1294 (-1.60)

Rain Days2 -4.3×10-5 (-0.70) 6.5×10-4 (1.62)

Rainfall 0.0127 (1.12) -0.1165 (-1.54)

Rainfall2 -5.0×10-5 (-1.12) 4.5×10-4 (1.54)

ln(L) -312.5 -294.9 -231.7 -105.9

t-ratios in parentheses

***, **, * = statistically significant at the 99, 95, and 90 percent confidence levels, respectively.


