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Market price per unit of the ith crop in the 
kth market 
Yield/acre of the ith crop on the jth land 
class 
Acreage of the ith crop planted on the jth 
land class and subsequently sold in the kth 
market 
Cost of production per acre of the ith crop 
on the jth land class and of transportation of 
the per acre product to the kth market 
Total available acreage of the jth land class 
Net market demand for the ith crop in the 
kth market to be supplied by the new proj-
ect; that is: 

Where: 

Pik 

Oil 

Xijk 

Cijk 

Qik 

Pik = aik + bik qik 
	

(5) • 
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Estimating Land Use Patterns: A Separable Programing Approach 

• 
By Wen-yuan Huang and Howard C. Hogg 

A model is described that projects land use patterns under both 
competitive and profit maximizing conditions. Separable pro-
graming is utilized to internalize price effects resulting from 
project production, and to allow extension of the basic model to 
include cross-elasticities. An empirical example, as used to illus-
trate the model, includes a detailed description of model formu-
lation for solution on the IBM-MPS System. 

Keywords: Separable programing, Project evaluation, Competi-
tive-equilibrium land use, Profit-maximizing land use. 

discussed here, equilibrium product prices and quantities 
demanded are determined by both supply and demand. 

MATHEMATICAL MODEL 

The basic structure of the land use model can be 
expressed as follows: 

Maximize: 
INTRODUCTION 

The model described in this article can be used to 
predict land use patterns on newly developed projects 
when project production is expected to affect product 
price. Market demand and supply curves summarizing 
preproject conditions are included in the model for 
each market available to producers and each commodity 
that can be grown on the project. A linear programing 
analysis is used to predict land use patterns for the 
project. Project supplies are added to those of existing 
producers to assess demand and price implications. The 
project can be modeled as if it were a profit-maximizing 
monopoly, or, if appropriate, as if there were competi-
tive equilibrium for each commodity, site, and market. 
A unique feature involves a method for approximating 
the competitive solution using ordinary linear program-
ing. The model incorporates a constraint defining the 
marginal cost of commodities produced in the project, 
and it modifies the criterion function to compare 
average revenue with marginal cost. The model, as form-
ulated, can be solved with the IBM-MPS (Mathematical 
Programing System). 

There are a number of possible applications of the 
model. Land use patterns under competitive conditions, 
and, consequently, the direct effects of newly developed 
projects can be estimated. When production control is to 
be exercised by the developing entity, profit-maximizing 
land use patterns can also be estimated. This class of 
project exists when a private investor, producer coopera-
tive, or Government agency desires to maximize project 
returns. The model presents an alternative to the point 
demand-minimum cost models widely used in interre-
gional planning. In an application of this type, the model 
is formulated with demand curves for each crop and 
market but no explicit supply curves. The solution indi-
cates the least-cost production pattern, by region and 
land class, to meet the specified demands. The main dif-
ference between the two approaches is that in the model 

Z = E 1 E 	- Cijk Xiik) 	 (1) 
k 

Subject to: 

E E Xg-k‹. Lj for j=1, . . . ,J 
k 

Qik = Aik + BikPik for i=1, . , 
k=1, . . . , K 

Qik = 

Pik 0, and 

Xijk 0 for i=1, . . . , I 

j=1, 	. , J 

k=1.... ,K 

(2)  

(3)  

• 
(4)  
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Slope --- AMR 
	

Total cost 

Total revenue 
or 
Total cost 

Total revenue 

Slope=AMC 

A 

• 
and the current supply curve of the ith crop at the kth 
market is: 

The model consists of sets of linear constraints and a 
quadratic objective function. That is, Z is a function of 
Pik and Xiik. For maximizing or minimizing a quadratic 

Pik = cik 	dik qik (6)  objective function subject to linear constraints, various 
solution procedures have been developed by Kuhn and 

Then: 

d 	s 

Tucker (7), Beale (1, 2), Wolfe (12), Houthakker (6), 
and Hadley (3). A review of interregional quadratic 

Qik =  qik 	qik or  Qik = Aik 	B  ik Pik (7)  formulations using some of these solution procedures is 
available from Heady and Hall (4). 

Where: A land use pattern under "monopoly" conditions can 
be estimated by maximizing the objective function (1) 

Aik  = The constant of the net 

Q. 	cik 

demand curve (assuming a concave function) subject to the constraint 
sets (2), (3), and (4). When land is limited, the solution 
will fall on the line OA shown in figure 1. When land is 

(8)  relatively abundant, the solution is point A. At this 
point, aggregate marginal revenue is equal to aggregate 
marginal cost. 

Aik  = [ 	+ 

dik ik  

By setting price constraints, the model can be used to 
estimate the land use pattern under competitive equili- 

Bik = The price coefficient of 
curve 

r , 	
1 - 

the net demand brium conditions. Such a condition is reached when the 
last piece of land entering production will give the same 
marginal rent for any crop planted. Under the assump-
tion of a concave objective function, additional con- Bik = (9)  straints are required to solve the model under two differ-
ent land availabilities. In the first case, quantities of each 
crop demanded by each market can always be provided 

bik 	dik [ 

Optimal Solution for Land Use Under Monopoly Conditions (MR=MC) 

Aggregated quantity of production 

Note: Point A is where aggregated marginal revenue (AMR) equals 
aggregated marginal cost (AMC). 

Figure 1 • 
23 



L (I) (j) 
= I Uik  . Wik  for i=1, 	, / 

j=1 

cc = is an arbitrarily large nonnegative value, and 
R 0 

(L) 
Wik  (10) 

because land is not a limiting factor. The last piece of 
land entering production earns no rent for any crop 
planted. The constraints to be added are: 

(1) (1) (2) (2) 	(L) 

Pik — Uik • Wik Uik • Wik +  • • • + Uik • 

solution.' Here, R must be added to the objective func-
tion: 

Z = E E Ik Pik  Om . Xijk 

Where: 

Cijk Xijk -  CC R 

	

(12)• 

k=1, . . . , K 

Where: 

Cijk 	 (i) 	(1+1) 
Uik  — 	 , the marginal cost with Uik < Uik 01 

for j=1, 	, L -1, and 

(1) 
W ik for j=1, 	L constituting logical variables. 

Each logical variable will take a value of 0 to 1 and 

A solution under competitive conditions can thus be 
obtained by maximizing the objective function (12) sub-
ject to the constraint sets (2), (3), (4), and (11). This 
solution represents an equilibrium in the crop sector and 
in allocating products from new production areas to 
various markets. The solution is not the equivalent of 
Samuelson's equilibrium trade solution, which provides 
a longrun trade equilibrium (10). The competitive solu-
tion of our land use model can be interrupted as a long-
run equilibrium because R is the opportunity cost of 
retaining land in a particular use. When a trade equilib-
rium is desired, the model can be extended to provide it.2  

SEPARABLE PROGRAMING FORMULATION 

In this article, the solution procedure of separable 
programing, described by Hadley, is used (3). Separable 
programing is a technique for handling a nonlinear ob-
jective function or nonlinear constraints that can be 
written as: 

l As a simple example of the equilibrium solution, assume 
one market for two crops. If at an arbitrary production level, 
marginal rent R 11  from crop 1 is greater than marginal rent R 21 
from crop 2, the land used by crop 2 will be reallocated to 
crop 1. Consequently, R 1 1 will decrease, while R21 will in-
crease because of the downward-sloping net demand curves for 
the two crops. Land reallocation will continue until an equili-
brium condition, R11  equals R21, is reached. In other words, 
marginal rent from planting either crop 1 or crop 2 is the same. 

The term -c4';' , wherein a is a positive constant and R is rent, 
is to be maximized. The smallest value of R which makes R 11 
equal R 21  equal R will be found. Thus, by employing the con-
straints (equation (11)) and the objective function (equation 
(12)), equilibrium in the crop sector can be obtained. 

2 In his net social payoff model, Samuelson assumes that the 
markets are interdependent; trade between two markets is 
allowed. (The model presented here assumes no trade between 
markets.) The equilibrium solution is obtained when the price 
difference of a commodity between any two markets is less than 
the transportation cost of moving a unit of commodity from one 
market to the other. When this condition is reached, net social 
payoff is maximized. Takayama and Judge (1) and Plessner and 
Heady (9) formulated constraints for an equilibrium in trade as: 

Pik  -Pih  < Tkh  for all i,k, and h 

Where: 

Tkh  is the transportation cost between k and h markets 

This set of constraints can be added to our model so that an equili-
brium solution in both the crop sector and trade can be achieved. • 

L 

1=1 Wik. =1 • 

Figure 2 shows the prices Pik (in the solution) will 
(1) 	(m) 

be between Uik and Uik, depending on the position of 
the demand curve Qik. The solution is obtained at the 
point where the demand curve intersects the marginal 
cost curve MCik. This marginal cost is the cost of pro-
ducing a unit of the ith crop on the last unit of land 
entering production and of selling it in the kth market. 

In the second case, land is limited and all of it is 
brought into production. The last piece of land entering 
production will earn the same marginal rent for any crop 
planted. Figure 

f
3 shows that price Pik will be greater 

, 
k•
m) 

than or equal u. The constraints needed are: I 

m (L) (L) 
Uik  Wik  = R for i=1, 	, I 	(11) 

L=1 k=1, . , K 

Where: 

R = Marginal net price, an internally determined con-
stant 

Note that by setting R = 0 in constraint (11), the con-
straint (10) becomes a special case of (11). An equi-
librium solution is reached only when the minimum mar-
ginal rent is obtained, but all land is brought into 
production. Given the form of the objective function 
(1), it is likely that many values of R will satisfy rela-
tionship (11). However, only one value of R is a mini-
mum for all possible R's and provides an equilibrium 
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• 	 Equilibrium Solution (Pik - MCik) with Abundant Land 

Q
, 
ik Qik 

  

Product 

Price or 

Marginal 

Cost 

Product 

	

(m) 	  
Price 

Uik 	  

Uik 

Equilibrium Solution (Pik = MCik = constant) with Limited Land 

A 

(m) 

Qrk 

Pik 	  

(1) 

	

Uik 	  
(1) 

Total Quantity 

Note: Qik  and Q;k  are two possible positions of demand curve for 
ith crop on kth market. 

Figure 2 

Total Quantity 

Figure 3 

	  MCik  
or Marginal 
Cost 
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Uik 



      

L
P11 P  12 • • • P ik • • PIK 

B11 
B12 

  

P11 
P12 

  

. . . 
Bik 	Pik 

. . . 

BIK IK 

      

The matrix B is a diagonal one. If all values of Bik for 
i=1, . . , /,K=1, 	,K are negative,the matrix B is 

f (Xi, X2, . . , Xn)= f1  (Xi) + . fn  (Xn). 

In each nonlinear function fi(Xj),i=1, . . ,n is a func-
tion of only one variable and it is approximated by a 
piecewise linear function. The nonlinear problem thus 
becomes a linear programing problem. One reason for 
using separable programing is because the procedure 
has been incorporated into the IBM-MPS (8). MPS, 
one of the most flexible computer packages available, 
provides great efficiency in computation. Another 
reason for using separable programing is because of the 
nature of the model. The quadratic terms in the objec-
tive function can be expressed as a linear combination 
of a function of only one variable. Thus, the function Z 
equals f (Pik, Xijk) can be expressed as Z equals fi (Pik) 
plus f2 (Xijk) as follows: 

1. Rearrange the nonlinear terms in the objective 
function: 

negative definite and function (13) is concave. In this 
case, a unique solution exists for maximization. 

To test to determine if a solution is possible, three 
steps must be taken before preparing the computer input 
data. These are: (1) linearization of the nonlinear term; 
(2) approximation of the logical constraint (11); and 
(3) construction of an MPS data matrix. The second 
step is needed only for a competitive equilibrium prob-
lem. 

LINEARIZATION OF NONLINEAR TERMS 

Before constructing the constraint matrix, the non-
linear term E E Bik P2lk  must be linearized. Procedures 

i k 
for linearization are given in (8). However, an example of 
linearization, for the term B11P11 

2 (i=1, k=1) appears be- 
low. Two equations are needed for each nonlinear term: 
the grid equation, and the functional equation. 

The grid equation is: 

• 

Pik eij Xijk 
k 

as 

Pik (1 eij Xijk) 
i k 	j 

(0) 	(1) 	(1) 	(2) 	(2) 
P11 =X11 +D11 X11 +D11 X11 + • • 

(n11) 	(n11) 
+ D11 	X11 

• (14) 

2. Since E OiiXiik is equal to Qik, it is valid to sub-

stitute (Aik +BikPik) for I 017X ilk in the objec-

tive function. The objective function (12) becomes: 

Z = 	Pik  . A ik  + I BikPik - 	. (13) 
i k 	i k 	i j k 

Xijk  - al?  

The value of P11 at the beginning of the first 
interval 

(r) 
X11 for r=1, . . . n are special variables for separable 

variable P11 

Where: 

(0) 
X11 = 

Because the original objective function (1) is a separable 
function and can be expressed as function (13), separa-
ble programing can be employed to search for the opti-
mum solution. Furthermore, with objective function (13), 
the quadratic term E E BikP2ik can be expressed in the 

i k 
matrix form P'BP as: 

(r) 	 (1) 	(r) 
0 < X11  < 1, and if Xll • . . X11  are used to com- 

pute the P11value,  then 

(1) 	(2) 	(r-1) 	(r+1) 	(r+2) 
X11 = X11 ' • • = 	= X11  = 1 and X11 = X11 

(n11) 
= X11 = 0 

(r) 

D11 = length of the rth interval, r = 1, . . . , nil  

(r) 
The values of D11 have to be determined by the user and 
are used for linearization.' 

3 (L) 
D11  is an arbitrarily small increment of the price Pi 1. The 

 
magnitude of DelI 

) 
should be small if the value of the nonlinear 

2  
term B 11P11  is to be sensitive to the change in price P. 
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• The functional equation is: 

2 	(0) 	(1) (1) 	011) 011)  
Bl1P11 = Y11 + Ell X11 + 	+ Ell X11 (15) 

Where: 

(0) 	 2 
Y11 = is the value of B11P11 at the beginning of the 
(r) 	first interval 	 2 

Ell = is the change in the value of B11P11 in the rth 
interval for r=1, . . . , n11  

Figure 4 illustrates the linearization process and the rela-
tionship between the two functions. For example, the value 

2  
of B 11P11 at the point (X, Y) is (B  11E

( 1)  
1 	

(2) 
+ BllE  1 , 

	

(1) 	(2 
and 	

) 
d the corresponding value for P11  is D 1  1 + D  11 . To 

obtain these values from equations (14) and (15),the special 
(1) 	(2) 

variables Xii  and X11  are set equal to 1 and the other 

(r) 
values of X11 are set equal to 0. 

Similar procedures can be employed for linearizing each 
2 

of the other terms, Bik  Pik  for all i not equal to 1 and k 

not equal to 1. Once the linearization procedures are com-
pleted, the constraint matrix can be constructed. 

APPROXIMATION OF THE LOGICAL 
CONSTRAINT FOR THE COMPETITIVE 
EQUILIBRIUM CONDITION 

Employing the special variables described earlier, the 
constraint (11) can be reformulated as: 

(2) (3) 
be small if the magnitudes of Mik  , Mik,  . . . 

(n) 
Mik are small. 

CONSTRAINT MATRIX 

The objective function (13) and the constraint sets (2), 
(3), (4) and (16) for three crops (/=3), two land classes 
(J=3) and two markets (J=2) are constructed in matrix 
form in table 1. Each row is a constraint and each col-
umn, a structural variable. The matrix, which represents 
the basic structure of the model, can be extended for a 
relatively large number of crops, land classes, and markets. 
Additional constraints may be added for other types of 
resources. Because Pik  and Xik  are shown as structural 
variables, cross-elasticities between crops can be built into 
the model by restating the relationship between Pik  and 

Xijk (see appendix). 

USE OF THE MODEL 

In 1968, a paper published in this journal described an 
iterative• model similar to the one developed here (5). The 
illustrative example comes from that article. Tables 3 
and 4 contain all of the basic data which, except for the 
net demand curves in table 3, are identical to the data 
required in the earlier formulation. Both models are 
project oriented but ours is more general because cross-
elasticities and constraints other than land and commodi-
ty demand can be accommodated. Table 2 illustrates how 
the input data is entered into the matrix shown in general 
form in table 1. In table 2, the coefficients Aik  and Bik  
are from table 3, and C k and 0.- are from table 4 (the 
value for cc is 1,000,00U). The coefficients A's and M's 
are computed by using equation 15 and these are as 
follows: 

P 	
(1)

X 
 (1) 	(2) 	(2) 

k Mik 	ik 	Mik Xik Pi 	M 

for i=/, 	, I 
k=1, . . . , K 

Where: 

(1) (1) 
Mik 	Uik 

(2) (2) 	(1) 
Mik = Uik - Uik 

"ik 	"ik Uik 	Uik 

(n) 	(n) 
M(n)X(n)  =R 

(16) 

A1  = 
A2 = 
A3 = 
A4 = 
A5 = 
A6 = 
A7 = 
A8 
A9 = 
A10 = 
An  = 
Al2  = 
A13  = 
A14 = 
A15 = 
A16  = 

843325 
371063 
438529 
505995 
573461 
640927 
708393 
775859 
843325 
910791 
978257 
1045723 
1113189 
1180655 
1248121 
1315587 

A17 = 50150 
Ai8  = 150450 
A19 = 250750 
A20 = 351050 

A21 = 33025  
A22 = 99075 
A23  = 165125 
A24 = 231175 
A25 = 83825 
A26 = 251475 
A27 = 422875 
A28 = 592025 
A29 = 85825 
A30  = 257475 
A31 = 499125 
A32 = 600775 

M1  = 
M2  = 
M3  = 
M4  = 
M5  = 
M6  = 
M7  = 
M8  = 
M9  = 
M10  = 

Mll = 
M12 = 
M13  = 

M14 = 
M15  = 

140 
4.444 
5.556 
88.888 
1.112 
.909 
175 
4L666 
83.34 
100 
5.55 
6.945 
110.53 
.5850 
.6530 

ik 
Jr) 

= The special variables defined in equation (14), 
r=1, n . Constraint (16) is an approximation of 
constraint (11). The approximation error will 

The formulations represent two alternatives: (1) the 
land use pattern expected on a newly developed proj-
ect under competitive conditions, and (2) the profit- 
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2 

2 
B en 

	

(1) 	(2) 	(3) 

	

r4.--  D11 	
1 	

D11 	
1 	

D11 
P11 

maximizing land use pattern when production control, 
as opposed to free choice, is exercised. Tables 5 and 6 
compare the original solution with that of the present 
model. The example uses five crops, three land classes, 
and one market. 

All lands in the project enter production under com-
petitive conditions in the example. In the "monopoly" 
solution, only land class 2 is utilized in its entirety, 
resulting in a zero opportunity rent for land. The "mo-
nopoly" prices are, of course, higher than those indi-
cated for the competitive solution. The material pre-
sented in tables 5 and 6 is available directly from model 
output. In addition, certain other impacts of the project 
can be quantified from the model. For example, the 
quantities grown by project producers can be obtained 
by solving the original supply curves with the computed 
equilibrium prices. Performing the same operation on 
the demand curves results in an estimate of total market 
supply. The difference between solution values for the  

iterative and separable procedures results from the lin-
earization of equation (7) and the approximation of 
equation (11) by (16). Objective function values for 
the competitive solution were $307,481 (separable) and 
$310,183 (iterative). A value of $1,052,032 was ob-
tained for the monopoly solution. 

Some users may be concerned that the budgeted pro-
duction costs are based on factor use under a price level 
different from the final equilibrium prices. This incon-
sistency can be resolved by rebudgeting at the new prices. 
If optimum input combinations change, the model can be 
rerun with the newly budgeted costs. Several attempts at 
this iterative process will isolate a price range that brackets 
the equilibrium position. An acceptable range depends on 
the linearization precision, data accuracy, and the relative 
magnitude of the range of prices. In most applications, 
it should not be necessary to undertake this step as the 
difference between the budget price and final equilibrium 
price will be small. 

Linearization of the Nonlinear Function 131113211  

(0) (1) (2) (3) 
X=X11 X11 X11 X11 

Figure 4 

28 



• 

SPECIAL VA RIABLES 

Table  1.  Data  matrix  for  land use  model 
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for  land use  model Table  2.  Data  
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Table 3.Market demand and supply functions for existing producersa  

Crop 

Demand functions Supply functions Net demand curves 

Price 

intercept Slope 

Cost 

intercept Slope 

Quantity 

intercept Slope 

aik 	 bik 	 cik 	 dik 	 A ik 	 31k 

1 250 -0.003 -1,125 0.25 78,833 -337.33 

2 300 -.05 -33,330 17.0 4,039 -20.06 

3 400 -.08 -1,143 1.4 4,184 -13.21 

4 250 -.03 -1,500 2.0 7,583 -33.83 

5 300 -.03 -2,500 1.0 7,500 -34.33 

aPrices are estimated in dollars per 1,000 pounds and quantities are in 1,000 pound units. In this example the demand and supply 

curves are linear. 

Table 4. Production costs and yields by land classa  

Crop 

Production costs per acre Clik  Per acre yield 

Land 

class 1 

Land 

class 2 

Land 

class 3 

Land 

class 1 

Land 

class 2 

Land 

class 3 

Dollars 	 1,000 lbs. 

1 7,000 6,500 6,000 50 45 40 

2 5,000 4,500 4,000 55 50 45 

3 7,000 6,500 6,000 40 30 20 
4 10,000 9,500 9,000 100 90 80 

5 10,500 10,000 9,500 95 90 85 

aln this example, land classes 1, 2, and 3 show progressively lower yields for all crops, but this progression is not a requirement of 

the program. 

Table 5. Final acreages Xiik  for alternative problem solutions 

Crop 

Original iterative solution Separable competitive solution Separable monopoly solution 

Land 

class 1 

Land 

class 2 

Land 

class 3 

Land 

class 1 

Land 

class 2 

Land 

class 3 

Land 

class 1 

Land 

class 2 

Land 

class 3 

Acres 

1 467.2 100.0 6.9 473.3 100.0 2.6 295.3 
2 50.0 49.3 22.9 
3 42.5 38.5 38.5 
4 40.3 38.1 25.6 

5 43.0 43.0 24.7 

Total 550.0 100.0 100.0 550.0 100.0 94.9 384.1 22.9 
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(a) 

The solution for this differential equation is: 

,c) 
0  q11 e12 

Q11 + q11 = po • P21 
11 

e12 
P21 q11 • 

Table 6. Equilibrium product prices and opportunity rents from alternative solutions 

Crop 

Equilibrium product prices 

Land class 

Opportunity rents 

Iterative 

solution 

Competitive 

solution 

Monopoly 

solution 

Iterative 
solution 

Competitive 
solution 

Monopoly 
solution 

Dollars 

150.28 	150.00 	190.00 

Dollars 

1 	 514.15 	493.67 	 0 

2 	 89.14 	90.91 	150.00 2 	 262.73 	254.43 	 0 

3 	 187.85 	200.00 	200.00 3 	 11.32 	 0 	 0 

4 	 105.14 	112.50 	150.00 

5 	 111.90 	111.77 	150.00 
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APPENDIX 

A simple single-market example appears below. 
Assuming that the cross elasticity between the demand 
for crop 1, q11  and the price, P21, of crop 2 in market 1 
is constant, the cross elasticity can be expressed as: 

Where 41  and /11  are the equilibrium (intersection of 
dP21 	 demand and supply) quantity and price on the market be- 

fore the new project starts. 
dq11 

e12 - 
q11 P21 

Rewrite as: 
	 Since Q- - = d 11 q°11 

	 (b) 

dP21 	dg 11 
	 equation (a) can be expressed as: 
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e q11 	e12  
®11X1j1+  '711 P21 P21 

Incorporating the cross-elasticity in the model means 

P212 
 adding constraint (c). Since P21 2  is a nonlinear term, 

linearization of P21 
e12 is required. The procedures for 

linearization are those described in the text. To add a 

(c) 

cross-elasticity constraint to figure 5 requires the addi- 

tion of 1 column (Structural Variable) for P21  and 2 
rows-1 row for the cross-elasticity constraint and 1 for 
the functional equation. Additional grid equations and 
special variables employed in the linearization of P.2  can 

be used for the linearization of P21 

linearization 

e12 

tk 
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Substituting 
	

f°r Qii,  

equation (b) becomes 
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