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Abstract 

 

The present study uses local maximum likelihood (LML) methods recently proposed by 

Kumbhakar et al. (2007) to assess the technical efficiency of arable crop Kansas farms. LML 

techniques overcome the most relevant limitations associated to mainstream parametric 

stochastic frontier models. Results suggest that Kansas farms reach technical efficiency levels 

on the order of 90%. These results are compared with another flexible efficiency assessment 

alternative: the deterministic data envelopment analysis (DEA).  

 

Keywords: Technical efficiency, Nonparametric, Local maximum likelihood approach 

JEL classification: C14, Q12, D24 

 

1. Introduction 

 

Technical efficiency is a prerequisite for economic efficiency, which in turn ensures the 

economic viability and sustainability of a firm. Assessment of firms’ technical efficiency 

levels has drawn broad research interest. Such study is important for producers, as it assists 

rational input allocation to achieve desired output levels, which strengthens a firms’ capacity 

to face changing market conditions, increasing input costs and economic hardships. It is also 

relevant for policy makers interested in enhancing firms’ economic performance and 

competitiveness, and promoting economic development.  

As is well known, the analysis of technical efficiency assesses to what extent firms are 

able to maximize their output levels with minimum use of inputs. Two main approaches have 

been widely used in the efficiency literature namely, parametric (Stochastic Frontier Analysis 

- SFA) and nonparametric approaches (Data Envelopment Analysis - DEA) (Tzouvelekas et 
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al., 2001, 2002; Oude Lansink et al., 2002; Sipiläinen and Oude Lansink, 2005; Lohr and 

Park, 2006). While both encompass several advantages, they are also characterized by some 

shortcomings. An important difference between these two approaches is that the stochastic 

production frontier (SPF) allows for the stochastic component of production. This makes this 

technique suited to assess production processes involving random variables. Most agricultural 

technologies are stochastic due to unexpected stochastic changes in production (weather 

influences, for example) and other factors that are not under the control of the farm. Further, 

agricultural production studies may be affected by measurement and variable omission errors 

(Coelli, 1995; Chakraborty et al., 2002; Oude Lansink et al., 2002). This makes the SPF 

approach suited for agricultural performance measurement. The SFA further permits the 

conduct of conventional statistical tests of hypotheses. However, this approach presents 

important drawbacks: it relies on the assumption of a parametric functional form representing 

the production frontier, as well as on a distributional assumption for the random noise and 

inefficiency error components. Several studies show that technical efficiency results are 

sensitive to estimation methods and functional form specifications (Ferrier and Lovell, 1990; 

Coelli and Perelman, 1999; Ruggiero and Vitaliano, 1999; Chakraborty et al., 2001). 

Inadequate parametric representations of the frontier and the error distributions can lead to 

biased efficiency estimates (Kumbhakar et al., 2007; Martins-Filho and Yao 2007; Serra and 

Goodwin, 2009).  

Nonparametric DEA techniques overcome the most relevant limitation of SFA: they 

do not rely on specific functional forms. However, nonparametric approaches do not allow for 

stochastic variables and measurement errors, which precludes separating inefficiency effects 

from random noise or random shocks, i.e., all production shortfalls are attributed to the 

inefficiency term. As a result, technical efficiency ratings obtained from the nonparametric 

approach (DEA) are generally lower than those obtained under the parametric alternative 
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(SFA) (Sharma et al., 1999; Puig-Junoy and Argiles, 2000; Wadud and White, 2000). Both 

methods however have been found to lead to similar rankings of technical performance of 

decision making units (DMUs).   

Recently, a new methodological approach based on local modeling methods has been 

developed (Kumbhakar et al., 2007) to overcome the limitations of parametric approaches, 

without foregoing their advantages. In contrast to parametric models, this method does not 

require strong assumptions regarding the deterministic and stochastic components of the 

frontier: the parameters characterizing both production and error distribution are allowed to 

depend on the covariates through a process of localization. As opposed to nonparametric 

approaches, local modeling methods allow for stochastic variables and variable measurement 

errors when estimating technical efficiency scores. Furthermore, these techniques 

accommodate the heterogeneity in the data by deriving observation-specific variances of the 

inefficiency and noise components of the error term (Serra and Goodwin, 2009). The local 

modeling approach by Kumbhakar et al. (2007) is based on local maximum likelihood (LML) 

principles (Fan and Gijbels, 1996).  

In spite of the interesting features of this approach, the complexity of implementing 

the method has limited its use to a few empirical studies. The work by Serra and Goodwin 

(2009) constitutes a notable exception. Our work contributes to the scarce literature on the use 

of local modeling techniques to assess technical efficiency. The present study focuses on 

estimating technical efficiency ratings of a sample of cereals, oilseeds and protein crops 

(COP) farms in Kansas using flexible LML methods that are compared with the results of 

DEA techniques. While the existing literature on technical efficiency has broadly compared 

parametric (SFA) and nonparametric approaches (DEA), to date, there is no study that 

compares technical efficiency scores obtained under nonparametric (DEA) and LML 

modeling. In addition, ours constitutes the first study that assesses the efficiency of Kansas 
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arable crop farms using local modeling approaches (Rowland et al., 1998; Cotton et al., 1999; 

Serra et al., 2008). The relevance of Kansas as a leading US producer of arable crops makes 

the analysis especially interesting. In 2010, Kansas generated almost 20% and 50% of total 

wheat and sorghum produced in the US, respectively. Kansas is also a leading corn and 

soybean producer, with around 5% of the global US production. The relevant role of Kansas 

in US arable crop production justifies our decision to study technical efficiency of Kansas 

arable crop farms. 

The paper is organized as follows. In the next section we describe the methodology 

used in our empirical analysis. The third section presents the data and results from the 

empirical implementation. We finish the paper with concluding remarks. 

 

2. Methodology 

 

The existing literature that assesses the technical efficiency under which firms operate, has 

mainly focused on two approaches: the stochastic parametric approach and the deterministic 

nonparametric method. Several studies have been carried out showing the drawbacks and 

advantages of each technique. While parametric approaches require strong assumptions 

regarding specification of the production frontier and the error distribution, that can lead to 

misspecification issues and biased efficiency estimates, nonparametric approaches do not rely 

on specific functional forms. However, nonparametric techniques ignore the stochastic 

component of production, which can also lead to biased technical efficiency measures. 

Fan et al. (1996) propose a two-step pseudo-likelihood estimator that does not require 

specification of the functional form of the production frontier, but still requires assuming a 

distributional form for the stochastic components of the frontier. A new local modeling 

parametric approach recently proposed by Kumbhakar et al. (2007) overcomes the limitations 
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of SFA, without foregoing its advantages. This approach is built upon the LML principle (Fan 

and Gijbels, 1996) in which the parameters of the stochastic and the deterministic components 

of the frontier model are localized (flexibilized) with respect to the covariates.  

Since our analysis is based on a large number of Kansas farms over a broad 

geographic region with different climatic conditions, heterogeneity is likely to characterize 

the sample (different farm sizes, uneven skills, etc). Implementation of the LML approach by 

Kumbhakar et al. (2007) is suited to deal with heteroscedasticity, as it localizes the standard 

errors characterizing the distribution of efficiency and noise components of the error term. 

Based on this approach, we seek to assess the technical efficiency with which COP producing 

Kansas farms operate and compare efficiency ratings with scores derived by the DEA 

approach.  

The general stochastic frontier models proposed by Aigner et al. (1977) and Meeusen 

and Van den Broeck (1977) can be specified as follows 0

T

i i i iY X u v     , where iY  

denotes the observed quantity of output produced by firm  1,...,i N , 
d

iX   is a vector of 

input quantities required by the production technology, the betas are unknown parameters to 

be estimated, 0iu   is the inefficiency term and iv  is a random noise term. The parametric 

estimation of stochastic frontier models is usually based on maximum likelihood techniques. 

The joint pdf of  ,Y X is decomposed into a marginal pdf for ,X  = ( )pdf x p x and a 

conditional pdf for Y given x ,     | ,pdf y x g y x , where   kx   is the localized 

vector of parameters to be estimated, and g  is a function assumed to be known. 

Based on the parametric model proposed by Aigner et al. (1977), the conditional pdf 

for Y given X x  can be specified as:  Y r X u v   , where  r x is the production 

frontier,   2| 0, uu X x N x and   2| 0, vv X x N x , and u  and v  are assumed to 

be  independently distributed, conditional on X . Following Kumbhakar et al. (2007), the 3-
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dimensional local parameter is represented as         2 2, ,
T

u vx r x x x   and is approximated 

using local polynomials. The conditional log-likelihood function     
1
log ,

N

i ii
L g Y X 


  

is locally approximated by the following mth order local polynomial fit:  

 

        0 1 0 1

1

, ,..., , ...
N

m

N m i i m i H i

i

L q Y X x X x K X x     


         (1) 

 

where x  represents a fixed interior point in the support of  p x , logq g ,  1,...,
T

j j jk  

for 0,1,...,j m , and    
1 1

HK u H K H u
  , where K  is a multivariate kernel function  

and H is assumed to be a positive definite and symmetric bandwidth matrix. The local 

polynomial estimator is given by    0
ˆ ˆx x  where  

 

      
0

0 0 1
,...,

ˆ ˆ,..., arg max , ,...,
m

m N mx x L
 

      (2) 

 

Kumbhakar et al. (2007) propose to empirically derive the LML estimator using a local linear 

fit. By assuming the random noise and inefficiency components to be distributed following a 

local normal and a half normal distribution, respectively, the conditional probability density 

function of v u    is specified as: 

 

 
   

 

 
2

|
x

f X x
x x x


  

  

   
         

   
 (3) 
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where      2 2 2

u vx x x    ,      u vx x x   and  . and  . represent the 

probability and the cumulative distribution functions of a standard normal variable, 

respectively. The local linear parameter is given by         2, ,
T

x r x x x   and the 

conditional pdf of Y given X  is expressed as: 

 

  
 

 

 
  

 

 
2

;
y r x x

g y x y r x
x x x


 

  

   
         

   
 (4) 

 

The conditional local log-likelihood function is specified as: 
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  (5) 

 

In the present study, a local linear model for the frontier  ir x  and a local constant model for 

the parameters of the error term is used that allows rewriting expression (5) as: 

 

 
  

    

2

0 12 0
0 1 0 0 12 2

1 0 0

1 1
, log log

2 2

T
N

i i T

N i i H i

i

Y r r X x
L Y r r X x K X x


 

 

   
           
 
 


 

(6) 

 

where  2

0 0 0 0, ,
T

r   and 1 1

Tr  . The local linear estimator of the model is given by 0̂ : 

 

      
0 1

0 1 0 1
,
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Following Jondrow et al. (1982), the efficiency measure for a particular point can be 

obtained from the following expression: 
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                                     (8)  

 

where    0
ˆ ˆ

i i iX Y r X   . In the case of variables measured in logs, the efficiency score is 

given by    ˆ ˆexp 0,1i ieff u   . Finding a solution to the maximization problem in (7) 

requires specifying starting values. To do so, we follow Kumbhakar et al. (2007) and start 

with the local linear least squares estimator of  0̂r x  and  1̂r x and the global ML estimators 

of 2̂  and  . The local intercept   0̂r x
 
is corrected for the moment condition along the lines 

of the parametric Modified Ordinary Least Squares (MOLS) estimator. Kumbhakar et al. 

(2007) recommend using the following expression for such purpose 

    2

0 0
ˆ ˆ ˆ2MOLS

ur x r x    , where  2 2 2 2ˆ ˆˆ ˆ 1 .u      Hence, initial values for solving (7) 

are obtained from  2

0 0
ˆˆ ˆ, ,

T
MOLSr  

 
and  1 1̂

T
r x  . 

The product kernel chosen is   1

1

dd

jj
h K h x 


 , where  .K  represents the 

Epanechnikov Kernel and d  represents the number of covariates. The bandwidth is adjusted 

for different variable scales and sample sizes and is defined as: 
1 5

base xh h s N  ; where xs  

represents the vector of empirical standard deviations of the covariates and N  represents the 

number of observations. The choice of the optimal value for baseh is based on the cross 

validation criterion (CV) proposed by Kumbhakar et al. (2007). The CV, for a given value of

baseh , is computed by minimizing the following expression: 
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2

0

1

1
ˆ

N
i i

base i i

i

CV h Y r x u
N 

   
   ,                                                                                (9) 

 

where 
 

0̂

i
r  and 

 i
iu  are the leave-one-out versions of the local linear estimators defined above.  

 As noted above, apart from Kumbakar et al.’s (2007) LML proposal, efficiency of 

Kansas farms is also assessed by DEA approaches. Following Färe et al. (1994), the DEA 

linear programming model to assess output-oriented technical efficiency levels can be 

expressed as: 

 

,

max

. .

0

0

1 1

0

i

i

s t

y Y

x X

N

 



 







  

 

 



 (10) 

 

where 1   , N  is the number of farms, X  is a d N  matrix of inputs, Y  is a 1 N  

matrix of outputs. Technical efficiency scores are given by 1  . The constraint 1 1N    is 

included to allow for variable returns to scale (VRS). As is well known, without such 

constraint constant returns to scale (CRS) are assumed (Charnes et al., 1994). To test for 

divergence between the efficiency distributions obtained from LML and DEA methods, the 

standard Kolmogorov-Smirnov (KS) two-sample (two-tail) test statistic is conducted:  

 

max ( , ) ( , )a bD F x N F x N                                                                                                 (11) 
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where ( , )aF x N  represents the empirical distribution function for a sample a  with total 

observations N . 

 

3. Data and results 

 

The empirical application focuses on a sample of Kansas farms that specialize in the 

production of COP crops. Farm-level data are obtained from farm account records from the 

Kansas Farm Management Association (KFMA) dataset and cover the period 2000-2010. 

Data available include farm production and input use, financial and socio-economic 

characteristics, as well as farm structural characteristics. To ensure that COP is the main farm 

output, farms whose COP sales represent at least 90% of total farm income were selected. 

This criterion allows obtaining a relatively homogeneous sample of farms. The dataset is an 

unbalanced panel that contains 1,258 observations.  

We define farm output ( iy ) as an implicit quantity index that is computed as the ratio 

of production in currency units to the output price index. Since information on market prices 

is unavailable at the farm-level, the Paasche price index is built on the basis of state-level cash 

unit prices and production data. Output iy  includes the predominant crops in Kansas 

(Albright, 2002): wheat, corn, soybean and sorghum sales. The inputs considered as 

explanatory variables are COP land ( 1x ) measured in acres, total labor input ( 2x ), mainly 

composed of family labor, and expressed in annual working units (AWUs), as a fraction of 

10-hours per day, chemical inputs ( 3x ), other inputs ( 4x ) and capital ( 5x ). Chemical inputs 

are defined as a quantity index that includes the use of fertilizers and pesticides, and is 

obtained by dividing input expenditures by its corresponding price index. Other inputs, also 

defined as a quantity index, include fuel and seed expenses. Capital input ( 5x ) aggregates the 
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value of machinery, other equipment and buildings used in the production process, and is 

determined by dividing capital value by its corresponding price index. Input prices are 

measured using national input price indices. Monetary values are measured at constant 2000 

prices. Data unavailable from the Kansas database are obtained from the United States 

Department of Agriculture (USDA) and the National Agricultural Statistics Service (NASS), 

from which country-level input price indices and state-level output prices and quantities are 

determined.   

Table 1 provides summary statistics for the variables used in the analysis. Sample 

farms use, on average, 293 AWUs, of which 82% represents unpaid family labor. In contrast 

to the European Union (EU) arable crop farms that are mainly small holdings with around 116 

acres (Farm Accountancy Data Network, FADN 2012), Kansas farms devote 1,278 acres on 

average to COP production. More than 80% of the COP area is allocated to wheat, soybeans, 

sorghum and corn production. The average value of farm production (around 154 thousand 

dollars) almost doubles the EU value (about 84 thousand dollars). However, per acre statistics 

suggest that EU farms are much more intensive than Kansas farms: while EU farms have an 

average income of 441 dollars per acre, Kansas income is 122 dollars per acre. Sample farms’ 

investments in machinery and buildings are on the order of 163 thousand dollars. On per acre 

basis, Kansas farms are less intensive in capital use (150 dollars per acre) relative to the EU 

with investment ratios on the order of 1,666 dollars per acre (FADN, 2012). To ensure 

immunity against pests and diseases and to avoid productivity loss due to pest infestations, 

Kansas farmers spend around 38 thousand dollars annually on chemical inputs. On a per acre 

basis, expenses in fertilizers and crop protection products are much higher in EU farms (178 

dollars per acre versus 29 dollars per acre). Expenses in other inputs, seeds and energy, is 

rather low compared to chemical input costs and on the order of 24 thousand dollars. 
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  Using the aforementioned variables and following Kumbhakar et al. (2007), we 

specify the parametric model as a Cobb-Douglas function: 

 

0 1 1 2 2 3 3 4 4 5 5log log log log log logY x x x x x u v                                            

(12) 

 

It is relevant to note that rigidities associated to this production frontier are overcome 

by estimating the frontier for each observation in the sample, i.e., flexibility is achieved 

through varying parameter estimates. To select the bandwidth parameter required to derive the 

LML estimator of (12), we use the CV procedure described above and evaluated at each 

sample point. It is worth noting that with multiplicative multivariate kernels, an observation i  

will only be considered in the LML estimation if all covariates ix  fall into the interval

 , )i i i ix h x h  ; where 
1 5

ii base xh h s N  . If even one of the components fails to fall into this 

interval, the observation will not be considered for the estimation. Such procedure requires 

relatively large values for baseh in order to have a sufficiently large subsample of observations 

to locally estimate the stochastic production frontier. Hence, the more important the sample 

heterogeneity is, the bigger the required bandwidth. We start with a crude grid of values to 

then focus on a finer grid for the selection of the optimal baseh . Final results show that the 

bandwidths 1h , 2h , 3h , 4h and 5h take values of 2.38, 2.34, 3.37, 3.47 and 2.86, respectively. 

Once we select the adequate bandwidth for our data, we then derive local parameter estimates.  

Descriptive statistics for the variation of the local estimates of 
2

u and 
2

v are shown in 

table 2. These statistics confirm the presence of heteroscedasticity and indicate an important 

degree of variation among observations regarding the shares of the inefficiency term to the 

noise term (
2 2/u v   ).  
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Figure 1 illustrates the variation of the parameters of the deterministic component of 

the frontier. Since we use a Cobb–Douglas functional form for our model, the coefficients 

represent input elasticities. The variation of the localized estimates suggests that assuming the 

same input elasticities for all observations may not be reliable. Variation is specially relevant 

for land, with an elasticity that ranges from 25% to 45%, followed by chemical inputs and 

capital, that have an elasticity fluctuating from 26% to 38% and 18% to 30%, respectively. 

Input elasticities indicate that farms operate under constant returns to scale with a mean scale 

elasticity equal to 0.997 and a standard deviation of 0.045 (table 3).  

As expected, localized elasticity estimates are positive for a majority of farms in that 

none of the inputs considered is over-utilized. Noteworthy is the fact that, for some 

observations, the labor elasticity is negative. This is not surprising given the share of family 

labor in our sample farms. Since this labor type usually involves an opportunity cost but not a 

direct cost, incentives to use it efficiently may be less strong than for other inputs.  

Production elasticity estimates indicate, on average, that an increase in chemical input 

use has the highest potential to increase output, followed by land, capital, other inputs and 

labor (table 3). The low contribution of labor to farm productivity in Kansas farms can once 

more be attributed to the high share of family labor. The fact that capital, land and other 

inputs have lower elasticities than chemicals inputs suggests that the latter are used less 

intensively.  

Table 4 illustrates the distribution of the localized efficiency estimates. Results show a 

high average technical efficiency score, on the order of 0.90, indicating that farmers reach 

90% of their maximum potential output. Therefore, our sample farms could increase their 

output by 10% by efficiently using their inputs. Our results differ from those in Serra et al. 

(2008) who used the same database, but focused on the period 1998-2001. Through 

Kumbhakar’s stochastic frontier model (2002), Serra et al. (2008) obtained mean technical 
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inefficiency levels of 0.30, versus 0.10 in our analysis. The use of different methodologies or 

farmers’ performance improvement over time can explain differences in efficiency scores 

across studies. However, our results are closer to other findings by Rowland et al. (1998) for a 

sample of Kansas swine operations from 1992 through 1994, or Cotton et al. (1999), for a 

sample of multi-output Kansas farms during the period 1985 to 1994. Both authors used 

nonparametric DEA techniques to derive efficiency estimates and obtained mean efficiency 

scores of 0.89 and 0.91, respectively.  

High technical efficiency levels are associated with low production costs and higher 

chances of firm’s economic viability. Technical efficiencies range from a minimum of 0.19 to 

a maximum of 0.99 indicating important dispersion and heterogeneity within Kansas farms. 

Almost one half of the observations display high performance levels presenting efficiency 

ratings greater than 0.90. 

DEA efficiency scores under CRS (0.81) assumption are, on average, lower than those 

derived from the LML approach. Under VRS, however, efficiency ratings are much closer to 

LML results (0.92).
1
 At the 5% level of significance, the KS

2
 test indicates that the difference 

in efficiency scores derived from DEA and LML techniques is statistically significant (table 

5). Given the fact that LML is a technique that overcomes the most relevant limitations of 

DEA methods, its reliability may be higher. 

 

 

                                                           
1
 DEA results suggest that Kansas farms do not operate at optimal scales. 

2
 The nonparametric Li (1999) test has been also computed indicating that the two distribution obtained from 

LML and DEA methods are equal and the null hypothesis cannot be rejected at the 5% level of significance with 

p-value 0.35 and 0.33 for LML vs. VRS and LML vs. CRS respectively. However, the power of this test is very 

sensitive to the dimensionality and sample size which can conduct to misleading impression of equality of 

distributions (Simar and Zelenyuk, 2006). 
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4. Concluding remarks 

 

The relevance of deriving reliable technical efficiency scores to assist firms’ management 

decisions as well as policy design, makes it essential to use methodologies that produce farm-

level non-biased efficiency ratings. The parametric SFA and the nonparametric DEA 

approach have focused the attention of mainstream efficiency literature. Both approaches 

have been widely criticized for their shortcomings that may lead to biased efficiency 

estimates.  

Recently, Kumbhakar et al. (2007) proposed a new approach, namely the LML 

method. The method estimates the parameters of the deterministic and stochastic components 

of the frontier locally. LML methods overcome the shortcomings of SFA without foregoing 

their advantages. LML techniques are used in this article to assess the efficiency levels 

achieved by Kansas farms specialized in cereals, oilseeds and protein crops (COP) production 

and compares them with those obtained from flexible DEA models. Farm-level data obtained 

from farm account records from the KFMA dataset covering the period 2000-2010 are used.  

Empirical results support the relevance of using the LML approach through the 

variation in the localized parameter estimates, representing the variance of the composite error 

term and input elasticities. Results show high mean efficiency scores (0.90) indicating that 

farmers could increase their output by 10% keeping their input bundle constant. Technical 

efficiency scores derived from the LML approach are higher (lower) than those of the DEA 

model under CRS (VRS). According to KS test, the efficiency scores obtained from DEA and 

LML have different distributions and the difference is statistically significant. Since LML 

allow for both stochastic error terms, as well as for flexibility in the functional form 

representing the frontier function, we suggest that efficiency scores derived under LML 
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maybe more reliable and less biased than efficiency ratings under nonparametric DEA 

alternatives.  

Our research can be extended in many different ways. Different methodological 

innovations to assess efficiency have been recently introduced in the literature. Noteworthy 

are the refinements regarding the measurement of technical efficiency in the presence of 

uncertainty through state-contingent techniques (Chambers and Quiggin, 2000). Failure to 

properly allow for risk can lead to biased efficiency estimates (O’Donnell et al., 2010). Other 

innovations in the technical efficiency literature include dynamic efficiency measurement that 

does not rely on the assumption of firm’s ability to adjust instantaneously and that allows for 

the dynamic linkages of production decisions (Serra et al., 2011). Extension of LML methods 

to a consideration dynamic issues constitutes another area that merits further attention. 
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Table 1. Summary statistics for the variables of interest 

Variable  Mean Standard deviation 

Total output (index)  154,193.14 164,521.51 

Capital (index) 162,547.25 158,754.89 

Land (acres) 1,277.89 1,103.34 

Labor (AWU) 292.68 252.84 

Chemicals inputs (index) 38,296.45 41,985.78 

Other inputs (index) 24,398.16 25,388.22 

Statistics on a per acre basis 

Total output (dollars/acre) 122.50 66.52 

Capital (dollars/acre) 150.36 131.49 

Labor (AWU/acre) 0.24 0.14 

Chemicals inputs 

(dollars/acre) 
29.11 16.98 

Other inputs (dollars/acre) 19.48 12.68 
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Table 2. Summary statistics for the local estimates of 2

u  , 2

v  and   

 2

u  
2

v    

Maximum 

(100%) 
1.14 0.26 22.20 

Third quartile 

(75%) 
0.03 0.10 0.59 

Median (50%) 0.02 0.09 0.48 

First quartile 

(25%) 
1.93E-5 0.09 0.01 

Minimum (0%) 6.93E-7 7.59E-4 0.30E-2 
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Table 3. Distribution of production and scale elasticities for Kansas Farms 

Elasticities with 

respect to 
Estimate 

Standard  

deviation 

Land area 0.250 0.109 

Labor 0.036 0.075 

Capital 0.217 0.058 

Chemical inputs 0.295 0.054 

Other inputs 0.199 0.062 

Returns to scale 0.997 0.045 
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Table 4. Frequency distribution of technical efficiency scores 

TE: Range (%) Observations   (%) 

LML
1
 

VRS 

VRS
2 

CRS
3 

LML VRS CRS 

<80 78 2 645 6.20 0.16 51.27 

80-85 130 31 449 10.33 2.46 35.69 

85-90 435 363 103 34.58 28.86 8.19 

90-95 244 657 31 19.40 52.23 2.46 

95-100 371 205 30 29.49 16.30 2.38 

Mean 0.90 0.92 0.81    

Standard deviation 0.08 0.03 0.05    

Minimum  0.19 0.78 0.68    

Maximum 0.99 1.00 1.00    
1LML: local maximum likelihood. 2VRS: variable returns to scale. 3CRS: constant return to scale. 
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Table 5. Kolmogorov-Smirnov test 

Test  Value p-value 

LML vs. DEA VRS 0.257 0.000 

LML vs. DEA CRS 0.711 0.000 
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Fig. 1 Distribution of localized estimates of input elasticities and returns to scale 
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