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AGRICULTURAL ECONOMICS RESEARCH

ﬂ Methods rNote on the Gauss-Seidel Algorithm for

Solving Econometric Models

VOL. 25, NO. 3, JULY 1973

By Dale Heien, Jim Matthews, and Abner Womack

A particular numerical analytical technique for solving systems of simultaneous equations
which offers several advantages to the user over other numerical techniques is discussed.
The Gauss-Seidel algorithm is simply an iterative technique which requires no derivatives,
matrix inversion, eigenvalue computation, or any other sophisticated numerical methodo-
logy. While the technique has been used successfully by a few large scale model builders

and by the authors for several commodity models, the experience gained in the use of the
technique has not been generally disseminated. Obtaining convergence with such an iterative
technique is critically dependent on a number of factors which are taken up in some detail

by the authors.

Keywords: Solutions, mathematical analysis, numerical, methodology, nonlinear, equations.

Once an econometric model has been specified and
estimated, the next step involves some procedure to
solve the model. This is done to obtain the reduced-form
multipliers and to make forecasts for some future period
or to examine the model’s “track record” over the

eriod of fit. The typical textbook approach to this
Qroblem is to treat the model as a set of simultaneous
linear equations. In the conventional matrix terminology
we have

By+ T'x=0

where B is a GxG matrix of coefficients of the
endogenous variables, y is a Gx1 vector of endogenous
variables, I" is a GxK matrix of coefficients on the
exogenous variables, and x is a Kx1 vector of exogenous
variables. The solution, or reduced form, of the model is

y=-'Tx =nx
where

a s
v, = o
Yy ax"
is the GxK matrix of reduced-form multipliers. The main
problem here is the calculation of f7!, and this can be
accomplished by well-known numerical techniques.
Unfortunately, few econometric models can be
represented by a set of linear equations. For example,
fundamental identities (such as price times quantity
‘}:als total revenue) as well as many other basic
1

ables (relative prices, real income, etc.), form ratios

that render the model nonlinear. In the past, this
nonlinear impasse was handled in three ways. First, the
nonlinear relations in the model could be linearized by
using the first-order terms of a Taylor series expansion
of the function.! Second, classical Newtonian numerical
analytic techniques could be applied to solve
simultaneous nonlinear equations. Third, the model was
simply never solved. Unfortunately, the third route was
often the one chosen. The advent of large scale models,
such as the Brookings-SSRC model with extensive
nonlinearities, rendered the first two approaches
uneconomical and cumbersome. Attempts were also
made to divide the model into linear blocks with
nonlinear relations between them. Iterative techniques
were then proposed to bridge these blocks.?

Recently, large scale model builders have rediscovered
an old numerical analytic technique for solving linear
and nonlinear simultaneous equations. This technique is
the Gauss-Seidel method. The Gauss-Seidel method is
simply an iterative technique which requires no
derivatives, matrix inversion, eigenvalue computation, or
any other sophisticated numerical methodology. Writing
the equations of the model in the following form,

Y1 :fl(y2sy31 s Y X15%2, -+ o xK)

Y2 :f201,Y3a s Y@y X1y X2 - '1xK)

YG :fC()’l’)’a, s Y6y, X1 X2« "xK)

Footnotes are on p. 75.
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)’o :()’g,}’g, » )yc)

we can compute a first round of y’s (y') from these
initial guesses

}’} :fl (yg,ygv-'-vy(();’xl’x21~"axK)
)’; =f2(,}’},)’g,~ . -,)’%’ X15%X2, . 'axK)
1
yC:fc()’i,J’%,)’%,- '-ay%_la X1, X2, . "’xK)'

These first-round guesses can now be used to generate a
second round (y?) according to

}’% :fl(y;’ygv . "aylcaxl’x21"')xK)
}’% :f2()’%,}’§,- "ayb,xl’x27" "xK)
y2c :f60%7y§1y§1°-'7y2c‘1’ X1,%X2,. "1xK)-

This iteration scheme is repeated until some specified
tolerance level is reached so that

Ik —yE-Nyyk-11<s

where 6 is a small positive number.

Whether a solution exists for any given econometric
model is a problem aside from the use of the
Gauss-Seidel technique. One necessary but not sufficient
condition is that the number of equations equals the
number of unknowns. Although equality between the
number of equations and the number of unknowns is no
guarantee that a solution exists, in practice this is the
main consideration. More common is the phenomenon
of multiple solutions. A relation such as the “Phillips”
curve

w=Po +B UR™!

where w is the percent change in money wages and UR is
the unemployment rate is defined in the first and third
quadrants. Hence, it is possible to have solutions to the
model  which yield falling wages at negative
unemployment rates. If multiple solutions should occur,
computer program statements can be included to force
the model solution out of those regions that do not
apply or that are a priori unreasonable.
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If we proceed on the basis that a unique solution
exists for some simultaneous set of nonlinear equatio
numerical routines such as the Gauss-Seidel algorith
provide many advantages over classical nonlinear
methods. However, obtaining convergence with this
technique is critically dependent on (1) normalization,
(2) the ordering of the equations, and (3) the use of
dampening factors.

The Problem of Normalization

Suppose that an equation has been fitted for a
particular endogenous variable and that other
endogenous variables are contained in this relationship.
It is possible to renormalize this equation on one of the
other endogenous variables. However, convergence of
the system can be shown to depend on which of the
variables is on the left side of the equation. This is
demonstrated for a simple two-variable, two-equation
case as follows:

y1+t.2y;=4
Y1 ty2=2
where the analytical solution is y; = 3,y, = 5.

The following normalization gives a convergin.
system:

Y1- 4= 2y,
y2=2+y,

Let yo = (¥?, ¥2) = (15, 15).> Then the iteration
sequence becomes:

yi=4- 2(15)=1,y' = (1, 3)
yi=2+1=3
y3=4-.2(3)=34,y% = (34,54)
y2=2+34=54
y3=4-.2(54)=292 53 = (2,92, 4.92)
y3=2+292=492
¥t =4-.2(4.92)=3.016, y* = (3.016, 5.016)
¥4 =2+3.016=5.016

¥§ =4- 2(5.016) = 2.9968, y° = (2.9968, 4.9968) .




¥3 =2+ 2.9968 = 4.9968

It can be seen from the above sequence that for a
given & > 0 this normalization will converge to a set such

-1
that |(yF - yF7)/yk-t I< & where 8 is some
predetermined tolerance level.
The following normalization of the same model,
however, would result in a diverging system:
¥2 =20- 5y,
Y1=-2+ys
Let yo = (15, 15). Then the iteration sequence becomes:
y3 =20~ 5(15) =-55,y! = (-57,-55)
y} =-2+(-55)=-57
¥3 =20- 5(-57) = 305, y* = (303, 305)
y3 =-2+(305) = 303

¥3 =20- 5(303) =-1495, y* = (-1497, -1495)

y} =-2+ (-1495) = - 1497

Obviously this normalization choice will not converge to
the solution set.

Use of the Gauss-Seidel algorithm requires a unique
dependent variable for each equation. Experience has
shown that convergence is enhanced if the dependent
variable is the one which was normalized on in the
regression used to obtain the estimate. If, for example,
an equation is fitted by least squares with y;-as the
dependent variable and then solved for some other
variable as dependent (say y,), then the model will
sometimes not converge. However, if the equation is
refitted with y, as the dependent variable, the
convergence problem frequently disappears. Further-
more, specification of an econometric model where each
equation has a unique dependent variable makes a great
deal of sense from the causal point of view.?

Ordering of the Equations

By the notion of ordering is meant the order in which
e equations are positioned so that iterative

computation can take place. The procedure suggested is
to arrange the equations so that the matrix of
endogenous variables would be as triangular as possible.®
Consider, for example, the following set of five equations
where y;, i =1,...,5 is the set of endogenous variables
and z;,i=1, ..., 5is some set of exogenous variables:

¥1=f02,¥s,%1)
¥2 =f(r3,22)

¥3 =f(r2,¥1, 23)
¥a =f(r1,2a)
¥s = f(ya 2s)

A first attempt at a solution set for the above system
could be determined by ordering the equations as
outlined above. This ordering is illustrated in matrix
form in exhibit A. The x’s in the matrix represent the
endogenous variables in each equation.

Exhibit A
[ Variable
Y1 Y2 Y3 Ya Ys
Equation

Ya x x
Ys x x
¥3 x % 2
Y2 x x
yioo[x ow x|

As can be readily observed, it is not possible to order
the equations so that a triangular matrix is obtained.
However, this ordering is as triangular as possible. A first
attempt at a solution would be to use the ordering yj,,
Yss ¥3, ¥2, ¥1- 1f this sequence does not coverge it will
most likely be caused by the position of y4 and ys since
these two equations have variables outside the triangular
block. Should this ordering diverge, the ordering y4, y1,
¥3, Y2, ¥s could be tried. Where convergence is not
obtained after several orderings have been tried, the
suspect equations should be pulled out of the system. If
the remaining equations converge, then more careful
attention should be given to the equations preventing
convergence. It could be a problem of normalization or a
simple mechanical error in the equation. It is also
possible that the Gauss-Seidel technique cannot find a
solution. However, inability to find a solution using this
technique has not been a problem in models solved by
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the authors. Where convergence has been a problem, the
use of a dampening factor has frequently been
beneficial.

Use of a Dampening Factor

A dampening factor may be applied to any one or all
of the equations to aid in obtaining convergence. An
integer k, for 0 <k <1, is multiplied by yI", the mth
equation in the interdependent system, where m
represents the iteration number. (1—k) times y'i""l is
then added to the equation, so that

yP ok ym+ (k™ ti=1,...,6

A primary reason for using a dampening factor is that it
helps prevent a diverging arrangement of the equations
from dominating the system. A dampening factor in
effect allows other equations more rounds to converge
and tends to pull the diverging arrangement back toward
convergence. As an example, consider again the diverging
system presented earlier and let k = .25.

¥2 =20 — 5y,

¥Y1=-2+y,

We have already seen that this normalization will not
lead to convergence even though the system of equations
has a solution set y; = 3, y, = 5.

Let y° = (¥9, ¥3) = (15, 15) where the dampened
system is given by

¥y =y% "1 (1-.25) + .25 (20-5y,)
yT =y (1-25) + 25(-24y2)

Plugging yo in the initial starting set in the above
equation will lead to convergence after approximately
25 iterations.

The comments presented cover the basic considera-
tions in using the Gauss-Seidel algorithm to solve
systems of simultaneous equations. Additional dis-
cussions of numerical techniques can be found in (3, 6,
9, 11). Computer programs incorporating the
Gauss-Seidel algorithm have been prepared by Norman
and also by Green and Pritchard ( 5, 10). The computer
program prepared by Green and Pritchard varies slightly
from the one suggested by Norman and was used by the
authors in preparing computer simulation programs for
beef, pork, broilers, turkeys, eggs, oranges, and
soybeans. Though these models are relatively small (7 to
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35 equations), the authors felt that substantial savings in
computer costs and time could be attributed to the

of the Gauss-Seidel algorithm. Each of the mode
required extensive testing in its initial development. This
frequently involved use of alternative equations which
could be easily interchanged in the Gauss-Seidel routine
as opposed to the more cumbersome matrix inversion
approach to obtain the reduced-form solution. In
addition, some of these models contain price ratios and
other forms of nonlinearities in the endogenous variables
which would have required linear approximations by the
Taylor series if the reduced-form technique had been
used to obtain a solution.

The typical cost of obtaining a model solution with
the Gauss-Seidel technique ranged from $3 to $5 for
these models, or about half the cost of the matrix
inversion approach. A subroutine for obtaining the
impact multipliers is included. The programs for these
agricultural models are available from the author on
request. A typical program for an 18-equation
simultaneous model of the U.S. beef economy is given in
the appendix to this report.
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Footnotes

LConsiderations in the use of the Taylor series to obtain
linear approximations have been discussed previously in this
journal by Womack and Matthews (12). (Italic numbers in
parentheses indicate items in the References, p. 73.)

2This approach is reported by C. Holt (7).

3Any real number for yg will suffice since yg is not used
in the iterative computation.

4For further elaboration of this concept, see Fisher (4).

SExperience with interdependent model systems indicates
that the more nearly the equations are aligned in a causal
chain, stimulus-response form, the higher is the probability of
obtaining convergence. This leads to a form that is as
recursive and hence as triangular as possible.
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FORTRAN

0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047

IV G1 RELEASE

903
190
191
291
98

55
51
58

893

56

2021
502

201
192

505

503

504
290

Appendix: Computer Program for Beef With Gauss-Seidel Subroutine

2.0 MAIN DATE = 73115 15/07/30 PAGE 0001
COMMON Y(léO)yYD(160),Y4(léO),X(léO),Z(160),N,XE,A(160)

1950-65 CLS BEEF

FORMAT (1X3E1448,7E15.8)

FORMAT(1X43E1548,110)

FORMAT. (8110)

FORMAT(1X9E14.8,7F15.8)

FORMAT (1X,5E15.8,110)

FORMAT(5F15 46)

FORMAT (I1I10)

FORMAT (1H1)

N=19

N1=16

READ(5452)(Y(I)yI=14N)

READ(542)(X(I)9I=1,N)

READ(5492)(Z(1),I=1,4N1)

Z(15)=31908 000.

DO 893 I=1,N

A(I)=Y(1)

CONTINUE

M=0

CONTINUFE

DO 56 I=1,4N

YO(I)=Y(I)

M=M+1

WRITE(2422)(Y(I)yI=1,N)

WRITE(2922)(X(I)yI=1,4N)

WRITE(2422)(Z(1)yI=14N1)

N63=0
CONTINUE
DO 4 I=1,N
Y4(I)=Y(1)
NICK=600
IF(N63-NICK)
CONTINUE
N63=N63+1 ¢!
FORMAT(110)

CALL CEN

DO 503 I=1,4N

DIF1=(Y(I)=Y&4(I))/Y4(1)

201,202,202

IF(DIF1) 505,503,505
CONTINUE

DIF2=0.0

DIF2=ABS (DIF1)
IF(DIF2-.0002) 503,503,502
CONTINUE

DO 504 I=1,N
Y4(I)=Y(I)/YO(I)
FORMAT(1X4E1548,110)




. FORTRAN IV Gl RELEASE 2.0 MAIN . DATE = 73115 15/07/30 PAGE oo’
2 0048 202 DO 10 I=1,N
z 0049 Y4(1)=Y(1)/YO(1)
= 0050 WRITE(2,8) Y(I)aYO(I)yY4(I),I
o 0051 10  CONTINUE
2 0052 WRITE(2,291) N63
L 0053 WRITE(2,98)
0054 DO 126 I=1,N
0055 YO(I)=Y (1) i
0056 126 CONTINUF
0057 DO 125 I=1,N
0058 X(1)=Y0(1I)
0059 125 CONTINUE
0060 READ(542) (Y (I)yI=1,N)
0061 READ(542)(Z(1)yI=14N1)
0062 Z(15)=X(15)
0063 NZ=M-10
0064 IF(NZY 3,43,5
0065 5 CONT INUE
0066 STOP
0067 END

-3
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FORTRAN IV Gl RELEASE 2.0 CEN DATE = 73115 15/07/30 PAGE 0001
0001 SUBROUTINE CEN
0002 COMMON Y (160)4YD(160)3Y4(160)3X(160),Z(160),NsXE,A(160)
0003 WC=.5
0004 W=1e0-%C
C
C TOTAL SUPPLY OF BEEF Y(1) TSB
C
0005 Y(1)= Y(2) + Z(1) + Z(2)
0006 Y(1)=WC*Y (1) +WxkY4 (1)
C
C TOTAL PRODUCTION OF BEEF Y(2) TPB
C
0007 Y(2)= Y(3) + Y(4)
0008 Y (2)=WC*Y (2)+W*kY4(2)
C
C TOTAL PRODUCTION OF FED BEEF Y(3) TPFB
C
0009 Y(3)==678150140.0 + 631429%Y(5) + 692321280.%Y(9)/Z(3)
0010 Y(3)=WC*Y (3)+WkY4(3)
C
C TOTAL PRODUCTION OF NONFED BEEF Y(4) TPNFB
C
0011 Y(4)==1160867100. + 466428%(Y(6)+Y(T)+Y(8)) + 1563341600.%Y(9)/Z(3
1)
0012 Y(4)=WC*Y (4) +W Y4 (4)
C
C FED BEEF HEIFER AND STEER SLAUGHTER Y(5) FBHSS
C
0013 Y(5)=Z(14)%Y(11)
0014 Y (5)=WC*Y (5)+W*Y4(5)
C
C NONFED BEEF HEIFER AND STEER SLAUGHTER Y(6) NFBHSS
c
0015 Y(6)= Y(11)=Y(5)
0016 Y(6)=WC*Y (6)+W*kY4(6)
C
C BEEF HEIFER AND STEER SLAUGHTER Y(11) BHSS
C
0017 Y(11)=-2759537. + .68705%X(15) + .17975%Z(15) = 26354.9%X(14) + 26
1832.1%Y(14)
0018 Y(11)=WC*Y (11) +W*Y4(11)
C
C NONFED DAIRY COW SLAUGHTER Y(8) NFDCS
C
0019 Y{8)=1427995.0 + 410650 *Z(4) + 426938 *X(8) +45527,1 *Y(10)-
19683048%X(10)
0020 Y(8)=WC*Y (8)+W*kY4(8)

&) C O Q




. FORTRAN IV Gl RELEASE 2.0 CEN ’ DATE = 73115 15/07/30 PAGE 00‘

C NONFED RFEF COW -SLAUGHTER Y(7) NFBCS
c
0021 Y(7)= 83329744 + «18539%X(15) - 152481.8%Y(14)
0022 Y(T)=WCHY (7)) +WY4(T)
c
C TOTAL NUMBER OF CATTLE SLAUGHTERED Y(12) TNCS
C
0023 Y(12)= Y(8) + Y(7) + Y(11)
0024 Y(12)=WCHY (12)+¥%Y4(12)
C ‘
C BEFF HFIFERS FOR BREEDING Y(13) BHFB
o
0025 Y(13)==4976911.0 + 30760.9%X(14) + 104886.3%Z(7) + 9046.7%72(8) +
1 «21127%X(15)
0026 Y (13)=WCxY (13 )+V%Y4(13)
c
C RETAIL PRICE OF BEEF Y(9) RPB
G
0027 Y(9)=(40021158=(415586E=04)*Y(19)/2(13)=(.83906E-05)%Y(18)/7(13)=(
1.14793E=05)%7Z(10)/Z(13)+.21576%2(11)/(7(9)/2(13))=.6797%2Z(5)/(Z(9)
1/Z2(13)))%(Z2(9)/7(13))
0028 Y(9)=WC*Y (9) +*Y4(9)
C
G PRICE NF NONFED CATTLE Y(10) PNFC
C
0029 Y(10)= =3.2517 + .8422%Y(14) - JO785%Z(6)
0030 Y (10)=WC*Y(10)+W*Y4(10)
C
C BEEF COW INVENTORY Y(15) BCI
C
0031 Y(15)=X(15)+Y (13 )=Y(7)=.02%X(15)
0032 Y(15)=WC*kY (15) +W*Y4(15)
C
G
C PRICE OF FED CATTLE Y(16) PFEC
C
0033 Y(16)=Y(9)% (27472 = (43531E=06)%Y(11)+7.84%Y(9)/2(16))
0034 Y(16)=WCHY (16)+WkY4(16)
0035 Y(17)=WCHkY (17 )+ *Y4(17)
C
C
C TOTAL SUPPLY OF FED BEEF Y(18) TSFB
0036 Y(18)=Y(2)
0037 Y(18)=WC%kY (18)+WkY4(18)
c
c TOTAL SUPPLY OF NONFED BEEF Y(19) TSNFB
0038 Y(19)=Y(1)-Y(18)
c PRICE OF FEEDER CATTLE Y(14) PEC
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FORTRAM IWw Gl RELEASE 2.0 CEMN NATE = 72115 15/G7/30 FAGE 0002

c MIWFED BFEF COW SLAUGHTER Yi7] HNFERCS
C

¥IT)= 8A3297.4 + ,1A539%X(15) - 152481.8%¥{ 14}

YT F=WCHY LT Hitzya (7

TOTAL MUWBER OF CATTLE SLAUSHTERED ¥i121)

YI1Z2Y= Yi8) + ¥Y(7) + ¥[il}
YL1ZP=WOay i 12 ) +hxya (12}

REFF FHFIFERS FNR RRERDLRG Y13} RHEH

V{L3)1=-49%5911,0 + 30760.9%Xi14) + 1048RG.3HZLTI + 9046.7%7 (B} +
1 211272115
YII3)=MERY [ 13 1+M2Y¥4{13)

RETAIL PRICE DF HEEF Y9 RPE

YI9i=(.0021158-1. ) 55R6C~041%y (19} /7]
114793005 21101 /2{13)+.215Fe%7¢(11)
/2013001021091 /2113)
YIQI=HORY {9) sdsveig)

1311 B3IBOEE-NS)FY [1AI/2 (13) =]
A9 /2130 )1-086T972{5)/{Z(9}

PRICE NF MOMFED CATTLE Y110} ANFC

T1100= =3.2517 + .B4224¥ (14} - ,OTREw7(6}
Y10 ) =WEEy ] 10)+M=Yaiin)

REE¢ COM TNYENTORY

FULS =X {151 +V {13 i-Y {71, 025X { 15}
YILSh=MOEY (15 )HYa i 15)

PRICF OF FEI} CATTLE ¥Yi1l6}) PF&C

¥O1aI=Y (9 )2 [27.72 - (e 393LF-08) =YL LI +TLREEY IS} /Z{16))
YILO=WOFY {161 Htvs | 16 )
VALTI=M0EY L 1T +hsya (17}

TBTAL SIHPPLY DF FED REEF
T{lRI=¥{2}
YL{LA)=M0Y (1R ] +Heya (1A )

TOTAL SHPPLY OF WOMFER BEEF
YI19)=¥{L)=v{18
PRICF NF FEEDER CATTLE
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FORTRAN IV Gl RELEASE 2.0 CEN DATE = 73115 15/07/30 PAGE 0003
.C
0039 Y(14)=Y(9)% (164879~ (42863E=06)%Y(11)+7,6285%Y(9)/7(3)+11.05%Y(9)/Z
1(16))
0040 Y (14)=WCkY (14 )+WkY4(14)
C BEEF IMPORTS Z(1) BI
c BEEF STOCKS 7(2) BS
C PRICE OF CORN 7Z(3) PC
c DAIRY COW INVENTORY Z(4) DCI-1
C PRICE OF ALL OTHER ND+S 2(5) PAD
C TIME 1965=16.0 7(6) T
c PRICE NF FEEDER CATTLE-2 Z(7) PFC=2
c PRICE OF FEEDER CATTLE-3 72(8) PFC=3
C PERSONAL CONSUMPTION EXPENDITURES ND+S Z(9) PSCENDS
C TOTAL SUPPLY OF PORK 7(10) TSP
c PRICE OF POULTRY Z(11) PCHICK
C PRICE OF CORN-1 7(12) PC-1
€ POPULAT ION 72(13) POP
G RATIO OF FBHSS/BHSS Z(14) R
C WAGE RATE IN MEAT PROCESSING Z(15) WR
0041 RETURN

0042 END




	V25_N3.PDF
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44


