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Oinear Approximations of Nonlinear Relationships 
by the Taylor's Series Expansion Revisited 

By Abner W. Womack and Jim L. Matthews 

This paper examines the magnitude of error associated with linear approximations of nonlinear 
variables based on Taylor's Series. Little attention has been given to the error term in previous 
empirical studies. This paper presents the mathematical technique for the single-variable and two-
variable cases. Examples are given for each situation using agricultural time-series data. Character-
istics of time-series data are sometimes crucial in the selection of an evaluation point for minimum 
error. The importance of selecting evaluation points is illustrated for three categories of time-
series data: (1) smooth trends, (2) trends with substantial variation, and (3) oscillatory series. 

Key words: Mathematical analysis; nonlinear; methodology; time-series analysis; statistics; research 
methodology. 

Nonlinear functions are commonly used in econo-
metric analyses because of either theoretical or 
statistical considerations in choosing the form of the 
equation. As a rule, this poses no serious difficulty to 
the analyst. However, nonlinear specification of 
relationships is difficult to manage, particularly where 
those relations appear in a sub-block of simultaneous 

diuations that contain linear market-clearing identities. 
at is frequently desired in any simultaneous 

equilibrium model specification is to reexpress the 
structural equations in terms of their reduced form 
equivalents. This is often difficult to do for a nonlinear 
system. 

To achieve a solution without undue mathematical 
complexity, one approach suggested by Klein is to 
obtain linear approximations of all nonlinear endoge-
nous variables in the system by a Taylor's Series 
expansion (8).1  This technique was used by Gerra for 
a poultry model and more recently by Houck and 
Subotnik in a simultaneous model for the U.S. soybean 
economy (5, 7). Several studies have employed 
Taylor's Series for purposes other than a linearization 
tool. Edwards demonstrated that linear estimation 
schemes could be applied to nonlinear equations 
iteratively in deriving B.L.U.E. estimators as well as in 
solving nonlinear programming problems (3). Burt, in 
1968, applied the Taylor's Series expansion to a 
nonlinear identity equation (y-=x•z) to illustrate the 
component variances of a variable y associated with 
two separate random variables that appear as a 
product, namely, x•z (2). 

Though the Taylor's Series is well documented in 
most calculus texts or texts on mathematics for 
economists, relatively little attention has been given to 
its accuracy as a linearization technique for several 
commonly used nonlinear variables in econometric 
analyses (1, 9). 

This paper examines the accuracy and use of 
Taylor's Series expansions for several types of 
nonlinear variables commonly used in econometric 
analyses. Refinements in the technique are considered 
for several combinations of characteristics of data 
series for the variables linearized. 

The first section gives Taylor's Theorem with a 
discussion of the remainder term for the linear case. 
The second section of the paper shows a linear 
approximation relation for the single-variable case, 
namely logs 0 x. Refinements in the use of the relation 
are shown for two sets of sample observations taken 
from actual agricultural time-series data. The third 
section of the paper shows the linear approximations 
for products and ratios of variables. As in the 
preceding section, agricultural time-series data with 
markedly different sample data properties with respect 
to variance and trend are used to demonstrate the 
linear accuracy of the technique about different 
evaluation points, depending on the characteristic of 
the data series for the variable. 

Taylor's Theorem 

The polynomial approximation form of Taylor's 

0. Italic numbers in parentheses refer to Bibliography, p. 101. 	Series for the single variable case is stated as: 
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(1) f (x) = f (a) + f ' (a)(x -a) + f " (a) (x -a)2  / 2! 

+ f,,,  (a) (x-a)3/3! + 	+fn(a)(x-a)"ln! + R 

where 

R. = f n +1  [a + (t)(x-a)] [x-a]n+11 (n+1)! 

for 0 < (f) < 1, x a, n a positive integer, and f a func-
tion whose nth derivative ft° (x) exists for each number 
between x and a. 

From (1) for n = 1 we have a linear relationship: 

(2) R 1  = f (x) - f (a) - f ' (a)(x- a). 

As indicated in (2), R 1  —> 0 as x -4 a. Hence the 
evaluation point (a) for a particular linear approximation 
should be chosen such that R 1  is small. If R 1  is small, 
the nonlinear function f(x) is approximated by the linear 
function f(a) + f' (a) (x- a). As is often the case, the 
mean of a series is chosen as the point for evaluation. 
The next section demonstrates that the selection of the 
evaluation point (a) depends on the nature of the series 
in question and may call for a point different from the 
mean for a minimum R 1 . 

The Single-Variable Case 

Though several types of nonlinear expressions for a 
single variable x are commonly used, most can be readily 
transformed to logi ox. For this reason this section is 
limited to a discussion of linear approximations of 
log 10x. 

For the function f(x) = log ox, formula (1) can be 
used to derive a linear estimate of logi  x for any of the 
n observations for x evaluated about some selected point 

(a). 
The linear approximation equation is expressed in 

general as follows: 

(3) Logi  x = (logi oa - 0.4343) + 0.4343x/a. 

Examination of (3) shows that when x = a, logi ox is 
exactly equal to logi  oa. Linear approximations of x 
evaluated at or near (a) will result in a good linear 
approximation of log 0  x. 

In applying formula (3) to a given data series, 
selection of an evaluation point (a) is quite important if 
a high degree of accuracy is to be achieved. For 
convenience, evaluation of x about a = x may be 
considered. This choice of an evaluation point may not 

94 

be a bad one if the data series is relatively smooth with 
no significant trends. However, irregular data series wit 
or without trends may require evaluation about so 
point other than a = x. An alternative is to use a series o 
choices such as the previous value of x or some moving 
average of recent observations on x. These series are not 
as convenient to use as a single point because of the 
required iteration routines but may be warranted if a 
high degree of linear accuracy in estimating x is desired. 

To demonstrate some of the options open to the 
analyst, figures 1 to 3 show linear approximations of 
logs ox for three alternative evaluation points where x is 
soybeans under loan (million bushels) for the period 
1954 to 1968. The series is irregular with only a slight 
upward trend. As shown in figure 1, evaluation about 
the mean (a = x) is reasonably good. Largest inaccuracy 
occurs at the end points of the series or points furthest 
from the mean. An attempt to correct for this 
inaccuracy is shown in figures 2 and 3. In figure 3, use of 
the previous period value reduced the inaccuracy at the 
end points but magnified the errors when sharp 
year-to-year variations occurred. In figure 2, use of a 
2-year moving average improved the fit when compared 
to figure 3 but was less desirable than figure 1. Longer 
moving averages would improve the fit in figure 2. 

Based on this example, two inferences which can be 
drawn are: (1) for irregular series with no trend, 
evaluation about a = x would be the best choice, and ( 
for irregular series with trend, a moving average o 
previous values of x should be used. 

Another situation quite common in economic 
analysis is shown in figure 4. The series for logi ox is 
smooth with a definite trend. Evaluation about a fixed 
point (a = value of x in 1954) shows that substantial bias 
in the linear approximation of per capita disposable 
income in 1968 would have occurred. Use of the 
previous period observation on x in this situation results 
in a very close linear approximation. Thus, it is 
recommended that a = x_i  be used for data series that 
are smooth with marked trends for obtaining linear 
approximation of x for the function logiox. 

Products and Ratios of Variables 

Linear approximations based on Taylor's Theorem 
for a single variable can be extended to two or more 
variable cases without any serious conceptual problems. 
Two or more variable cases commonly encountered by 
analysts are ratios and products of variables. This section 
is restricted to the two-variable case. 	 • 



(0' 

(I) J(x) = J(o) + f'(o)(x-a) +j"'(a)(x-o)2/2! 

+ f''' (0)(x-a)3/3! + ... +r(o)(x-at/n! +Rn 

where 

for 0 < 1> < 1, x =1= a, Il a positive integer, and f a fune
tioll whose nth derivative 1' 11 

) (x) exists for caeh number 
betwren x and a. 

From (1) for n :: 1 we have a linear relationship: 

(2) RI = J(x) - f(a) - f'(o) (x-a). 

As indica led in (2), R] -7 0 as x -7 o. I-lenee the 
evaluation point (0) for a particular linear approximation 
should be chosen such that H] is small. If RI is small, 
the nonlinear function J(x) is approximated by the linear 
function f(a) + f' (a) (x-a). As is often the case, the 
mean of a series is chosen as the point for evaluation. 
The iJext section demonstrates that the selection of the 
evaluation point (0) depends on the nature of the series 
in queslion and may call for a point different from the 
mean for a minimum R I . 

The Single-Variable Case 

Though several lypes of nonlinear expressions for a 
single variable x are eommonly \If;ed, most can be readily 
transformed to log] ox. For this reason this section is 
limited to a discussion of linear approximations of 
log] ox. 

For the [unction f(x) :: log! ox, formula (1) can b~. 
used to derive a linear estimate of log! OX for any of the 
n observationli for x evaluated about ;;on](' selected point 
(a). 

The linear approximation equation is expressed in 
general as follows: 

(3) Log! OX = (log! oa - 0.4343) + 0.4343x/a. 

Examination of (3) shows thal when x = 0, log! OX !S 
exactly equal to logloa. Linear approximations of x 
evaluated at or ncar (a) will result in a good linear 
approximation of log! Ox. 

In applying formula (3) to a giYf~n data series, 
selection of an evaluation point (a) is quitc important if 
a high degree of aeel,racy is to be achieved. For 
convenience, evaluation of x about a = ;t may be 
considered. This choice of an evaluation point may not 

be a bad one if the data series is relatively smooth with 
no signifjeant trends. However, irregular data series with 
or without trends may require evaluation about some 
point other than a = x. An alternative is to lise a series of 
choices such as thc previous value of x or some moving 
average of reeellt observations on x. These series arc not 
as convenient to use as a single point because of the 
required iteration routines but may .be warranted if a 
high degree of linear accuracy in estimating x is desired. 

To demonstrate some of the options open to the 
analyst, figures ] to 3 show linear approximations of 
loglox for three alternative evaluation point!'; where x is 
soybeans under loan (million bushels) for the period 
1954 to 1968. The series is irregular with only a sligh t 
upward trend. As shown in figure 1, evaluation about 
the mean (a = x) is reasonably good. Largest inaccuracy 
occurs at the end points of the series or points furthest 
[rom the mean. An allempt to correct for this 
inaccuracy is ~hown in figures 2 and 3. In figure 3, use of 
the previous period value reduced the inaccuracy at the 
end points but magnified the errors when sharp 
year-to-year variations occurred. In figure 2, use of a 
2-year moving average improver! the fit when compared 
to figure 3 but was less desirable thall figure 1. Longer 
moving averages would improve the fit in figure 2. 

Based on this example, two inferences which can be 
drawn are: (1) for irregular series with no trend, 
evaluation about a = xwould be the best choice, and (2) 
for irregular series with trend, a moving average of 
previous values of x should be used. 

Another situation quite common in economic 
analysis is shown in figure 4. The series for log! OX is 
smooth with a definite trend. Evaluation about a fixed 
point (a:: value of x in 1954) shows that substantial bias 
in the linear approximation of per capita disposable 
income in ] 968 would have occurred. Use of the 
previous period observation on x in this situation results 
in a very close linear approximation. Thus, it is 
recommended that a = X_I be used for data series that 
are smooth ~vith marked trends for obtaining linear 
approximation of X for the function IOgI0X. 

Products and Ratios of Variables 

Linear approximations based 011 Taylor's Theorem 
for a single variable can be extended to two or more 
variable cases without any serious conccptual problems. 
Two or more variable cases eommonly encountered by 
analysts are ratios and products of variables. This section 
is restricted to the two-variable case. 
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a2F 	a2F 
axe 

(dx)
2 
 + axay  (dx)(dy) 

a2F 	 a2 F 

	

(dy) 	+ 	(dy)2 
2 

• axay 

a2 F 	2 	a2 
= ax2  (dx) + 

2  
axay

F  
 (dx)(dy) 

+ ay2 (dy)2 = F " (dx)2 

+ 2F ';y  (dx)(dy) + Fy"2 (dy)2 • 

S
For the Taylor's Series expansion of a function F in 

two variables having continuous partial derivatives of the 
order, a relation comparable to (1) can be expressed 

oli ow s : 

(4) F(a+dx, b+dy) = F (a, b) + dF (a, b) + d2F(a,b)/2! 

+ d"F (a, b)/ n ! + R. 

where 

R. = dn+1 F(C,D)/(n+1)! 

and C is between a and a + dx and D is between b and b 
+ dy. dx and dy are any designated number used for 
differentials of the first and second variables. In this 
case, dx = (x-a) and dy = (y-b). From differential 
calculus, it can be shown that 

(x, y) 	 , 
(5) dF(x,y) = F' (x,y) = 

aF 
ax 	dx + 	ax 

aF(x, y) 
 dy 

For convenience of notation, the above differentials in 
(4) may be written as: 

(6) dF(x, y) = F'x dx + F'ydy 

d2 F(x,y) = F"(x,y) = F' [F' (x,y)] 

This pattern suggests that higher order derivatives may 
be obtained by using the corresponding expansion of the 
binomial distribution, (a+b)n , when n represents the nth 
derivative. For the purpose of linearization, higher order 
derivatives are not required and therefore are not given. 

Based on relations (4) through (7), linear approxi-
mations can be readily derived for ratios and products of 
variables as follows: 

(8) F(x,y) = x/y = F(a+dx, b+dy) 

where 

dx = (x-a) and dy = (y-b) 

F'(x, y) 	(1/y)dx (x/y2)dy 

F"(x,y) = (0) (dx)2  + 2 (-1/y2  )(dx)(dy) 

+ (2x / y3) (dy)2 

Fn(x,y) = (-1)n-1  (n !/yn)(dx)(dy)n-1  

+ (-1)"(n! • x/yn+1)(dy)" • 
=ax dx 

where F = F(x,y) 

= aiax[r: 
aiay  [aaFx  

= 

aF d  
ay YJJ 

dx + —
aF d.)] 
ay 

dx + aF 
 dy] dy 

Evaluation of the previous terms about a and b re-
sults in the following expansion: 

(9) F(x,y) = a/b + (1/ b)(x-b) - (a/b2)(y-b) 

+ [2(-1/b2)(x-a)(y-b) 

+ (2a/b3)(y-b)2 ]/2! + . . . + Rn  

where 

(dy)n  
[(4) ( dx) s 

( 
-1:11-1-C  (dy) ]  

Dn+1 	 D  

for C between a and a + dx and D between b and b + dy. 
As in the single-variable case in the previous section, 

R. -+ 0 as n->oo. Thus the expansion evaluated about a 
and b can be taken to any desired level of accuracy. 
Since linearization of F(x,y) is the objective, then only 
the first two terms of (4) can be used. Thus the linear 
approximation of x/y is simply the first two terms of (9) 
simplified as follows: 

(10) x/y = a/b + (1/b)x - (a/b2 )y + R. 
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For the Taylor's Series expansion of a function F in 
two variables having continuous partial derivativcs of the 
nth order, a relation comparablc to (1) can be expressed 
as followE: 

(4) F(a+dx,b+dy) = F(a,b)+dF(a,b)+d2F(a,b)/2! 

+ ... + dnF(a, b)ln! + Rn 

where 

Rn = dn+1F(C,D)/(n+ I)! 

and C is between a and a + dx and D is bctween band b 
+ dy. dx and dy are any designated number used for 
differentials of the first and second variables. In this 
case, dx := (x-a) and dy := (y-b). From differential 
calculus, it can be shown that 

(5) dF(x,y) == F'(x,y) = aF~:,y) dx + aF~~Y) dy 

For convenience of notation, the above differentials in 
(4) may be written as: 

(6) dF(x,y) := F~dx + F~dy 

(7) d2F(x,y) = F" (x,y) == F' [F' (x, ,)] 

raF aF J 
== d Uh dx + ay dy 

where F == F(x,y) 

raF aF 1 
a/ax Ulx dx + ay dJ] 

raF aF 1 
+ a/ay Lax dx + ay dYJ dy 

a2 F a2 F 
:= ax2 (dx)2 + axay (dx) (dy) 

a2F 2a2F 
:= ax2 (dX)2 + axay (dx)(dy) 

2 
+ a F (dy)2 := F" (dX)2ay2 x 2 

This pattern suggests that higher order derivatives may 
be obtained by using the corresponding expansion of the 
binomial distribution, (a+bt, when n represents the nth 
derivative. For the purpose of linearization, higher order 
derivatives are not required and therefore are not given. 

Based on relations (4) through (7), linear approxi
mations ean be readily derived for ratios and products of 
variables as follows: 

(8) F(x,y) := xly = F(a+dx, b+dy) 

where 

dx = (x-a) and dy =(y-b) 

F'(x,y) = (l/y)dx - (Xly2)dy 

F"(x,y) := (O)(dX)2 + 2(-1/y2)(dx)(dy) 

+ (2xly3) (dy)2 

Fn(x,y) := (_1)n-1 (n llyn) (dx) (dyt-1 

+ (-It(n! 'xlyn+l)(dyt 

Evaluation of the previous terms about a and b rc
sults in the following expansion: 

(9) F(x,y) = alb + (l/b)(x-b) - (alb 2)(y-b) 

+ [2(-1/b2)(x-a)(y-b) 

+ (2a/b 3 )(y_b)2]/2! + ... + Rn 

where 

for C between a and a + dx and D between band b + dy. 
As in the single-variable case jn the previous section, 

Rn -+ 0 as n-+OCl. Thus the expansion evaluated about a 
and b can be taken to any desired level of accuracy. 
Since linearization of F(x,y) is the objective, then only 
the first two terms of (4) ean be used. Thus the linear 
approximation of x/y is simply the first two terms of (9) 
simplified as £-:;Jlows: 

(10) x/y = alb + (l/b)x - (a/b2)y +R" 
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or 
x/y = a/b + (1/b)x - (a/b2)y 

Linear approximations of the product of two 
variables is quite similar to the ratio of two variables so 
only the first two terms of the expansion will be given. 
By definition, F(x,y) = x•y. Thus, the first two terms of 
the expansion are: 

F(x,y) = x•y 

F' (x,y) = y • dx + x • dy 

Evaluation of the above derivatives about (a,b) gives: 

(11) x • y = F(x,y) = F(a+dx, b+dy) 

where 

dx = x-a and dy = y-b 

x • y = F(a,b)+F'(a,b)+Rn  

x • y = a•b+b•x-a•b+a•y-a•b+Rn  

x y = -a•b + b•x + a•y 

Use of the linear approximations given in (10) and 
(11) has been quite good for most applications 
encountered by the authors. However, these approxima-
tions are subject to the same type of biases as 
encountered for logs o x. Note that when a = x and y = b 
in (10) and (11), both became exact identities. Thus, 
linear approximations for x and y contain only small 
error when the evaluation points a and b are near x and 
y. 

For convenience, the means of the series for x and y 
are often used as fixed evaluation points. For example, 
Gerra, Houck, and Klein evaluated about the mean in 
deriving linear approximations for ratios of ratios of two 
variables. For many situations, this procedure would 
result in only a small amount of bias. However, as shown 
in figure 5, linear approximations about the means for 
per capita consumption of eggs based on an update of 
Gerra's 1958 egg study led to significant error in recent 
years. This bias or residual difference occurred because 
of the large downtrend in per capita egg consumption in 
the 1960's. Evaluation at some point other than the 
mean is indicated if a high degree of accuracy is desired. 
As indicated in figure 6, use of the previous period 
values (a = x.1 , b = y_ 1) leads to a substantial improve-
ment for a linear approximation of the ratio of egg 
consumption to civilian population. In contrast to the 
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smooth trending data series on eggs, linear approxima-
tions of farm-to-retail price ratios for oranges were quite 
good over the sample period 1954 to 1968 
evaluated about the means of the price series. As is c ear 
from figure 7, the price ratio series has irregular 
movements and no trend. Evaluation about last period 
values for retail and farm prices of oranges magnified the 
residual differences when sharp year-to-year changes 
occurred, as shown in figure 8. Experiments with 
products of two variables have resulted in similar 
observations on the appropriate choice of an evaluation 
point. 

Based on the examples discussed for both the 
single-variable and two-variable cases, evaluation about 
the mean will give the best linear approximations for 
series which fluctuate but have little or no trend. For 
smooth data series which have significant trends, 
evaluation about the previous period value should be 
used to minimize residual error in the linear 
approximations. Finally, fluctuating series with a 
distinct trend will require a moving average of recent 
past observations to obtain the best linear approxi-
mations. The choice of the number of observations for 
the moving average will depend on the extent of 
fluctuation about the trend in the series. 

The above statements should be qualified with 
respect to computational requirements if the mean of a 
series is not appropriate. In simultaneous equa 
systems containing some nonlinear variables, use o 
evaluation point other than a fixed point substantially 
increases the computational requirements for solving the 
system. Use of the previous period value, for example, 
requires the matrix of endogenous coefficients to be 
inverted on each successive solution iteration since 
bi 	Yi-1)• 

To briefly indicate the nature of the computational 
requirements, the following derived demand equation 
for California fresh oranges has been used in a 
simultaneous equation model: 

(12) QCFO = 5187 - 46.353 (PCFO/PRFO) 

- 0.827 WND 

where 

QCFO = quantity of California oranges for fresh use 

PCFO = on-tree price of California fresh oranges 

PRFO = U.S. retail price of fresh oranges 

WND = nondurable wage rate in United States • 



or 
 

x'/y = alb + (1/b)x _ (alb 2 )y 
 

Linear approximations of the product of two 
variahles is quite similar to the ratio of two variables so 
only thc first two terms of the cxpansion will be given. 
By definition, F(x,y) = x-yo Thus, the first two terms of 
the expansion are: 

F(x,y) = x'y 

F' (x,y) = y. dx + x . dy 

Evaluation of the abovc derivatives about (a,b) gives: 

(II) x' y = F(x,y) =F(a+dx, b+dy) 

where 

dx = x-a " ... d dy =y-b 

x- y = F(a,b) + F'(u,b) +Rn 

x~y = -a-b+b-x+a-y 

Use of the linear approximations given in (10) and 
(11) has been quite good for most applications 
encountered by the authors. However, these approxima
tions arc subject to the same type of biases as 
encountered for 10gI ox. Notc that whcn a = x and y = b 
in (10) and (11), both bccame exact identities. Thus, 
linear approximations for x and y contain only smaIl 
error when the evaluation points a and b are ncar x and 
y. 

For convenience, thc means of the series for ~: ann y 
arc often used as fixed evaluation points. For cxample, 
Gerra, Houck, and Klein evaluated about the mean in 
deriving linear approximations for ratios of ratios of two 
variables. For many situation)'), this procedure would 
result in only a smaIl amount of bias. However, as shown 
in figure 5, linear approximations about the means for 
per capita consumption of eggs based on 1111 update of 
Gerra's 1958 egg study led to significant error in recent 
years. This bias or rcsidUld difference occurred because 
of the large downtrend in per capita egg consumption in 
the 1960's. Evaluation at some point other than the 
mean is indicated if a high degree of llccuracy is desired. 
As indicated in figure 6, usc of the previous period 
values (a = X_I' b = y-l) Jeads to a substantial improve
ment for a linear approximation of the ratio of egg 
consumption to civilian population. In contrast to the 
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smooth trending data series on eggs, linear approxinla
tions of farm-to-retail price ratios for oranges were quite 
good over the sample period 1954 to 1968 when 
evaluated about the means of the price series. As is clear 
[rom figure 7, the price ratio series has irregu!ar 
movements and no trend. Evaluation about last pcriod 
values for rctail and farm priccs of oranges magnified the 
residual differences when sharp year-to-ycar changes 
occurred, as shown in figurc 1}. F:~perimetlts with 
products of two variables have resulted in similar 
obsen'ations on the appropriate choice of an evaluation 
point. 

Based on the examples discussed for both the 
single-variable and two-variable cases, Iwaluation about 
the mean will give the best linear approximations for 
scries which fluctuate but Jlavc little or no trend. For 
smooth data series which have significant trends, 
evaluation about the previous period value should be 
used to minimize residual error in the lin':ar 
approximations. Finally, fluctuating series with a 
distinct trend will require a moving average of r~cenL 
past observations to obtain the best linear approxi
mations. The choice of the number of observations for 
the moving average will depend on the extent of 
fluctuation about the trend in tIlC series. 

The above statements should be qualified with 
respect to computational requirements if the mean of a 
series i~ not appropriate. In simultaneol)s equation 
systems containing some nonlinear variables, usc of an 
evalulltion point other t!WlI a fixed point substantially 
increases the computational requirements for solving the 
system. Use of the previous period value, for example, 
requires the matrix of endogenous coefficients to be 
inverted on each successive solution iteration since 
b; = f(x;_!> Yi-I)' 

To briefly indicate the nature of the computational 
requirements, the following derived demand equation 
for California fresh oranges has been used in a 
simultaneous equation model: 

(12) QCFO = 5.787 - 46.353 (PCFOIPItFO) 

- 0.827 WND 

where 

QCFO ::: quantity of California oranges for fresh lise 

PCFO = on-tree price of California fresh oranges 

PRFO ::: U.S. retail price of [reFh oranges 

WND = nondurable wagc rate in United States 

.0 



PER CAPITA CONSUMPTION OF 
EGGS 1948-68 

68 

CD N 	x/Y = iff + xff - iy /72  ACTUAL  

---- ESTIMATED 

• 
CO 
OD 

..... ,..-. _ 
'„' %, 

",. ■ 
■ • 

(1) 
07 

■__ 

- 

. • 

co 

X =1 . 

\ 

N 
oo  ‘. 

CD 
Cr)  1 	I 	i 1 	i 	i i I 1 I 

. 

I 	I.  - --.1._ 
\ 

--- 	n 

r/  1 
1948 50 	52 

x EVALUATED 
54 	56 

ABOUT THE MEAN. 
58 60 62 	64 66 

Figure 5 

PER CAPITA CONSUMPTION OF 
EGGS 1948 68 

68 

0 
and 

X/Y = X-1/Y-1 + x/Y_ i_  - x..1Y/Y21  ESTIMATED 
ACTUAL 

CO 
tr) 

CD 
>-- 0) 
`s. 	. 
'>.< 

0") 

(11 
Cf) 

CD 
CT)  i 	1 	i 1 	t 	i I 	1 	I 1 	1 I i 1 

,...... 

I 

1948 50 	52 
x EVALUATED 

514 	56 
ABOUT THE 

58 	60 
PREVIOUS VALUE. 

62 64 66 

Figure 6 

99 



DC 
D_ 

D 
LL. 

D_ 

r- 

CO 
O 

O 

LI,  

• 
O 

O 
• 
O 

• 
CD 

1954 

ACTUAL PCFO + PCFO PCFO 
• PRFO 

---- 
---- 

PCFO 

ESTIMATED x 	- PRFO PRFO PRFO 
- 

PRFO2  

es 

lb 
I 

_ — 

I I 	I 	I 	I 	I I 	I I I I 	I I 

956 1958 960 1962 96 14 966 1968 

PRICE OF FRESH ORANGES 1954-68 

N EVALUATED ABOUT THE PREVIOUS VALUE. 

P
C
F
O
/
P
R
F
O
  

CO 
CD 

O 
• 

U1 
O 
• 

CD 

CD 

CD 

O 

cp 
1954 

O 

ACTUAL 
ESTIMATED m 

PCFO P CFO — I 
- 

PCFO 
+ 

PCFO-1 
• PRFO 

---- 
---- 

P RFO_ 1  P RFO— 1  

A 
1 t 

I t 

PRFO PRF0_2  1  

1 
I% 

— 

— 

I 
I 

I 

% 
t 
% 

% / 
/ 

I t 
I 	% 

1 	% 
I 	i — 

V 
I 

I 
I 
L_ 
‘ 

I 1 I 1 I I I 	I I 	I I 	I I 

956 958 960 962 96 14 966 1968 

PRICE OF FRESH ORANGES 1954-68 

EVALUATED ABOUT THE MEAN. 

Figure 7 

Figure 8 

• 

100 



Since QCFO, PCFO, and PRFO are endogenous to the 
odel, relation (12) can be reexpressed in linear form if 
educed form solution is desired. Since a ratio of two 

variables is used in the equation, application of relation 
(10) evaluated about the means of PCFO and PRFO 
results in the following linear expression: 

(13) QCFO = 3.545 - 0.6118 (PCFO) 

+ 0.02959 (PRFO) - 0.827 (WND) 

where 

PCFO = 3.66 

PRFO = 75.8 

This expression in (13) is readily used in a reduced form 
solution and is acceptable if the bias or residual errors of 
the linear approximation of PCFO/PRFO are small as is 
indicated in figure 7. 

Should residual error be a problem as suggested in 
figure 5, the use of lagged values for evaluation points 

• ight be used but the required computational 
procedures for a reduced form solution of the system 
may not be the best solution technique for the analyst 
to use. Other solution techniques such as the 
Gauss-Siedel technique should be considered (4, 6). For 
example, evaluation of (12) about the previous period 
value leads to the following more complicated relation 
when the linear approximation is substituted for 
PCFO /PRFO: 

(14) QCFO = 5.787 - 46.353 [PCF0A /PRF0.1  

+ (1/PRF0.1 )PCF0 

- (PCFO .1  /PRFO?i )PRFO] 

- 0.827 WND 

Or 

QCFO = 5.787 - 46.353 (PCFO . 1  /PRFO .1 ) 

- 46.353 (PRFO . 1 ) PCFO 

+ 46.353 (PCFO _ 1  /PRFW1 )PRFO 

- 0.827 WND 

Since the b's in (14) are dependent on lagged values of 
PCFO and PRFO, matrix inversion of the endogenous 
coefficients is required each period. With the present 
computer capacity, more efficient solution techniques 
are available. 
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