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Empirical Determination of Optimum Quality Mix

By Masao Matsumoto and Ben C. French

Changes in the distribution of an agricultural commodity among quality classes may affect
the total revenue obtained from a given quantity of product. Growers and marketing firms
need to consider the best mix of qualities as well as the best level of output. This paper de-
scribes an approach to the empirical problem of selecting, from several alternative feasible
mixes of qualities, the one which would yield the maximum net revenue. The paper focuses on a
single attribute and a single commodity but the concepts and methodology used can be extended
readily to other quality attributes and other commodities. Key words: Product quality, multiproduct

demand analysis, brussels sprouts, price discrimination.

Most agricultural commodities are produced and
marketed in a variety of quality classes defined by
attributes such as size, color, shape, texture, sweetness,
blemishes, percentage of defects, and the like. Since
consumer preferences for quality are variable, changes in
the distribution of a commodity among such classes may
affect the total revenue obtained from a given quantity
of product. The mix of qualities is determined to a
considerable extent by biological and growth processes
which are beyond the direct control of management.
However, it can be influenced, at a cost, by cultural
practices and by the handling, grading, and packaging
practices employed by processors and shippers. In
formulating production plans, growers and marketing
firms thus need to consider not only how much to
produce, but the best mix of qualities in view of both
revenue and cost effects. Firms or industry groups are
also faced with the problem of determining how quality
classes shall be defined, including the number of separate
classes to be distinguished. The present analysis takes
the structure of quality classes as given.

This paper describes an approach to the empirical
problem of selecting from among the alternative feasible
mixes of qualities, the particular mix that may be
expected to yield the largest net revenue. We illustrate
the approach for a specific commodity—frozen brussels
sprouts—and a single quality attribute, the size of the
individual sprouts. The concepts and methodology may
be extended readily to other quality attributes and
commodities.

The focus of the analysis is on the potential gain in
net returns to the industry (both growers and proc-
essors) rather than to an individual firm or a particular

.ndustry subgroup. The ultimate division of any net

gains from altered quality distribution would depend on
the nature of grower supply response and the structure
of competition in the raw product market.

Achievement of an improved or optimum quality
position implies the development of a raw product
pricing system that reflects final product demands back
to growers in a manner consistent with the optimizing
adjustments. This requires that there be a clearly defined
relationship between final product quality and raw
product quality. Given this relationship—which is direct
in the case of size attributes—an appropriate raw product
pricing system would reflect the differences in marginal
production costs involved in shifting the quality mix
among classes. The final level of raw product prices
would depend on the characteristics of grower supply
and competition among freezers.

Theoretical Framework

An appropriate theoretical framework for analyzing
the quality mix problem may be derived from the theory
of the multiproduct discriminating monopolist. If we
think of each quality variation as a different product, or
alternatively as a different market outlet, the problem
may be viewed as the determination of the optimum
distribution of total sales among markets or products
with interrelated demands. While many microtheory
texts deal with some aspects of the problem, perhaps the
best mathematical treatment for our purposes is to be
found in Waugh (5)." We shall follow his general line of

talic numbers in parentheses indicate items in the Refer-
ences, p. 9.




development, except that costs associated with varying
quality mixes are given explicit treatment in our model.?

Assume that the production of an agricultural com-
modity is distributed among K quality classes. The price
received for the ith quality depends not only on the
quantity in that class, but the quantity in each other
class, plus other variables such as income and competing
products which may shift the entire level of demand.
The total quality demand system is described by K
quotations, one of each quality class. Holding shift
variables such as income constant and assuming linear
relationships (as in our empirical analysis) a typical
demand equation would have the form

K
(1) Pi = biO & zbiij i =

where P is price, Q is quantity, and b;y and b are
coefficients of the demand equations.

The gross revenue equation, obtained by multiplying
the price in each quality class by the quantity in that
class and summing, may be written as

K K K
@ GR = EQiPi = zQi bip + Ebiij
i=1 i=1 =1

To obtain the net revenue equation we subtract the
total cost from the gross revenue. For this purpose, the
unit cost may be decomposed into two parts, a constant
part &, common to all quality classes, and a variable part,
¢;, which varies among quality classes. In general, the c;’s
may vary as functions of quantities in all classes and
For sim-
plicity, we shall regard the ¢;’s as constants (they are so
estimated in the empirical analysis). The basic concep-
tual model is not essentially altered by this simpli-
fication.

these functions may have nonlinear forms.?

2The problem of determining optimum product quality for a
firm producing a single quality of product has been well
developed by Dorfman and Steiner (2). They introduce a
continuously variable index of quality into both the demand and
cost functions of the firm and determine the conditions for joint
optimization of quality and price for a given quantity. They note
that a range of qualities would be offered if the market consists
of groups of consumers with differing quality demands. How-
ever, they do not develop this case explicitly, nor do they deal
with the case where the firm (or industry) produces a spectrum
of qualities as a consequence of biological factors involved in the
production process.

3 General theoretical considerations involved in incorporating
product quality into the production function are well developed
in Dano (I). However, he does not extend his analysis to the
joint product case found in agriculture.
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With these considerations, the net revenue equation is
expressed as follows:

K K
(3) NR = ZQ,. by + Zbiij
i=1 =1

where Q is the total quantity to be sold, obtained by
summing over all classes.

We wish to find the values of Q; which will maximize
(3) for any given value of Q. To solve, we form a
Lagrangian function, set the first partial derivatives equal
to zero, and solve the resulting linear equations for
values of Q; as a function of Q.

& ECz‘Qi

i=1

K K
4 L = le biO G zbiij
i=1 =1

K
+cQ + A zQi—Q

i=1
K
& 2 b E(bij+ b)Q —c;+A = 0.
aQi i1
L K
@ Ak gL A
B v

Solving for A gives the value of marginal net returns
which, for a maximum, must be the same for all quality
classes.

To assure a maximum we must have, in addition to

conditions (5) and (6), d*L < 0 subject to

K
dei =0
i=1

The value of d? L will be negative definite if the principal
bordered minors of the Hessian determinant formed
from L alternate in sign, starting with the minor formed
by the first three rows and columns > 0. (See Lloyd (3)
or Yamane (6).)

Note that in solving equations (5) and (6) we are not
required to know the value of & (the costs common to all
sizes). We need only the marginal costs (the c¢;)
associated with altering the quality distribution.

With no other restraints, the solution procedure
outlined above could give negative values for some of the
Q;’s. If this should happen, either of two alternatives
may be considered. In some cases it may be clear tha’




the values of the (;’s that were negative will always
Qume the minimum amount permitted. Quantities for

se classes therefore may be set at zero (or some
proportion of ()) and the problem solved again with the
added restrictions as equalities. More generally, restraints
may be added of the form ;= 0 for all i (or some Q; >
a; ) and a solution obtained as a quadratic program-
ming problem. This, or course, could be done at the
outset. The first procedure was followed in the frozen
brussels sprouts model since it was evident that a proper
solution would be obtained by this method.

Demand Interrelationships for
Quality Attributes

Estimation of the parameters of the system of
demand equations requires continuous series of data
pertaining to prices and quantities in each quality class.
For frozen brussels sprouts such data have, for the most
part, never been published in any form. Consequently, it
was necessary to acquire data directly from the records
of processing firms in the industry.

Monthly sales and price data by size class were
compiled from records of freezers covering the years
1961 and 1962.* These firms packed about 55 percent
all the frozen brussels sprouts marketed by California
s during these 2 years and the data are believed to be
representative of the California industry’s experience.
California freezers accounted for about 94 percent of
U.S. frozen brussels sprouts production in these years.
Data covering additional periods would have been de-
sirable but lack of complete historical records in the
firms surveyed, plus the sheer physical difficulties
involved in the compilations, required that the survey be
limited to a 2-year period.

Frozen brussels sprouts vary considerably in size,
with the smaller sizes commanding a price premium. The
brussels sprouts trade typically quotes prices by a range
of count per pound which we have grouped into three
classes: large (less than 25 per pound), medium (25 to
40 per pound), and small (over 40 per pound). There is a
further breakdown by type of package—retail (1 pound
or less) and institutional (over 1 pound). Thus, our basic

*This phase of the analysis was initiated in the early 1960’s
at the request of the members of the brussels sprouts industry.
The survey of processors was completed in 1963 and preliminary
analysis finished shortly thereafter. However, because of divert-
ing assignments, the final phases were not completed until much
later. A very limited amount of data has been obtained for more
recent years and serves as a basis for checking the previous

ults. The major conclusions reached with the data appear to

‘d, at least approximately, for more current conditions.

data series consists of 24 monthly observations on prices
and sales for three sprout size classes and two container
classes.

The basic model to be estimated expresses the average
monthly price in each size and container category as a
linear function of the monthly quantity sold in each
category. Nonlinear forms are of course equally possible.
With many variables and cross-relationships, it is difficult
to determine the nature of existing curvilinearity and to
estimate any except the simple log form. Preliminary
graphic explorations suggested that linear estimates
would provide reasonable approximations within the
range of the data.

In view of the relatively short period involved, the
annual values of competing products and income were
omitted.’ Quantities were expressed in total rather than
per capita terms. Monthly carlot unloads of fresh
brussels sprouts in 41 U.S. cities were included as a
variable to allow for both seasonal shifts and the
competitive effects of the fresh commodity. Initial
regression estimates suggested the presence of a trend in
some equations, possibly due to the omission of income
and other competing products. Thus, a time trend also
was added. Since there are six size-container classes, we
have six equations each of the form:

(NP, = by + b;1Qpp: + biaQpry: + bi3Qprs:
+ 034Qp + bisQpyy + bigQrsy + bi7Qpy
+ bl + Vi

where

Q is quantity in 1,000 pounds;

R refers to retail size containers;

[ refers to institutional size containers;

L, M, S are sizes of sprouts—large, medium, and small;

P is average price (cents per pound);

QF is monthly carlot unloads of fresh brussels sprouts
in 41 U.S. cities;

T is a time trend, varying from 1 to 24;

i =1, 2,...6, indicates a particular size-container
category (e.g., Py, =Pry,);

t=1,2,. .24, indicates the number of the monthly
observation; and

v is an unexplained disturbance.

Data pertaining to monthly sales of most competing frozen
vegetables are not available. Explorations of monthly shipment
data for fresh vegetables, except fresh brussels sprouts, failed to
produce promising indicators of regular shifts in the monthly
demand for frozen sprouts.




The choice of statistical procedure to use in esti-
mating the parameters of this equation system involved
both theoretical and empirical considerations. Since we
are dealing with monthly observations our initial
approach was to view the demand equations as part of a
simultaneous system. That is, monthly quantities sold
were regarded as determined simultaneously with
monthly prices. This view required that we specify
short-run supply equations and then estimate the
parameters of the entire demand-supply system by
simultaneous equations procedures.

Supply equations were formulated in which the
monthly quantities of sprouts marketed, by size class,
were expressed as linear functions of prices and begin-
ning monthly inventory levels in each size class. The
latter were adjusted for normal seasonal variation.
Beginning inventories were viewed as predetermined
variables, thus producing a system in which the coef-
ficients of the demand equations were identified.

The parameters of this system of equations were
estimated by two-stage least squares. The results were
quite unsatisfactory, both by usual statistical criteria and
in terms of the expected signs and magnitudes of the
equation coefficients. This may have been due in
substantial part to the very poor quality of our data
pertaining to monthly quantities of each size category
held in cold storage.6 In any case, it was necessary to
abandon this procedure and turn to other methods of
estimation.

Our second approach was to apply ordinary least
squares directly to the estimation of the parameters of
each structural equation. This method is justified if
processors establish quantities to be sold each month
without regard to current price. We would not argue that
processor plans and adjustments are so completely
inflexible, but processors may well be more concerned
with orderly movement of total stocks and honoring
buyer commitments than with adjustments to monthly
price variations. Under these circumstances the degree of
bias may be “reasonably” small.

The results of our initial application of ordinary least
squares, although superior to the two-stage least squares
model, still had some coefficients with positive signs or
of low statistical significance. The main difficulty
appeared to be that the sample was too small, the range
of observations too limited, and the intercorrelation
among quantity variables too high to isolate the separate

6 published data on monthly cold storage holdings do not
indicate the quantities held in each size category. These values
were estimated on the basis of total stocks and the proportions
packed initially in each size class. Such estimates could be very
inaccurate.
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effects on price of each of the six alternative size-
container classes in each equation. To reduce .
intercorrelation problem and the number of coefficie

to be estimated we combined several of the variables in
each equation.

The most satisfactory results were obtained by a
formulation which related price in each size-container
class to the quantity in that class and the total quantity
in all other classes. The regression equations are sum-
marized in table 1. All of the coefficients are consistent
with theoretical expectations—i.e., they are all negative
and each price is affected more by changes in its own
quantity than by quantities in other classes. Sales of
fresh brussels sprouts (Q ) had a highly significant effect
on prices of medium sprouts and a somewhat significant
effect on prices of medium sprouts in retail containers.
The coefficient of Qp was of quite low statistical
significance in the equations for large sprouts and for
small institutional-container sprouts. Therefore, Qp was
omitted in the final regressions for these classes. Possibly
the extreme size classes are less sensitive to the fresh
market. The trend factor clearly was not significant for
institutional containers and so was omitted from the
latter set of equations. For large sprouts in institutional
containers, the coefficient of Q7 — Qy was small and of
very low statistical significance so it was dropped from
this equation—i.e., its coefficient is regarded as zero. ‘

Cost of Altering the Quality Mix

The primary means by which the size distribution of
sprouts may be changed is through varying the time
interval between harvests or the timing of once-over
machine harvest. The major cost factors involved are the
loss in yield with decreased size and the higher per
pound harvesting cost with smaller sizes. The distribu-
tion could also be altered by simply discarding some of
(say) the larger sprouts. To maintain production at a
given level, the discarded sprouts would have to be
replaced by quantities produced on additional acreage.
This appeared to be excessively expensive compared
with other procedures considered and so was rejected as
an alternative.

With an inelastic demand, discarding quantities in
lower quality classes would, of course, increase total
revenue. In this case, the f.o.b. freezer demand is elastic,
so revenue would be reduced. Moreover, our purpose is
to determine the optimum quality mix for any given
quantity, leaving open the determination of the total
amount to be produced.

At the freezing level, the main cost influence is in the
trimming operation. Trimming time per sprout rem
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Table 1.—Demand relationships for frozen brussels sprouts by size-container class: Final selected regressions

. a
.ependent Constant Sxyinsiory raftabios Re | qd
variable term b
Orr | Orm | Ors O Orm Ois | 07-0;" | OF r
regression coefficients and t-ratios®
Prr 25.197 —.00136 —.00045 —.03450 .773 1.68
(1.721) (2.421) (3.689)
Pry 27.887 —.00051 —.00027 —00252 —.01249 .801 1.20
(1.710) (1.403) (2.294) (1.795)
Prg 29.914 —.00235 —.00024 -.00182 —-.01628 .773 1.75
(2.756) (1.116) (1.487) (1.959)
Py 22.827 —.00334 663 2.76
(4.152)
Prr 26.234 —.00132 —.00027 —.00406 945 2.39
(3.049) (1.942) (4.865)
Prg 27.064 —.00636 —.00013 .732 1.85
(3.906) (1.458)

3See text for explanation of symbols.

bQT =Qrr * Orprt Ors + Qpp + Qppg + Q. Q; refers to the variable treated as dependent.

€Coefficient of multiple correlation.

9dDurbin-Watson statistic. The hypothesis of no positive serial correlation of error terms is not rejected at the 5 percent significance
level for the first, fourth, fifth, and sixth equations. The value of d falls in the indeterminant range for the second and third equa-

C
essentially constant, regardless of sprout size. Thus, cost
per pound is greater for the smaller sizes.

Our studies of these operations indicated that with
conventional multiple-harvest cultural practices, shifting
1 pound of sprouts from the large to the medium size
would increase the combined production and processing
cost by roughly 0.9 cent per pound.” Shifting a pound
from the medium to the small class would increase costs
by another 0.9 cent per pound. Since we have no direct
observations to indicate how costs of shifting size
distributions might be affected by one-over machine
harvest and the introduction of new varieties, the cost
figures should be regarded only as rough approxima-
tions. However, they are satisfactory for purposes of
illustration and seem close enough to permit a tentative
evaluation of potential gains or losses from changes in
distribution. v

Since our focus is primarily on size distribution, we
have assumed that the average observed price difference
between container types for the same sprout size reflects
the difference in cost of packaging in retail and

®Figures in parentheses are t-ratios.

'7For details of the cost estimates see Matsumoto (4).

ions. There is a suggestion of negative serial correlation for the fourth equation.

institutional containers. This was 1.73 cents per pound
higher for retail packages (for all sprout sizes) during the
period for which data were obtained.

The ¢;’s of our conceptual model—equations (3), (4),
and (5)—may be derived by adding the estimated
differences in costs to ¢, the unit cost common to all
sizes. Thus, the total cost of production and processing
may be expressed as

(8 TC = 2Q + 1.73Qp, + 2.63Qp,, + 3.53 Qpg
+0.0Q, +0.9Q, + 18Q,-

Recall that, with total quantity (Q) constant, ¢ drops
out of the marginal revenue equations.

Note that with costs expressed as a linear function of
K

the Q; (i.e., TC = aQ + E a;Q;) we can always rewrite
i=1

K
the equation as TC = (a *+ a;) Q + Z (c;— ¢j) Q;. The

v= 10
(—:oeffifient for Qj will thus be zero. In (8), @y, = Qj and
¢=ata,.
)




Revenue Effects

A monthly gross revenue equation may be obtained
by multiplying the equation in table 1 by the quantity
corresponding to the dependent variable and summing
equations.® A net revenue equation is derived by
subtracting equation (8) from the gross revenue equa-
tion. Following the procedure outlined in (3) to (6), the
revenue-maximizing quality mix may be determined for
each month as a function of the total quantity of frozen
sprouts to be sold during the month, the monthly sales
of fresh sprouts, and the value of the trend factor. The
basic decision facing the industry, however, is not how
to allocate predetermined monthly sales among quality
classes (although eventually this must be done), but how
much to produce in each quality class. Since production
decisions are made annually rather than monthly, we
need an annual revenue function. This is obtained by
summing the monthly revenue equations over 12 months.

Given the annual total quantity of sprouts to be sold
and the expected seasonal pattern of sales of fresh-
market sprouts, the annual revenue function may be
solved for the optimum allocation of quantities to each
quality class for each month. The monthly quantities
then may be summed to obtain the annual production
mix. Our basically simple conceptual problem involving
three quality classes (and two container classes) thus
expands, in application, to the determination of the
optimum allocation of a given annual quantity among 72

8Since prices are expressed in cents per pound and quantities
in 1,000-pound units, the value obtained by this procedure must
be multiplied by 1,000 to obtain the true value of revenue (in
cents).

economic classes (12 months, three qualities, and two
container types). d’
While this type of problem clearly can be han
without great difficulty on a computer, even as a
quadratic programming problem, it is perhaps asking
quite a bit of our limited empirical model, especially
since it does not include consideration of inventory cost,
customer relations, and expectation formation which
might influence the distribution pattern. It also unneces-
sarily complicates the development of the points we
wish to illustrate. To focus more directly on the quality
mix problem—that is, the best distribution of qualities
for a given quantity of annual industry production—we
shall introduce some simplifications which enable us to
abstract from the seasonal pattern of distribution, while
still providing a basis for some rough generalizations.
Specifically, we shall hold the level of fresh market-

ings at the mean value for the period of the study and
set T at zero.® This gives us a set of typical demand
equations, summarized in table 2, which illustrate the
essential characteristics of the interrelated demand struc-

YRecall that the trend variable was inserted primarily to

allow for effect of possible demand shifters, such as income or
competing products, which were not included as specific
variables in the demand model. In this sense, the trend has no
significance beyond the study period. The choice of zero for the
trend value was a matter of convenience in formulating
illustrative demand and revenue equations. If T had been se!
12 or 24, rather than zero, the demand for retail containers
would have been reduced relative to the institutional containers
and the demand for the retail large class would have been
reduced relative to the medium and small. These small shifts
would slightly alter the solutions to the problem of optimum
distribution in favor of medium sizes, but the major conclusions
would remain essentially the same.

Table 2.—Simplified demand model for frozen brussels sprouts by size-container class
(Qf= 58.6 and T = 0)

Dependent | Constant Haplangtony Kanatiee
55 i3 QrL Orm Ors Orr, O Ors
equation coefficients

Prpr 25.197 —.00136 —.00045 —00045 —.00045 —.00045 —.00045
Pom 27.379  —.00027 —.00051 —.00027 —.00027 —.00027 —.00027
Prs 20.807  —.00024 —.00024 —.00235 —.00024 —.00024 —.00024
Py 22.827 —.00334
Py 25.996  —.00027 —.00027 —.00027 —00027 —.00132 —.00027
Prg 27.064  —.00013 —.00013 —.00013 —.00013 —.00013 —.00636




ture and which may be easily converted to annual
ands and revenues by a factor of 12. The total
ity mix determined with these simplified equations
would not be identical with a solution based on the
more complex summation of monthly allocations, but
we would expect it to be reasonably close.*®
Although we are ultimately interested in the net
revenue equations, we shall first briefly explore the gross
revenue function since it may be used to develop some
useful information pertaining to effects of changes in
size allocation without immediate reference to cost. This
had considerable merit in view of the rough nature of
our cost-size-of-sprout relationships.
To extract the desired information we first take the

total differential of the gross revenue equation,
obtaining

6
© R = Y %R 4q. .

i=1 aQi

The marginal revenues, dGR/3();, are then calculated for
each quality class with quantities held at the average
levels for the sample of observations. The gross revenue
effects of small shifts in allocation between pairs of
classes (i and j) are obtained by setting dQ; = 1, dQj = —
1. and all other dQ, = 0.

able 3 summarizes these values. It indicates, for
example, that shifting 1,000 pounds from the retail-large
to the retail-small class would increase gross revenue by
$45.25. These marginal gains or losses may be compared
with expected marginal costs to suggest something about
desirable directions and potential gains from change.

If our estimates of transfer costs between classes are
subtracted from the values in table 3, we obtain the net
revenue estimates shown in table 4. With these adjust-
ments, the marginal gain in shifting 1,000 pounds from
the retail-large to the retail-small class, for example, is
reduced to $27.25, still a significant gain. As expected in
view of our assumptions concerning cost differences, the
potential gains or losses from shifts between container
types for like sizes is quite small in all cases. In general,
table 4 suggests that net revenue could be increased by a

10The solution by months would involve reduced total
frozen-sprout sales in months of large fresh-market sales. In
months of smaller frozen-sprout sales, the optimum solution
would require relatively larger percentages of sprouts in small
sizes and relatively smaller percentages in medium sizes, with
large sizes at the minimum permitted. The weighted average
quality mix for all months would be close to, but not necessarily
the same as, the mix obtained with an average level of fresh

'ket sales.

Table 3.—Changes in gross revenue associated with
shifting 1,000 pounds of frozen brussels sprouts
from one size-container class to another?

1,000-pound 1,000-pound increase in
Loiate Orm | Qrs | On O | Qs
dollars

QrL 25.58 4525 —2442 1019  24.20
Orm 19.67 -50.00 -15.39 — 1.38
Ors —69.67 —35.06 —21.05
(073 34.61 48.62
O 14.01

aStarting with average sample quantities in each class.

program aimed at shifting quantities from large into
medium and small categories. However, it does not
indicate how much should be shifted or what the final
distribution should be. For this purpose, we need to
make additional calculations.

The distribution among quality classes which maxi-
mizes the value of the net revenue function was obtained
as indicated in equations (4), (5), and (6). The b
coefficients of the revenue equation are contained in
table 2 and the ¢ coefficients are given in equation (8).
The initial solution produced negative values for the
quantities in the large size classes. Consequently, it was

Table 4.—Changes in net revenue associated with shifting
1,000 pounds of frozen brussels sprouts from one
size-container class to another?

1,000-pound 1,000-pound increase in
o Orm | Ors | O O O1s
dollars

Orr 1658 27.25 — 7.12 18.49 23.50
Orm 10.67 —23.70 2.21 6.92
Ogrs 3437 — 876 — 375
O 2561  30.62
Om 5.01

aStarting with average sample quantities in each class.




necessary to impose restrictions which would guarantee
that quantities in all classes would be greater than or
equal to zero. A solution could have been obtained by
quadratic programming procedures. However, since it
was clear that the quantity in the “large” class would be
the minimum permitted, restrictions were imposed as
equalities and solutions were obtained as before, except
with the added restrictions. All other unrestricted
quantities remained positive with this solution.

Table 5 shows the optimal distribution for the total
quantity of average monthly sales observed during the
same period. Three alternative solutions are presented,
each involving different restrictions on the quantity of
large sprouts. Solution 1 imposes only the restriction
that the quantity in each class must be greater than or
equal to zero. Because it may be unreasonable to assume
that the quantity in large sizes can be reduced to zero
(without abandoning parts of the production), we have
computed two additional solutions which require that at
least (a) 5 percent and (b) 10 percent of the production
will fall in the large class. To focus entirely on the size
allocation problem, solutions 2 and 3 also restrict the

distribution between retail and institutional contain-
ers to the proportions observed during the sampl
period.

The three solutions give similar results. They leave the
proportions allocated to medium sizes with little change,
reduce the quantity in large sizes, and increase the
allocation to smaller sprouts. Solution 1 increases the
California industry revenue, compared with the value
obtained by applying sample proportions to the esti-
mated revenue equations, by $158,000 per year, solu-
tion 2 by $145,000, and solution 3 by $104,000.
Comparisons with actual average revenue during the
sample period gave similar results. These potential gains,
obtained by expanding sample values to reflect total
industry experience, are in the order of 1-1/2 to 1
percent of gross revenue.

The optimal allocation proportions in table 5 pertain
only to the quantities sold during the sample period,
1961-62. As total sales change, so do the optimal
allocations among size classes. By leaving the value of Q
(the total quantity) unspecified, a more general solution
can be obtained in which the quantities in each quality

Table 5.—Actual and optimal distribution of sprout sizes
for the 1961-62 sample quantity of sales.

i . Optimal distributions
Size-container Actual
He degtiingian Solution 12 Solution 2P Solution 3¢
proportion of total
Large:
Retail .096 .000 .023 .046
Institutional 114 .000 .027 .054
Total .210 .000 .050 .100
Medium:
Retail .488 473 .483 .449
Institutional 154 .204 153 142
Total .642 677 .636 .591
Small:
Retail 126 .270 267 .263
Institutional .022 .053 .047 .046
Total .148 .323 .314 .309
20
<L >0
Or
"0,

Or

CRestrictions same as for solution 2 except g-L >.10.
7

>.05 and Qg = 4570y, Ogpr= 7590, Ors = 8520g.




class are expressed as linear functions of Q.'' They may
e converted to a percentage basis by dividing through
Q. These solutions suggest that as industry total
quantities increase, the proportions allocated to medium
sizes should be increased and the allocation to the
smaller sizes slightly decreased, with large sizes at the
minimum permitted.

Concluding Comments

The results of our study are encouraging. They
demonstrate that it is possible to develop an empirically
quantifiable model which may aid agricultural groups in
formulating programs aimed at achieving the best—or at
least a better—mix of qualities. The approach used
would be appropriate for many quality attributes other
than size.

The major limitation of this and possibly similar
studies that might be attempted is in the data, especially
the price and sales data. Although the demand model
developed is significant in a statistical sense and is
consistent with theoretical expectations, substantially
more observations would be desirable to build confi-
dence in the precision and generality of the estimates.

For many commodities priced at shipping points or
central markets there may be fairly long series which

uld be tabulated from market news data. For most
‘ocessed commodities, price and sales data unfor-
tunately are not published by quality class, if at all.

11E xamination of the original unrestricted solution indicated
that as crop size increased, the optimum quantity in the “large”
class would eventually become positive. However, this would
occur only for crop sizes far larger than any yet observed.
Quantities in other categories would always remain positive.

415-172 O - 71 - 2

Commodity groups interested in this type of analysis
could initiate data collection programs through their
trade associations. For storable commodities, this would
need to include information on the quality mix of
inventory holdings, as well as sales. Costs associated with
quality changes would, of course, have to be obtained by
special studies in each case.

The potential industry gains suggested by this study
appear quite modest—in the neighborhood of 1 percent
of gross revenue. Our guess would be that potential gains
for other commodities and quality attributes would be
found to be similarly modest. For many industry groups,
however, the absolute magnitude could be substantial
and such gains may be well worth striving for, especially
in periods of tight margins and increasing costs.
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