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Empirical Determination of Optimum Quality Mix 

By Masao Matsumoto and Ben C. French 

Changes in the distribution of an agricultural commodity among quality classes may affect 
the total revenue obtained from a given quantity of product. Growers and marketing firms 
need to consider the best mix of qualities as well as the best level of output. This paper de-
scribes an approach to the empirical problem of selecting, from several alternative feasible 
mixes of qualities, the one which would yield the maximum net revenue. The paper focuses on a 
single attribute and a single commodity but the concepts and methodology used can be extended 
readily to other quality attributes and other commodities. Key words: Product quality, multiproduct 
demand analysis, brussels sprouts, price discrimination. 

Most agricultural commodities are produced and 
marketed in a variety of quality classes defined by 
attributes such as size, color, shape, texture, sweetness, 
blemishes, percentage of defects, and the like. Since 
consumer preferences for quality are variable, changes in 
the distribution of a commodity among such classes may 
affect the total revenue obtained from a given quantity 
of product.The mix of qualities is determined to a 

"'considerable extent by biological and growth processes 
which are beyond the direct control of management. 
However, it can be influenced, at a cost, by cultural 
practices and by the handling, grading, and packaging 
practices employed by processors and shippers. In 
formulating production plans, growers and marketing 
firms thus need to consider not only how much to 
produce, but the best mix of qualities in view of both 
revenue and cost effects. Firms or industry groups are 
also faced with the problem of determining how quality 
classes shall be defined, including the number of separate 
classes to be distinguished. The present analysis takes 
the structure of quality classes as given. 

This paper describes an approach to the empirical 
problem of selecting from among the alternative feasible 
mixes of qualities, the particular mix that may be 
expected to yield the largest net revenue. We illustrate 
the approach for a specific commodity—frozen brussels 
sprouts—and a single quality attribute, the size of the 
individual sprouts. The concepts and methodology may 
be extended readily to other quality attributes and 
commodities. 

The focus of the analysis is on the potential gain in 
net returns to the industry (both growers and proc-
essors) rather than to an individual firm or a particular 

eandustry subgroup. The ultimate division of any net 

gains from altered quality distribution would depend on 
the nature of grower supply response and the structure 
of competition in the raw product market. 

Achievement of an improved or optimum quality 
position implies the development of a raw product 
pricing system that reflects final product demands back 
to growers in a manner consistent with the optimizing 
adjustments. This requires that there be a clearly defined 
relationship between final product quality and raw 
product quality. Given this relationship—which is direct 
in the case of size attributes—an appropriate raw product 
pricing system would reflect the differences in marginal 
production costs involved in shifting the quality mix 
among classes. The final level of raw product prices 
would depend on the characteristics of grower supply 
and competition among freezers. 

Theoretical Framework 

An appropriate theoretical framework for analyzing 
the quality mix problem may be derived from the theory 
of the multiproduct discriminating monopolist. If we 
think of each quality variation as a different product, or 
alternatively as a different market outlet, the problem 
may be viewed as the determination of the optimum 
distribution of total sales among markets or products 
with interrelated demands. While many microtheory 
texts deal with some aspects of the problem, perhaps the 
best mathematical treatment for our purposes is to be 
found in Waugh (5).1  We shall follow his general line of 

'Italic numbers in parentheses indicate items in the Refer-
ences, p. 9. 
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aL, = 
aQ 	Lo (5) 

development, except that costs associated with varying 
quality mixes are given explicit treatment in our model.2  

Assume that the production of an agricultural com-
modity is distributed among K quality classes. The price 
received for the ith quality depends not only on the 
quantity in that class, but the quantity in each other 
class, plus other variables such as income and competing 
products which may shift the entire level of demand. 
The total quality demand system is described by K 
quotations, one of each quality class. Holding shift 
variables such as income constant and assuming linear 
relationships (as in our empirical analysis) a typical 
demand equation would have the form 

With these considerations, the net revenue equation is 
expressed as follows: 

K 1C 

(3) NR 	= 	Q i 
i=1 

b io + Ib—Q) — 

i=1 

— aQ 

where Q is the total quantity to be sold, obtained by 
summing over all classes. 

We wish to find the values of Qi  which will maximize 
(3) for any given value of Q. To solve, we form a 
Lagrangian function, set the first partial derivatives equal 
to zero, and solve the resulting linear equations for 
values of Qi  as a function of Q. 

• 

(1) 	P. = bio  + I 	1, 2, ... K 
i =1 

(4) L = /Qi  610  + 	b ij Q j  — /ci Qi  
i=1 	j=1 	i=1 

where P is price, Q is quantity, and bio  and b are 
coefficients of the demand equations. 

The gross revenue equation, obtained by multiplying 
the price in each quality class by the quantity in that 
class and summing, may be written as 

(2) 	GR = EQ j pi  = 

To obtain the net revenue equation we subtract the 
total cost from the gross revenue. For this purpose, the 
unit cost may be decomposed into two parts, a constant 
part J, common to all quality classes, and a variable part, 
ci, which varies among quality classes. In general, the ci's 
may vary as functions of quantities in all classes and 
these functions may have nonlinear forms.3  For sim-
plicity, we shall regard the ci's as constants (they are so 
estimated in the empirical analysis). The basic concep-
tual model is not essentially altered by this simpli-
fication.  

+ Z.Q + X ( Q . 

+ 	 1  1(b••1.1 + b.1••)Q.J — C- + 	= 0 . 
i=1 

(6) 
aL 	

==1. Q
i  — Q = 0 . 

Solving for A gives the value of marginal net returns 
which, for a maximum, must be the same for all quality 
classes. 

To assure a maximum we must have, in addition to 
conditions (5) and (6), d2L < 0 subject to 

dQi  = 0. 
:=1 

Qibio + 
i=1 

lb Qi) 
j=1 

2The problem of determining optimum product quality for a 
firm producing a single quality of product has been well 
developed by Dorfman and Steiner (2). They introduce a 
continuously variable index of quality into both the demand and 
cost functions of the firm and determine the conditions for joint 
optimization of quality and price for a given quantity. They note 
that a range of qualities would be offered if the market consists 
of groups of consumers with differing quality demands. How-
ever, they do not develop this case explicitly, nor do they deal 
with the case where the firm (or industry) produces a spectrum 
of qualities as a consequence of biological factors involved in the 
production process. 

3General theoretical considerations involved in incorporating 
product quality into the production function are well developed 
in Dano (1). However, he does not extend his analysis to the 
joint product case found in agriculture. 

The value of d2  L will be negative definite if the principal 
bordered minors of the Hessian determinant formed 
from L alternate in sign, starting with the minor formed 
by the first three rows and columns > 0. (See Lloyd (3) 
or Yamane (6).) 

Note that in solving equations (5) and (6) we are not 
required to know the value of c (the costs common to all 
sizes). We need only the marginal costs (the ci's) 
associated with altering the quality distribution. 

With no other restraints, the solution procedure 
outlined above could give negative values for some of the 
Qi's. If this should happen, either of two alternatives 
may be considered. In some cases it may be clear that 
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the values of the Qi's that were negative will always 

s
e the minimum amount permitted. Quantities for 

se classes therefore may be set at zero (or some 
proportion of Q) and the problem solved again with the 
added restrictions as equalities. More generally, restraints 
may be added of the form Qi  ...›.- 0 for all i (or some Q i  ...>- 
ai  Q) and a solution obtained as a quadratic program-
ming problem. This, or course, could be done at the 
outset. The first procedure was followed in the frozen 
brussels sprouts model since it was evident that a proper 
solution would be obtained by this method. 

Demand Interrelationships for 
Quality Attributes 

Estimation of the parameters of the system of 
demand equations requires continuous series of data 
pertaining to prices and quantities in each quality class. 
For frozen brussels sprouts such data have, for the most 
part, never been published in any form. Consequently, it 
was necessary to acquire data directly from the records 
of processing firms in the industry. 

Monthly sales and price data by size class were 
compiled from records of freezers covering the years 
1961 and 1962.4  These firms packed about 55 percent 

all the frozen brussels sprouts marketed by California 
s during these 2 years and the data are believed to be 

representative of the California industry's experience. 
California freezers accounted for about 94 percent of 
U.S. frozen brussels sprouts production in these years. 
Data covering additional periods would have been de-
sirable but lack of complete historical records in the 
firms surveyed, plus the sheer physical difficulties 
involved in the compilations, required that the survey be 
limited to a 2-year period. 

Frozen brussels sprouts vary considerably in size, 
with the smaller sizes commanding a price premium. The 
brussels sprouts trade typically quotes prices by a range 
of count per pound which we have grouped into three 
classes: large (less than 25 per pound), medium (25 to 
40 per pound), and small (over 40 per pound). There is a 
further breakdown by type of package—retail (1 pound 
or less) and institutional (over 1 pound). Thus, our basic 

4This phase of the analysis was initiated in the early 1960's 
at the request of the members of the brussels sprouts industry. 
The survey of processors was completed in 1963 and preliminary 
analysis finished shortly thereafter. However, because of divert. 
ing assignments, the final phases were not completed until much 
later. A very limited amount of data has been obtained for more 
recent years and serves as a basis for checking the previous *ills. The major conclusions reached with the data appear to 

, at least approximately, for more current conditions. 

data series consists of 24 monthly observations on prices 
and sales for three sprout size classes and two container 
classes. 

The basic model to be estimated expresses the average 
monthly price in each size and container category as a 
linear function of the monthly quantity sold in each 
category. Nonlinear forms are of course equally possible. 
With many variables and cross-relationships, it is difficult 
to determine the nature of existing curvilinearity and to 
estimate any except the simple log form. Preliminary 
graphic explorations suggested that linear estimates 
would provide reasonable approximations within the 
range of the data. 

In view of the relatively short period involved, the 
annual values of competing products and income were 
omitted.5  Quantities were expressed in total rather than 
per capita terms. Monthly carlot unloads of fresh 
brussels sprouts in 41 U.S. cities were included as a 
variable to allow for both seasonal shifts and the 
competitive effects of the fresh commodity. Initial 
regression estimates suggested the presence of a trend in 
some equations, possibly due to the omission of income 
and other competing products. Thus, a time trend also 
was added. Since there are six size-container classes, we 
have six equations each of the form: 

(7)P it  = bi0 + bz1QRLt + bi2QRMt + bi3QRSt 

+ bi4QILt + bi5QIMt + bi6QISt + bi7 QFt 
+ bi8T + Vit 

where 

Q is quantity in 1,000 pounds; 
R refers to retail size containers; 
I refers to institutional size containers; 
L, M, S are sizes of sprouts—large, medium, and small; 
P is average price (cents per pound); 
QF is monthly carlot unloads of fresh brussels sprouts 

in 41 U.S. cities; 
T is a time trend, varying from 1 to 24; 
i = 1, 2, . . . 6, indicates a particular size-container 

category (e.g.,P1t = PRLt); 
t = 1, 2, . . 24, indicates the number of the monthly 

observation; and 
v is an unexplained disturbance. 

s 
Data pertaining to monthly sales of most competing frozen 

vegetables are not available. Explorations of monthly shipment 
data for fresh vegetables, except fresh brussels sprouts, failed to 
produce promising indicators of regular shifts in the monthly 
demand for frozen sprouts. 
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The choice of statistical procedure to use in esti-
mating the parameters of this equation system involved 
both theoretical and empirical considerations. Since we 
are dealing with monthly observations our initial 
approach was to view the demand equations as part of a 
simultaneous system. That is, monthly quantities sold 
were regarded as determined simultaneously with 
monthly prices. This view required that we specify 
short-run supply equations and then estimate the 
parameters of the entire demand-supply system by 
simultaneous equations procedures. 

Supply equations were formulated in which the 
monthly quantities of sprouts marketed, by size class, 
were expressed as linear functions of prices and begin-
ning monthly inventory levels in each size class. The 
latter were adjusted for normal seasonal variation. 
Beginning inventories were viewed as predetermined 
variables, thus producing a system in which the coef-
ficients of the demand equations were identified. 

The parameters of this system of equations were 
estimated by two-stage least squares. The results were 
quite unsatisfactory, both by usual statistical criteria and 
in terms of the expected signs and magnitudes of the 
equation coefficients. This may have been due in 
substantial part to the very poor quality of our data 
pertaining to monthly quantities of each size category 
held in cold storage.6  In any case, it was necessary to 
abandon this procedure and turn to other methods of 
estimation. 

Our second approach was to apply ordinary least 
squares directly to the estimation of the parameters of 
each structural equation. This method is justified if 
processors establish quantities to be sold each month 
without regard to current price. We would not argue that 
processor plans and adjustments are so completely 
inflexible, but processors may well be more concerned 
with orderly movement of total stocks and honoring 
buyer commitments than with adjustments to monthly 
price variations. Under these circumstances the degree of 
bias may be "reasonably" small. 

The results of our initial application of ordinary least 
squares, although superior to the two-stage least squares 
model, still had some coefficients with positive signs or 
of low statistical significance. The main difficulty 
appeared to be that the sample was too small, the range 
of observations too limited, and the intercorrelation 
among quantity variables too high to isolate the separate 

6Published data on monthly cold storage holdings do not 
indicate the quantities held in each size category. These values 
were estimated on the basis of total stocks and the proportions 
packed initially in each size class. Such estimates could be very 
inaccurate. 

effects on price of each of the six alternative size-
container classes in each equation. To reduce 
intercorrelation problem and the number of coefficie. 
to be estimated we combined several of the variables in 
each equation. 

The most satisfactory results were obtained by a 
formulation which related price in each size-container 
class to the quantity in that class and the total quantity 
in all other classes. The regression equations are sum-
marized in table 1. All of the coefficients are consistent 
with theoretical expectations—i.e., they are all negative 
and each price is affected more by changes in its own 
quantity than by quantities in other classes. Sales of 
fresh brussels sprouts (QF) had a highly significant effect 
on prices of medium sprouts and a somewhat significant 
effect on prices of medium sprouts in retail containers. 
The coefficient of QF  was of quite low statistical 
significance in the equations for large sprouts and for 
small institutional-container sprouts. Therefore, QF  was 
omitted in the final regressions for these classes. Possibly 
the extreme size classes are less sensitive to the fresh 
market. The trend factor clearly was not significant for 
institutional containers and so was omitted from the 
latter set of equations. For large sprouts in institutional 
containers, the coefficient of QT  — QIL  was small and of 
very low statistical significance so it was dropped from 
this equation—i.e., its coefficient is regarded as zero. 

Cost of Altering the Quality Mix 

The primary means by which the size distribution of 
sprouts may be changed is through varying the time 
interval between harvests or the timing of once-over 
machine harvest. The major cost factors involved are the 
loss in yield with decreased size and the higher per 
pound harvesting cost with smaller sizes. The distribu-
tion could also be altered by simply discarding some of 
(say) the larger sprouts. To maintain production at a 
given level, the discarded sprouts would have to be 
replaced by quantities produced on additional acreage. 
This appeared to be excessively expensive compared 
with other procedures considered and so was rejected as 
an alternative. 

With an inelastic demand, discarding quantities in 
lower quality classes would, of course, increase total 
revenue. In this case, the f.o.b. freezer demand is elastic, 
so revenue would be reduced. Moreover, our purpose is 
to determine the optimum quality mix for any given 
quantity, leaving open the determination of the total 
amount to be produced. 

At the freezing level, the main cost influence is in the 
trimming operation. Trimming time per sprout rem. 

• 
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The cboice of statistical procedure to usc in esti­
mating tlw parameters of this equation system involved 
hoth theordical and (~rnpirical considerations. Since Wl' 
are denling with monthly obserV1ltions our initial 
approach was to view the demand equations as part of a 
simultancous system. That is, monthly quantities sold 
were regarded as determined simultaneollsly with 
monthly prices. This view required th.lt W(~ specify 
short-run supply (,(]uations and then estimate the 
parameters of th(~ cntire d(~mnnd-supp!y systcm hy 
sim ul tmll'OUS ('q~Hltiol!s !,roeed llres. 

Supply equations wpre formulatpd in which tIll' 
1I10nthly quanti[if~s of sprouts mark:,t(~d, by si~;,~ dass, 
were l'xpressf~d as lilH'ar funclions of priecs and begill­
ning monthly illvcntory levels in each si~(' ela~;;. The 
laUpr were adjusted for normnl ;;{'asonal varintioll. 
Beginnin~ invt'litories W('I'(' vieWf'd as pn'detel'millf'd 
variahles, thus prodlleillg a sys{('m in whieh the Cflt'/'­
fici('nLs of the dpnHiIld eqllations w('r(~ idenlifi(~d. 

Thl' paramel('rs of this S),sl(,1II of ('qlHltionFi W('I'(' 
l'stimall'd by two-stage I('ast squares. TIll' I'(!sults wef(' 
qui te unsatisfaetory, 1I0th by usual slati;;tieal eri tcri,\ and 
in [('rms of tIl(' ('xpecte(1 ,.;igm; and magnitudes of tire 
rquation coefficients. This may havp L(,PII due in 
substantial part to tlw vr:r)' poor quality of our data 
pertaining to III on lhly quanti lies of ('ach ~i~l' catcgory 
Iwl<l in eold Sl()ragt~,6 In any cas..~, il wus lH'cessary lo 
ahamlon this proe('dllf4' ami tllJ'lJ to otllf'r JllI'lho{ls of 
('stimation. 

Our B('Com! approach was 10 apply ordinary /toast 
squares d ircetly to til(' cRtimaLion of tlw parameters of 
eaeh strul,'iural p(pHition. Thi~ method is justified if 
proe('ssors ('st"hlish quantities Lo be sold (~aeh month 
without [('gare! to eurr('nl pl·iet'. Wl' would nol arguc that 
processor plans and adjustnH'JJts~;';'''o compleLf'ly 
inflexible, hut pl'()c('s~ors lIIay well he more conr'('fI\l'd 
with of/ledy 1II0V('II\(~nl of tout! sloekb and honoring 
bUYt'r eOlllm ilnwn Is than wilh adjuslnH~1I ts lo monthly 
pric(' variati()iIi;, lTlIl!r'l' tlwst' cireulllstam'('s the degn'" uf 
bias may he "r"tlsonahly" small. 

'I'll\' [('SullS of our inilial application of ordinary least 
l'irl'wrps, although HUIlI'rior to tlw two-tillige II:m;t S(l'wres 
mod('l, still had soml' coefficients with posiliv(' signs or 
of low slali:<Lical si[!llificam'(', TIll' main difficulty 
aplH'ared to I,.. lhat the sampl(' was too small, the fang(' 
of ohsl!rvatiOlIS too limil(od, and lh.~ intereorrl'lalion 

among IJlwntity variahll'S too high to i;;olatp llll' "('parall' 

6 Publislwd data on monthly cold storage holdings do not 
indicat!' tIll' quanliti ..s )wld ill elll'h si;l,~ category. TllI'iw \'llhl(,g 

were estimated on the basis of total ~iocks and the proportions 
packed initially in I'aeh Riz~ class. Sueh I'slimales coulr! bl' very 
inaccurate. 

effects on price of ('ach of tlw six alternativ(' si~e­
container classes ill each ('(Illation. To reduce the 
intercorrelation prohlem and the numb'!r of coefficients 
10 b,~ ('stimatc'd W(~ combined several of lhe variables in 
(!aeh t'lpwlion. 

The most satisfactory results were obtained by a 
formulation which rdated pri!'c ill each SiZ('-collt,liller 
class to LlH' quantity in that class and the total <Iuantily 
in illl olher classes. Thc regression equations are sum­
Il\ari~ed in table 1. All of thc coefficients are consistent 
wilh tlwofl,tica! (~xpcctati()ns-i.e., they arc all negativ(! 
and each price is affectcd more by changes in its own 
quantity than by quantiti(~s in other classes. Salps of 
fr('sh hrussels sprouts (QF) had il highly significilnl effect 
on prices of mediulll sprouls and a somewhat significanl 
d'fcct on pricl's of medium sprouls in retail containers. 
The cocfficient of QF was of quill' low statistical 
significance ill the equations for large sprouts and for 
sn~all institutional-container sprouts. Therefore, QF WliS 
0111 ill.t'd in 1Il4' final r(!gressions for thest' t1aS5I'S, Possihly 
tlw extreme siz!' classes are less sensili\'(' 10 the I"r(,,;h 
lIlark('l. The trenrl faetor dearly was not si{!nit'ic'ant for 
inslitu [ional containers and 80 was omiLL('d from the 
lauer seL of equationH, For larw~ sprouls in instilll tional 
eontailwrs, thc coefficicnt of Q1' - QIL was small and of 
vpry low statistical si{!nifil'ance so it was dropped frolll 
this t'fpratioll-i.I'" its coeffici(~IIL i~ regarded as ~ero, 

Cost of Altering the Quality Mix 

Tlw primary nll'ans by whieh the :ii~1' distribution of 
:;prollt~ may Iw changed i" through varying th(' time 
inlerval b('twI~en harvests or Ihe timing of once-over 
1lI,f(:him~ harvf'sL The ma.ior cost factors involved are the 
los5 in yHd wilh deereas('d si?e and the high('r per 
pound harvesting eosl with smaller si~cs. The distribu­
tion could also be alt(~n~d by simply discarding some oj' 
(say) til(' lar{!l'r sprouts. To mainlain producLion at a 
giV('n II'vel, til(' discard(~d sprouts would have to be 
1'I~plaef'(1 by quantitips produced on additional ael'cag('. 
This appeared to lw excessively expensive comp<!red 
wiLh other procedures considef(~d and so was rejected as 
all alternative 

With an indm;tic demand, discarding quantities in 
lower lJuality classe), WOUld, of course, increase total 
rt'\;elllH'. [n this C1l8(" the Lo,b. freezer demand is elastic, 
so mVCIlUG would be reduced. Moreover, our purpose is 
to determine the optimum quality mix for any givl'l1 
quantity, leaving open the determination of thc total 
amoullt to be produced. 

At the frt't'zing level, tIl(' main cost infltience is in Ihe 
trimming operation. Trimming time per sprout remains 

4 



• pendent 
variable 

Constant 
term 	

QRL QT-Qib  

Exp anatory variablesa  

QRM QRS QIL QIM QIS 

Rc  dd 

QF 

regression coefficients and t-ratiose  

PRL 25.197 -.00136 -.00045 -.03450 .773 1.68 
(1.721) (2.421) (3.689) 

PRM 27.887 -.00051 -.00027 -.00252 -.01249 .801 1.20 
(1.710) (1.403) (2.294) (1.795) 

PRS 29.914 -.00235 -.00024 -.00182 -.01628 .773 1.75 
(2.756) (1.116) (1.487) (1.959) 

PIL 22.827 -.00334 .663 2.76 
(4.152) 

p/M 26.234 -.00132 -.00027 -.00406 .945 2.39 
(3.049) (1.942) (4.865) 

PIS 27.064 -.00636 -.00013 .732 1.85 
(3.906) (1.458) 

Table 1.-Demand relationships for frozen brussels sprouts by size-container class: Final selected regressions 

'See text for explanation of symbols. 
bQT = QRL + QRM + QRS + QIL + QIM + Qrs. Qi  refers to the variable treated as dependent. 
°Coefficient of multiple correlation. 
dDurbin-Watson statistic. The hypothesis of no positive serial correlation of error terms is not rejected at the 5 percent significance 

level for the first, fourth, fifth, and sixth equations. The value of d falls in the indeterminant range for the second and third equa- 

4

ions. There is a suggestion of negative serial correlation for the fourth equation. 
eFigures in parentheses are t-ratios. 

essentially constant, regardless of sprout size. Thus, cost 
per pound is greater for the smaller sizes. 

Our studies of these operations indicated that with 
conventional multiple-harvest cultural practices, shifting 
1 pound of sprouts from the large to the medium size 
would increase the combined production and processing 
cost by roughly 0.9 cent per pound.7  Shifting a pound 
from the medium to the small class would increase costs 
by another 0.9 cent per pound. Since we have no direct 
observations to indicate how costs of shifting size 
distributions might be affected by one-over machine 
harvest and the introduction of new varieties, the cost 
figures should be regarded only as rough approxima-
tions. However, they are satisfactory for purposes of 
illustration and seem close enough to permit a tentative 
evaluation of potential gains or losses from changes in 
distribution. 

Since our focus is primarily on size distribution, we 
have assumed that the average observed price difference 
between container types for the same sprout size reflects 
the difference in cost of packaging in retail and • For details of the cost estimates see Matsumoto (4). 

institutional containers. This was 1.73 cents per pound 
higher for retail packages (for all sprout sizes) during the 
period for which data were obtained. 

The ci's of our conceptual model-equations (3), (4), 
and (5)-may be derived by adding the estimated 
differences in costs to c, the unit cost common to all 
sizes. Thus, the total cost of production and processing 
may be expressed as 

(8) TC = 	1.73  QRL + 2.63 QRM  + 3.53  QRS 

+ 0.0 QIL  + 0.9 Qim  + 1.8 Qis  

Recall that, with total quantity (Q) constant, c drops 
out of the marginal revenue equations. 

Note that with costs expressed as a linear function of 
K 

the Qi  (i.e., TC = aQ + E aiQi) we can always rewrite 
i = 1 

K 
the equation as TC = (a + ai) Q + E (ei  - Qi. The 

i = 1 
coefficient for Q • will thus be zero. In (8),  QIL = Q • and 

= a + a. 



Revenue Effects 

A monthly gross revenue equation may be obtained 
by multiplying the equation in table 1 by the quantity 
corresponding to the dependent variable and summing 
equations.8  A net revenue equation is derived by 
subtracting equation (8) from the gross revenue equa-
tion. Following the procedure outlined in (3) to (6), the 
revenue-maximizing quality mix may be determined for 
each month as a function of the total quantity of frozen 
sprouts to be sold during the month, the monthly sales 
of fresh sprouts, and the value of the trend factor. The 
basic decision facing the industry, however, is not how 
to allocate predetermined monthly sales among quality 
classes (although eventually this must be done), but how 
much to produce in each quality class. Since production 
decisions are made annually rather than monthly, we 
need an annual revenue function. This is obtained by 
summing the monthly revenue equations over 12 months. 

Given the annual total quantity of sprouts to be sold 
and the expected seasonal pattern of sales of fresh-
market sprouts, the annual revenue function may be 
solved for the optimum allocation of quantities to each 
quality class for each month. The monthly quantities 
then may be summed to obtain the annual production 
mix. Our basically simple conceptual problem involving 
three quality classes (and two container classes) thus 
expands, in application, to the determination of the 
optimum allocation of a given annual quantity among 72 

8  Since prices are expressed in cents per pound and quantities 
in 1,000-pound units, the value obtained by this procedure must 
be multiplied by 1,000 to obtain the true value of revenue (in 
cents).  

economic classes (12 months, three qualities, and two 
container types). 

While this type of problem clearly can be hand. 
without great difficulty on a computer, even as a 
quadratic programming problem, it is perhaps asking 
quite a bit of our limited empirical model, especially 
since it does not include consideration of inventory cost, 
customer relations, and expectation formation which 
might influence the distribution pattern. It also unneces-
sarily complicates the development of the points we 
wish to illustrate. To focus more directly on the quality 
mix problem-that is, the best distribution of qualities 
for a given quantity of annual industry production-we 
shall introduce some simplifications which enable us to 
abstract from the seasonal pattern of distribution, while 
still providing a basis for some rough generalizations. 

Specifically, we shall hold the level of fresh market-
ings at the mean value for the period of the study and 
set T at zero.9  This gives us a set of typical demand 
equations, summarized in table 2, which illustrate the 
essential characteristics of the interrelated demand struc- 

9Recall that the trend variable was inserted primarily to 
allow for effect of possible demand shifters, such as income or 
competing products, which were not included as specific 
variables in the demand model. In this sense, the trend has no 
significance beyond the study period. The choice of zero for the 
trend value was a matter of convenience in formulating Ask 
illustrative demand and revenue equations. If T had been sell. 
12 or 24, rather than zero, the demand for retail containers 
would have been reduced relative to the institutional containers 
and the demand for the retail large class would have been 
reduced relative to the medium and small. These small shifts 
would slightly alter the solutions to the problem of optimum 
distribution in favor of medium sizes, but the major conclusions 
would remain essentially the same. 

Table 2.-Simplified demand model for frozen brussels sprouts by size-container class 
(Qf  = 58.6 and T = 0) 

Dependent 
variable 

Constant 
term 

Explanatory variables 

QRL QRM QRS 	QIL QIM Q.1.9 

equation coefficients 

PRL 25.197 -.00136 -.00045 -.00045 -.00045 -.00045 -.00045 

PRM 27.379 	-.00027 -.00051 -.00027 -.00027 -.00027 -.00027 

PRS 29.807 	-.00024 -.00024 -.00235 -.00024 -.00024 -.00024 

PIL 22.827 -.00334 

PIM 25.996 	-.00027 -.00027 -.00027 -.00027 -.00132 -.00027 

PIS 27.064 	-.00013 -.00013 -.00013 -.00013 -.00013 -.00636 
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ture and which may be easily converted to annual *ands and revenues by a factor of 12. The total 
ity mix determined with these simplified equations 

would not be identical with a solution based on the 
more complex summation of monthly allocations, but 
we would expect it to be reasonably close.1°  

Although we are ultimately interested in the net 
revenue equations, we shall first briefly explore the gross 
revenue function since it may be used to develop some 
useful information pertaining to effects of changes in 
size allocation without immediate reference to cost. This 
had considerable merit in view of the rough nature of 
our cost-size-of-sprout relationships. 

To extract the desired information we first take the 
total differential of the gross revenue equation, 
obtaining 

6 

dGR = E aGR  dQ . 
i= NJ  

The marginal revenues, aGR/aQi, are then calculated for 
each quality class with quantities held at the average 
levels for the sample of observations. The gross revenue 
effects of small shifts in allocation between pairs of 
classes (i and j) are obtained by setting dQ i  = 1, dQj = -
1 and all other dQ,. = 0. 

*able 3 summarizes these values. It indicates, for 
example, that shifting 1,000 pounds from the retail-large 
to the retail-small class would increase gross revenue by 
$45.25. These marginal gains or losses may be compared 
with expected marginal costs to suggest something about 
desirable directions and potential gains from change. 

If our estimates of transfer costs between classes are 
subtracted from the values in table 3, we obtain the net 
revenue estimates shown in table 4. With these adjust-
ments, the marginal gain in shifting 1,000 pounds from 
the retail-large to the retail-small class, for example, is 
reduced to $27.25, still a significant gain. As expected in 
view of our assumptions concerning cost differences, the 
potential gains or losses from shifts between container 
types for like sizes is quite small in all cases. In general, 
table 4 suggests that net revenue could be increased by a 

10The solution by months would involve reduced total 
frozen-sprout sales in months of large fresh-market sales. In 
months of smaller frozen-sprout sales, the optimum solution 
would require relatively larger percentages of sprouts in small 
sizes and relatively smaller percentages in medium sizes, with 
large sizes at the minimum permitted. The weighted average 
quality mix for all months would be close to, but not necessarily 
the same as, the mix obtained with an average level of fresh 

•ket sales. 

Table 3.-Changes in gross revenue associated with 
shifting 1,000 pounds of frozen brussels sprouts 

from one size-container class to anothera  

1,000-pound 
decrease in 

1,000-pound increase in 

QRM QRS QIL QIM Qrs 

QRL 

QRM 

QRS 

QIL 

QIM 

dollars 

25.58 	45.25 

19.67 

-24.42 

-50.00 

-69.67 

10.19 

-15.39 

-35.06 

34.61 

24.20 

- 1.38 

-21.05 

48.62 

14.01 

aStarting with average sample quantities in each class. 

program aimed at shifting quantities from large into 
medium and small categories. However, it does not 
indicate how much should be shifted or what the final 
distribution should be. For this purpose, we need to 
make additional calculations. 

The distribution among quality classes which maxi-
mizes the value of the net revenue function was obtained 
as indicated in equations (4), (5), and (6). The b 
coefficients of the revenue equation are contained in 
table 2 and the c coefficients are given in equation (8). 
The initial solution produced negative values for the 
quantities in the large size classes. Consequently, it was 

Table 4.-Changes in net revenue associated with shifting 
1,000 pounds of frozen brussels sprouts from one 

size-container class to anothera 

1,000-pound 
	 1,000-pound increase in 

decrease in 
QRM QRS 
	

QIL 
	

QIM 
	

Qrs 

dollars 

QRL 
	16.58 27.25 - 7.12 	18.49 	23.50 

QRM 
	 10.67 -23.70 2.21 6.92 

QRS 
	 -34.37 - 8.76 - 3.75 

Qll, 
	 25.61 	30.62 

QIM 
	 5.01 

aStarting with average sample quantities in each class. 

(9) 
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Size-container 
class 

Actual 
distribution Solution la  Solution 3c  

Optimal distributions 

Solution 2b 

proportion of total 

Large: 
Retail 	 .096 	.000 	.023 	.046 
Institutional 	.114 	.000 	.027 	.054 

Total 	 .210 	.000 	.050 	.100 

Medium: 
Retail 	 .488 	.473 	.483 	.449 
Institutional 	.154 	.204 	.153 	.142 

Total 	 .642 	.677 	.636 	.591 

Small: 
Retail 	 .126 	.270 	.267 	.263 
Institutional 	.022 	.053 	.047 	.046 

Total 	 .148 	.323 	.314 	.309 

necessary to impose restrictions which would guarantee 
that quantities in all classes would be greater than or 
equal to zero. A solution could have been obtained by 
quadratic programming procedures. However, since it 
was clear that the quantity in the "large" class would be 
the minimum permitted, restrictions were imposed as 
equalities and solutions were obtained as before, except 
with the added restrictions. All other unrestricted 
quantities remained positive with this solution. 

Table 5 shows the optimal distribution for the total 
quantity of average monthly sales observed during the 
same period. Three alternative solutions are presented, 
each involving different restrictions on the quantity of 
large sprouts. Solution 1 imposes only the restriction 
that the quantity in each class must be greater than or 
equal to zero. Because it may be unreasonable to assume 
that the quantity in large sizes can be reduced to zero 
(without abandoning parts of the production), we have 
computed two additional solutions which require that at 
least (a) 5 percent and (b) 10 percent of the production 
will fall in the large class. To focus entirely on the size 
allocation problem, solutions 2 and 3 also restrict the  

distribution between retail and institutional contain-
ers to the proportions observed during the sampl 
period. 

The three solutions give similar results. They leave the 
proportions allocated to medium sizes with little change, 
reduce the quantity in large sizes, and increase the 
allocation to smaller sprouts. Solution 1 increases the 
California industry revenue, compared with the value 
obtained by applying sample proportions to the esti-
mated revenue equations, by $158,000 per year, solu-
tion 2 by $145,000, and solution 3 by $104,000. 
Comparisons with actual average revenue during the 
sample period gave similar results. These potential gains, 
obtained by expanding sample values to reflect total 
industry experience, are in the order of 1-1/2 to 1 
percent of gross revenue. 

The optimal allocation proportions in table 5 pertain 
only to the quantities sold during the sample period, 
1961-62. As total sales change, so do the optimal 
allocations among size classes. By leaving the value of Q 
(the total quantity) unspecified, a more general solution 
can be obtained in which the quantities in each quality 

Table 5.-Actual and optimal distribution of sprout sizes 
for the 1961-62 sample quantity of sales. 

QT
> 0. 

bQL  

.05 and QRL= •457Q QRM=  •759QM,  QRS =  .85242S.  
vT 

cRestrictions same as for solution 2 except 	> .10. • 
8 



class are expressed as linear functions of Q.11  They may 

4

e converted to a percentage basis by dividing through 
Q. These solutions suggest that as industry total 

quantities increase, the proportions allocated to medium 
sizes should be increased and the allocation to the 
smaller sizes slightly decreased, with large sizes at the 
minimum permitted. 

Concluding Comments 

The results of our study are encouraging. They 
demonstrate that it is possible to develop an empirically 
quantifiable model which may aid agricultural groups in 
formulating programs aimed at achieving the best—or at 
least a better—mix of qualities. The approach used 
would be appropriate for many quality attributes other 
than size. 

The major limitation of this and possibly similar 
studies that might be attempted is in the data, especially 
the price and sales data. Although the demand model 
developed is significant in a statistical sense and is 
consistent with theoretical expectations, substantially 
more observations would be desirable to build confi-
dence in the precision and generality of the estimates. 

For many commodities priced at shipping points or 
central markets there may be fairly long series which 

41  uld be tabulated from market news data. For most 
ocessed commodities, price and sales data unfor-

tunately are not published by quality class, if at all. 

I 1 Examination of the original unrestricted solution indicated 
that as crop size increased, the optimum quantity in the "large" 
class would eventually become positive. However, this would 
occur only for crop sizes far larger than any yet observed. 
Quantities in other categories would always remain positive. 

Commodity groups interested in this type of analysis 
could initiate data collection programs through their 
trade associations. For storable commodities, this would 
need to include information on the quality mix of 
inventory holdings, as well as sales. Costs associated with 
quality changes would, of course, have to be obtained by 
special studies in each case. 

The potential industry gains suggested by this study 
appear quite modest—in the neighborhood of 1 percent 
of gross revenue. Our guess would be that potential gains 
for other commodities and quality attributes would be 
found to be similarly modest. For many industry groups, 
however, the absolute magnitude could be substantial 
and such gains may be well worth striving for, especially 
in periods of tight margins and increasing costs. 
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(,' 	 be convcrtN] to a percentage basis by dividing through 
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quantities inerl'ase, till' proportions allocated to medium 
sizes should be increased and the allocation to the 
smaller sizes slightly decreased, with large sizes at the 
minimum permitted. 

Concluding Comments 

The results of our study are encouraging. They 
demonstratc that it is possible to develop an empirically 
quantifiable model which 1I111)' aid agricultural groups in 
formulating programs aimed at achieving the IJesl-or at 
least a beller-miX of qualities. The approach used 
would be appropriate ror many quality allrilmtes other 
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The m~jor limitation of this and possibly similar 
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special studies in each case. 
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