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A Model for Decision Making Under Uncertainty 

By J. Bruce Bullock and S. H. Logan 

Decision theory usually is partitioned accord-
ing to whether the decision is made under 
conditions of (a) certainty, (b) risk, or (c) un-
certainty. These areas are defined as follows: 

(a) Certainty if each action taken by the 
decision maker is known to lead invariably to a 
specific outcome. 

(b) Risk if each action leads to one of a set of 
possible unknown outcomes, but each outcome 
occurs with a known probability distribution. 

(c) Uncertainty if each action leads to one of a 
set of possible outcomes, but the probability of 
a particular outcome is not known to the deci-
sion maker. 

Luce and Raiffa (11, p. 13)1  suggest that we 
add a fourth classification (d), a combination of 

411,k and uncertainty in the light of experi-
mental evidence--the area of statistical in-
ference.2  

Decision making in the realm of certainty 
poses no particular problems since each action 
has a single-valued or known outcome. The de-
cision maker simply selects the action with the 
most favorable outcome. However, decision 
problems under risk and uncertainty have sev-
eral possible outcomes associated with each 
action. A set of decision rules, consistent with 
the decision maker's objective (utility) function, 
is needed to select the course of action that 
maximizes utility. 

This paper presents one method of developing 
decision rules when the outcome of alternative 
actions cannot be specified with certainty. The 
model presented is applicable to a wide range 
of decision problems (1, 2, 5 6). 

1Underscored numbers in parentheses refer to items 
in the References, p, 114, 

2
Classifications a, b, and c are similar to those 

specified by Knight (10), 

Decisions Under Uncertainty 

The problem of decision making under uncer-
tainty can be characterized as a decision maker 
faced with choosing the optimal course of action, 
Ai, from a set of m possible actions. The out-
comes of these various actions are dependent 
on the occurrence of alternative states of nature 
0 j, j = 1, 2, ..., n. The states of nature are 
values of one or more exogenous factors that 
directly affect the outcome of a particular action 
but cannot be controlled with certainty by the 
decision maker. For example, if the set of ac-
tions represent different fertilizer applications 
for corn, the states of nature might be alterna-
tive levels of rainfall. 

For each possible action A1, A2, ..., Am, there 
are n potential outcomes, one for each state of 
nature. Uncertainty implies that the individual 
has no information about the likelihood of occur-
rence of any particular state of nature g j  . Thus, 
the decision maker is faced with a set of un-
known outcomes. Each outcome, A ij, can be 
represented as a point in an action-state plane, 

i; = (A j , 0 j), as shown in table 1. 
For example, the outcome (profits) of a deci-

sion to feed high-quality steers will depend on 
the price of slaughter cattle at the end of the 
feeding period. Thus 01  may represent high 
slaughter cattle prices, 02 average prices, and 

3 low prices. The outcome of decision Al (feed 
high-quality steers) and A2  (feed low-quality 
steers) will depend on which value of B occurs 
(cost per pound of gain is assumed to be known 
with certainty in both cases). We can represent 
this decision problem as shown in table 2, where 
A 12 is the profit per head from feeding high-
quality steers when average prices are received 
at the end of the feeding period. 
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Table 1--Matrix representation of outcome plane 
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Table 2.--Representation of a decision problem 

Action 

States of nature 
e1 

(high prices) 
02 

(average prices) 
63 

(low prices) 

Al  (feed high-quality steers) 

A
2 
(feed low-quality steers) 

X
11 

X
21 

X
12 

X
22 

X
13 

X
23 

To make rational and consistent decisions 
relative to the action-state-outcome combina-
tions, a utility index or some sort of preference 
ordering must be assigned to the set of out-
comes. If the decision maker's preferences  

among the outcomes are consistent with von 
Neumann-Morgenstern utility axioms (14, p. 26; 
11, p. 22-31), it is possible to define a utility 
function, u ij = u(X ij  ), that will map the outcomes 
into a utility plane. 
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9
Where: = implies indifference between prospects 

> is read as "is preferred to" 
< is read as "is not preferred to" 

Von Neumann and Morgenstern show that there 
mists a utility function u on the set of prospects 
11/ 

A, the individual has a complete and transitive 
preference ordering over the set of all possible 
prospects, that is, 

(1) for any two prospects u and v, one and 
only one of the following relations holds: 

u= v, U > v, u < v3 

(2) u > v, v > w implies u > w 

B. u < w < v implies the existence of an a 
such thata(u) + (1-a)v < w, and u > w > v im-
plies the existence of an a such that a (u) (1-a)v 
> w, where 0 < a < 1, and 

C. it is irrelevant whether a combination 
of two prospects is obtained in two successive 
steps--first the probabilities a, 1-a, then the 
probabilities fl, 1-ft; or in one operation with 
the probabilities Y, 1- Y where Y = a /3. (That 
is, complex choices can be partitioned into 
simpler choices to facilitate evaluating prefer-
ences.) 

(1)au (1-a)v = (1-a)v+ u 

•(2)a[flu + (1-i3)v] + (l-cf)v = Yu + (1- Y)v. 

In other words, for each prospect Pi there 
exists a number u i  = u(Pi) which is called utility 
of Pi . This function has the following properties 
(4, ch. 4): 

(1) u(v) > u(w) if and only if the individual 
prefers v to w. 

(2) If Pk is a prospect of receiving v with 
probability a or w with probability (1-a) 
then u(Pk)= a u(v) + (1-a) u(w). 

However, the derivation of such a utility func-
tion is no small undertaking. Thus, as a matter 
of practical application, it is usually assumed 
that the utility function is linear with respect 
to money over the relevant range. Consequently, 
maximization of monetary gain is equivalent to 
maximizing utility. 

Thus the decision problem can be stated as 
follows: Given a set of possible actions, A, the 
set of alternative states of nature, 0, and the  

utility index uij, associated with the selection of 
action Ai  and the occurrence of 0j (outcomeA,i),4  
select the action that is in some sense optimal--
where optimality is defined by the particular 
decision criterion used. Possible decision cri-
teria include maximizing the minimum gain 
(maximin), minimizing the maximum regret 
(minimax), and the "principle of insufficient 
reason." 

The Maximin Criterion. Each action is ap-
praised on the basis of its security level (i.e., 
its lowest possible utility payoff). In the example 
below, action Ai  has a minimum possible utility 
(security level) of one whereas A2  has a security 
of two. The maximin criterion is to select the 
action associated with the maximum of these 
minimum values (maximin). Thus, action A2  is 
selected: 

Utility Payoff Matrix 

Action 
State 

_ Security 
0
1 0

2 level 

A l  1 5 1 

A2 3 2 2 

The Minimax Criterion. Each action is ap-
praised on the basis of its "regret index." 
Regret is the utility foregone as a result of 
selecting a nonoptimal action, given 0 j  as the 
true state. The regret index for each action is 
its maximum "regret" value or lost utility. 

In the above example, there is no regret if 
action Al  is selected and B 2  is the true state 
nor if action A 2  is selected and 0 i  is the true 
state. However, three utility units are foregone 
(regret = 3) if action A2  is selected when 0 2  is 
the true state. The regret payoff matrix for the 
above example is: 

Regret Payoff Matrix 

4 
The matrix formulation of the decision problem is 

obtained by replacing A ij  with u ij  in table 1. 
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State 
Regret 
index 
egret  

02 

Al 

A2 

2 	0 

0 	3 

2 

3 



The minimax criterion is to select the action 
that minimizes maximum regret. This criterion 

defines A1  as the optimal action since it has the 
lowest regret index. 

The "Principle of Insufficient Reason." This 
criterion asserts that if the decision maker has 
no information about the relative frequencies of 
the states of nature, then the occurrence of each 
state should be considered as equally likely. The 
criterion is to select the action that has the 
highest expected utility index. 

P(0) = 

Ui2 
P( 9n)_  

n 

Each of these decision criteria has serious 
shortcomings (11, p. 278-286; 3; 13).Moreover, 
few decision problems fall into the category of 
complete uncertainty, i.e., where the decision 
maker has no knowledge of the likelihood or 
distribution of O. Given the volume of public and 
private information currently available, most 
well-informed decision makers will have at 
least a subjective5  estimate of the distribution 

of 9, particularly for decisions of a recurring 

nature. 

Bayesian Decision Theory 

Generally some a priori information regarding 
the relative frequency of 9 in the past will be 
available. Thus, emphasis in decision theory 
has shifted to the estimation of Bayesian stra-
tegies (7, 9, 12, 15), i.e., the selection of optimal 
actions based on some a priori information 
(either objective or subjective) about the pro-
bability distribution of the states of nature, 

P(0). 
The Bayesian approach to decision making can 

be stated as follows: Given a set of m possible 
actions, the set n of alternative states of nature, 
and the utility index associated with each out-
come (table 1), along with a vector of a priori 
information about the relative frequency of 9, 

5  For an analysis using subjective probability estimates, 
see Carlson (Z). 

where P(0j) is the a priori probability that 
state 0 will occur, select the action A1  for 

which expected utility ui  = ui• P(0.) is a max- 
i 

imum. 
The a priori information can be any informa- 

tion that the decision maker has about the 
relative frequency of O. This information is ex- 
pressed in the form of a probability distribution 
P(0) that provides some indication of the likeli-
hood of a particular value of 9 (states of nature) 
occurring. It may be nothing more than a sub-
jective evaluation of the probabilities by t 
decision maker, or it may be derived from 
histogram showing the relative frequencies of 

9 in the past. 
In addition to the a priori knowledge of the 

probability distribution P(9), it may be possible 
for the decision maker to gain additional infor- 
mation about the likelihood of a particular state 
9 by performing an experiment Z (with results 

Zk, k = 1, 2, ..., n) that serves as a predictor 

of O. That is, it may be possible to construct a 
conditional probability distribution P( 9 IZ) which 
incorporates the a priori information, P(0), 
with information about the past performance of 
Z as a predictor of O. The a posteriori proba-
bility distribution, P( 01Z), is calculated using 
Bayes' formula (8), 

P(Z 10) (P9) 
(1) 	

P( 9 Z) P(Z) 

where P(Z) is the probability of observing a 
particular experimental result. 
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Table 3.--Matrix of a posteriori information 
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The experiment, Z, can be anything that is 
• ed as an estimator of 0. It may consist of 

simply observing the current state of nature 0 j 
and assuming that the value of 8 at the time of 
payoff will also be 0i. The experiment may 
consist of an elaborate model used to project 
future values of 8. For example, if the states 
of nature are future prices, the experiment 
would consist of some price forecasting mecha-
nism. 

The experimental information expands our 
knowledge about the likelihood of 8 from the 
P(8) vector to an (nxn) matrix of conditional 
probabilities (table 3). P(0i  I Zk) is the proba-
bility of 0j occurring given Zk as the experi-
mental result (prediction of 8 ),6  If the experi-
ment Z is a perfect predictor of 8, table 3 will 
consist of ones along the diagonal and zeros 
elsewhere. 

With data provided by the experiment, the 
Bayesian strategy becomes: Given a projection 

6
P(8ilZk)iS estimated by the relative frequency over 

the historical period with which 8 occurred as the true 
state of nature when Zk was the experimental result. 
For applications of this procedure see (6, 5, 1). 

of 8 (for example, Zk) select the action A i for 
which the expected utility 

A k (2) 	 u. =Z u.. P(0 j IZk ) 

is a maximum. Thus the Bayesian strategy 
consists of a set of optimal actions, at least one 
for each experimental result.? 

Value of the Data 

The derivation of Bayesian decisions by using 
only the a priori probability distribution P(8) 
is referred to as the "no data" problem. Deci-
sion problems using a posteriori distribution 
are called "data" problems. The difference in 
expected incomes resulting from using the "data" 
strategy bundle relative to the "no data" strategy 
can be interpreted as the value of the data, i.e., 
the value of the information provided by the 
experiment. 

7 It is possible that two or more actions could have 
the same expected utility for a given experimental result, 
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The expected value of the "no data" strategy 
is defined above as ui = ujj P(9 j). The ex-
pected value of following jthe "data" strategy 
is calculated by multiplying the expected value 
of the optimum action for each experimental 
result by the probability of observing the appro-
priate experimental result, P(Z), and summing 
over all possible results. 

(3) [E u 
k j ij 

P( 0 j
IZ

k
)] P(Zk ) 

The expression in brackets was defined in 
equation 2 as a ki  (expected utility of action A i  

given Zk as a prediction of 0). Thus equation 3 

reduces to 	P(Z k). Therefore, the value of 
k 

the data is defined as 

(4) V = 
k 
[I u. P(0. IZk  )] p

(Zk) ) 	u j  i P(0.) 
j 	j 	 •  

V = Muj.
k   P(Zk) - Cii• 

The value of the data can then be compared with 
the cost of performing the experiment to evalu-
ate the net contribution of the experimental 
information to expected income. 

The Bayesian decision model presented above 
provides a framework for developing decision 
criteria for problems characterized by uncer-
tain outcomes. The model incorporates the 
available objective and/or subjective informa-
tion into the decision process. Data require-
ments are modest; a priori information is 
generally available from past experience and 
published information. Additional information 
can be obtained from experiments such as 
econometric forecasting models. 

Few decision problems do not contain at 
least some element of uncertainty. This is 
particularly true of production and marketing 
decisions in the agricultural sector. The out-
come of alternative actions depends on such 
factors as rainfall, yield, feedlot performance, 
and future prices. The Bayesian decision model 
is a method of systematically incorporating 
available information about the frequency dis-
tribution of these factors directly into the 
decision process. 
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