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1. Introduction 

Econometric analysis of commodity prices has a long and distinguished history 

stretching back to the birth of econometrics itself as an emerging science in the 1920s and 

1930s (Working, 1922; Schultz, 1938). Since then, a very large literature has developed 

focusing on estimating commodity supply and demand systems; forecasting commodity 

supplies and prices; and evaluating the effects of commodity pricing policies. Much of 

this research relies on a standard set of econometric methods, as outlined in books such as 

Theil (1971) and Johnston (1984). 

The goal in this paper is not to provide a detailed survey of the literature on 

econometric analysis of commodity prices. This has been done elsewhere (e.g. Tomek and 

Robinson, 1977) and, in any case, is well beyond the scope of what can be achieved in the 

limited time and space available here. Rather, the aims are to comment on some recent 

developments taking place in the time-series econometrics literature and discuss their 

implications for modelling the behaviour of commodity prices. The thesis of the paper is 

that developments in the time-series literature have important implications for modelling 

commodity prices, and that these implications often have not been fully appreciated by 

those undertaking commodity price analysis. 

The time-series developments that will be discussed include stochastic trends (unit 

roots) in economic time series; common stochastic trends driving multiple time series 

(cointegration); and time-varying volatility in the innovations of economic time series 

(conditional heteroscedasticity). None of these developments are all that new. The 

pioneering work on stochastic trends was undertaken by David Dickey and Wayne Fuller 

in the 1970s, while Engle and Granger's seminal paper on cointegration was widely 

circulated well prior to its publication date of 1987. Similarly, the original papers on 

conditional heteroscedasticity by Robert Engle and Tim Bollerslev were published in the 
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eady 19SO:s and have since spawned an impressive literature, some of which relates to 

commodity prices (Bollerslev, Chou and Kroner, 1990; Baillie and Myers, 1991; Myers, 

1991). But while the developments themselves are well known, the resulting implications 

for the econometric analysis of commodity prices appear not to be fully appreciated in 

may cases. The present paper is designed to correct this situation and provide a modem 

perspective on econometric modelling of commodity prices using time-series data. 

The paper is divided into three parts. First, in Section 2, the characteristic time

series properties of commodity price series are outlined. It turns out that many 

commodity price series exhibit similar time-series properties, even when they are quite 

separate and would appear not to be closely related to one another. The second part of the 

paper, in Section 3, discusses some of the implications which these characteristic 

properties of commodity price series have for the econometric analysis of commodity 

markets. It is shown that conventional statistical inference can be very misleading in 

econometric models containing commodity prices. The third and final part of the paper in 

Section 4 reports a simulation study which highlights some of the econometric problems 

arising from the time-series properties of commodity prices. 

2. Characteristic Properties of Commodity Price Series 

Prices of different commodities obviously are influenced by distinct forces and 

therefore behave somewhat differently. Nevertheless, there are several characteristic 

properties which most commodity price series seem to share in common. Perhaps 

surprisingly, both storable commodities and those considered difficult to store appear to 

share the same broad features. In this section of the paper, these characteristic properties 

of commodity price series are outlined and discussed. The properties are illustrated using 
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cattle and wheat prices as an example, two quite distinct commodities which arc of major 

importance to Australian agriculture. 

2.1 Higb Volatility 

Prices of primary commodities generally are much more volatile than prices of 

manufactured consumer goods. Figure 1 shows monthly cattle and wheat prices over a 

twenty-year period beginning in 1970.1 As well as the considerable month to month 

volatility, major secular upswings (1973 and 1978-79) and downswings (1974 and 1976) 

have occurred in both price series. These swings suggest the possibility of regime changes 

from one set of economic fundamentals driving the market to another. 

This volatility in commodity prices poses major problems to indu.stry participants 

and policymakers, particularly in countries whose export earnings and GOP depend 

heavily on sales of primary commodities. An understanding of commodity price 

movements is therefore essential to the sound management of macroeconomic fluctuations 

in general, and to the microcconomic management of agricultural price policies and risk 

sharing mechanisms. 

One especially interesting question stemming from recent research on commodity 

price volatility involves the extent to which commodity price volatility can be accounted 

for by changes in the economic fundamentals underlying the market. If most of the 

commodity price volatility can be accounted for by changes in economic fundamentals 

then markets are said to be efficient in guiding resource allocation decisions. On the other 

hand, if there is considerable texcess volatilityt beyond that which can be accounted for by 

changes in economic fundamentals, then commodity markets are being driven by fads or 

speculative bubbles and commodity prices become inefficient resource allocation signals. 
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Research on this issue is still at an early stage but work by Pindyck and Rotemberg (1990) 

suggests that there is 'excess comovement' in commociity prices, in the sense that different 

commodity prices move together much more closely than would be expected based on 

changes in economic fundamentals alone. 

Even if the high volatility characterising commodity prices does accurately reflect 

changes in underlying economic fundamentals, there remains the question of how the 

resulting price risks can best be managed. ),~ is now widely understood that the efficiency 

of market mechanisms in these circumstances relies on the completeness of the market 

structure (Newbery and Stiglitz, 1981; Myers, 1988). If markets are complete, and all 

relevant risks are therefore insurable on competitive markets, then the market mechanism 

remains economically efficient. However, if Inarkets are incomplete and some risks are 

therefore uninsurable, then there may be a role for government in designing risk sharing 

mechanisms which improve the distribution of risk throughout the economy. 

2.2 Stochastic Trends 

Another characteristic property of high frequency commodity price series (series 

sampled at daily, weekly or monthly intervals) is that they appear to contain trends which 

change randomly over time. Looking again at Figure 1, for example, it is obvious that 

forecasts from a deterministic linear time trend estimated using data from the begrnning of 

1970 to the end of 1973 would have failed miserably in predicting the plunge in 

commodity prices which occurred in 1974 and the subsequent reversal to higher price 

levels. If commodity prices were the result of random deviations about an unchanging 

linear trend then this kind of price behaviour would never be observed. 
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An alternative to a detenninistic linear time trend, which increases by a fixed 

amount every period1 is to assume a stochastic trend, which increases b) some fixed 

amount on average but in any given period the change in trend deviates frc 1m the average 

by some unpredictable random amount (Stock and Watson, 1988). Formi Uy, this notion 

of a stochastic trend can be modelled as a random walk with drift: 

(1) w, :; f.l + w,_J + £, 

where the drift parameter f.l is the average predict~ble increase in w, each period, and 

£, is a serially uncorrelated random shock to the trend. 

When a commodity price P, contains a stochastic trend then the price can be 

written as the sum of a random walk component and a stationary component: 

(2) P, :; w, + z, 

where z has finite variances and a.utocovariances and a diStribution which does not 
t 

depend on time. In this case, W represents the stochastic trend and z represents , , 

deviations or cyclical swings away from trend. 

It turns out that (2) is a simple yet powerful model for explaining high frequency 

commodity price data. Indeed, Beveridge and Nelson (1981) have sho\\FJl that any variable 

which can be modelled as an autoregressive integrated moving average (ARlMA) process 

with order of integration one (i.e. requires first differencing to induce stationarity), hac; a 

representation as the sum of a random walk and a stationary component, as in (2). Thus, 

all of the research which has found once integrated ARlMA models do a good job of 
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modelling high frequency c.ommodity price series (e.g. Baillie and Myers 1991) is 

consistent with the idea that commodity prices are made up of a stochastic trend and 

stationary deviations around trend. 

Over the past decade, important advances have been made in tbe development of 

formal statistical tests for the presence of stochastic trends in time-series data. The 

original tests developea by Dickey and Fuller (1979, 1981) have been improved by 

Phillips (1987) and Perron (1988) so that they are now more robust to autocorrelation and 

heteroscedasticity in the errors, two problems which plague high frequency economic 

time-series data. Both the Dickey-Fuller and Phillips-Perron approaches test the null 

hypothesis of a stochastic trend against the alternative that the series is stationary, or 

stationary around a deterministic linear time trend. The difference between them is that 

the Phillips-Perron framework allows for a very general error structure that may be 

autocorrelated and heterogeneously distributed. Full details of the tests and test statistics 

can be found in Perron (1988). 

Results from applying the Dickey-Fuller and Phillips-Perron unit root tests to 

monthly cattle and wheat prices are shown in Tables 1 and 2 respectively. Both tests are 

based on a regression of the commodity price on a constant, time trend, and the lagged 

commodity price. Under the null hypothesis of a stochastic trend then the coefficient on 

lagged price is one but the usual t-statistic has a nonstandard distribution and so special 

tables tabulated in Fuller (1976) must be used. The lag length i of the test refers to the 

number of lagged first differences of price included in the Dickey-FuIler test Of, in the 

case of the Phillips-Perron test, I! is the lag truncation parameter in the Newey and West 

(1987) formula for generating consistent covariance matrix estimates. The null hypothesis 
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of a stochastic trend cannot be rejected for either cattle or wheat, even at the 10% level ot 

significance. 

One of the problems with the Dickey-Fuller and Phillips-Perron unit root tests is 

that the stochastic trend is the null hypothesis. This ensures that a stochastic trend is 

accepted unless there is strong evidence against it. It could be, however, that a stochastic 

trend cannot be rejected simply because the data are .not very informative about whether or 

not there is a unit root (i.e. standard unit root tests have low power against the alternative 

that the series is stationary but with a root that is close to unity). In response, a new test 

has been developed by Kwiatkowski, Phillips, Schmidt and Shin (1992) which tests the 

null hypothesis of stationarity against the alternative that the series has a stochastic trend. 

Results from applying the KPSS test to cattle and wheat prices are shown at the 

bottom of Tables 1 and 2 respectively. The estimated model encompasses a random walk 

and the test is a Lagrange multiplier test of the null hypothesis that the innovations in the 

random walk have zero varIance. Full details of the test are available in Kwiatkowski, 

Phillips, Schmidt and Shin (1992). The null hypothesis of stationarity issou,..Aly rejected 

in the cattle and wheat price data irrespective of the lag truncation paramet~, £ used to 

generate consistent covariance matrix estimates for the test. 

Because a stochastic trend in cattle and wheat prices cannot be rejected, but 

stationarity can, then the preponderance of evidence points toward a stochastic trend. 

Similar results have been found for other commodity price data sampled at high 

frequencies. It should be remembered, however, that a stochastic trend is less evident in 

commodity price data sampled at annual intervals. Indeed, Deaton and Laroque (1990) 

argue convincingly that we should expect commodity prices sampled at annual frequencies 

to be stationary for theoretical reasons, although they admit that this will be difficult to 
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discover empirically because of the small number of annual observations typically 

available. 

Furthermore, stochastic trends and stationarity are not the only time-:seriesmodels 

that commodity prices might follow. For example, Hamilton (1989) has developed a 

model of a time series as a sequence of stochastic segmented tim.: trends which can 

generate long swings in the ~ta and is an alternative to the random \Valk notion of 

stochastic trends presented above. Because tn;'; model is not encompassed in the standard 

unit root hypothesis testing framework then the standard tests really have nothing to say 

regarding its applicability. 

The question of whether or not commodity prices have a stochastic trend bas, as 

we shall see below, crucial implications for how we go about econometric analysis of 

commodity market data. The existence of stochastic trends distorts many of the usual 

distributional assumptions and implications typical in commodity price analysis. Thus, 

great care must be taken in testing for stochastic trends and in the econometric analysis of 

data that contain stochastic trends. 

2.3 Comovements in Commodity Price Series 

A careful comparison of the commodity prices in Figure 1 reveals that, while there 

are major differences between the cattle and wheat price series, there is also a persistent 

tendency for them to ,tie together over time. For example, the two commodity prices 

followed each other very closely over the 1970-73 period, and again throughout most of 

the 1980s. And while cattle prices were much more volatile than wheat prices through the 

ups and downs of the 1974-78 period, there remains a tendency for the two prices to 

.move in the same direction. This leaning towards comovements in prices is a property 
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shared by many different apparently unrelated commodities (Pindyck and Rotemberg, 

1990). 

There .are three possible reasons for persistent comovements in commodity prices. 

FlISt, it could be that supply and demand shocks to anyone commodity market spill over 

into other related commodities causing a group of commodity plices to move together. 

While this is a logical explanation for commodities which are strongly related to one 

another, either in production or consumption (e.g. wheat and rice), it cannot explain 

comovements between largely unrelated commodities (e.g. cattle and copper). Second, 

common macroeconomic shocks to, say, the money supply or interest rates could be 

affecting all commodity prices in a similar way~ "'..ommon macroeconomic shocks 

undoubtedly explain some of the comovement among commodity prices. However, 

research by Pindyck and h Jtemberg (1990) suggests that m.acroeconomic shocks can only 

explain a small fraction of the actual comovement in commodity prices. A third 

possibility is that market speculation and overreaction causes spillovers between 

commodity markets that cannot be accounted for by changing micro economic 

fundamentals or common macroeconomic shocks. In this interpretation there is 'excess 

comovement' among commodity prices leading to commodity price volatility that is greater 

than it tought to be'. As discussed earlier, research on this issue issti11 at an early stage. 

One way to formalise the idea ofcomovements amoDg commodity prices is to 

iDvoke the theory of cointegrated stochastic processes. We have already seen that most 

commodity price series can be represented as the sum of a stochastic trend and stationary 

deviations about trend, as in (1 ) and (2). Under these circumstances two commodity 

prices are said to be co integrated if they share the same stochastic trend: 
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.(3a) PIt = W, + ZlI 

(3b) PlI = ~W, + Z2t 

where Pit is commodity price i; zit is stationary component i;and 0 is a parameter 

which identifies a long-run relationship between the two prices. Substituting (3a) into 

(3b) gives 

(4) P1J =~1' + Z, 

where Z = Z -&. In (4), the first component P =~" represents a long--run 
I 2t 11 2t '¥It 

equilibrium relationship between the two prices, resulting from their common stochastic 

trend, while Zt represents temporary stationary deviations from this long-run 

equilibrium relationship. 

The parameter 0 which characterises the nature .of the !ong-runequilibrium 

relationship between the series can be estimated by applying ordinal Y lc;...$t squares (OLS) 

to (4). Perhaps surprisingly, OLS estimates the parameters .of this 'cointegrating 

regression' consistently under very general assumptions ,about the statistical properties of 

Z , even when Z is .autocorrelated and correlated with p In fact, the OLS 
t t It' 

estimate converges to the true parameter value at a faster rate than in the usual case .of 

stationary regressors for reasons that will be explained later. Nevertheless, OLS estimates 

of a ;cointegrating regression generally follcwa nonstandard distribution theory and 'so one 

must be very careful in undertaking hypothesis tests using results from cointegrating 

regressions. More on this later. 
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It :should he emphasised fhatcointegrationis not the only reason forcomovement 

in .commodity prices. For example, the stochastic trends driving two ,prices .could be 

distinct but highly correlated. In ,the v.ery long run these prices ,would ,eventually (l\vet:ge 

and become unrelated :but they could show .considerable ;comovement in ,small finite data 

series. Or ,alternatively, the stochastic trends d!iving two prices could be ,completely 

unrelated but there .might be strong correlations between their stationary ,components. 

Such series might exhibit considerable comovement in the short-run ,even though they ,are 

unrelated in the long run. 

OLS based tests for cointegration have been developed by Engle and Granger 

(1987). The first step is to estimate the,coint~grating regression (4) viaOr.s.Then the 

residuals from this regression .are tested for the existence of ,3 stochastic .trend. If the 

hypothesis of a stochastic :trend ill :the residuals :is rejected then :the series .arecointegrated 

:because ;they ,each have stochastic trends but ,a linear combination of the series is 

stationary. This indicates the series have common stochastic :.trends, with thecointegrating 

regression providing .an ;estimateofthe long-runequilibtium relationship between the 

series. On the other hand, if the :hypothesis ,.of a ,stochastic trend in the residuals ,cannot be 

rejected then the series are not cointegratedandare therefore driven by distinct, though 

possibly highly correlated, stochastic trends. Testing for cointegrating vectors in 

multivanatesystemsls more difficult but ,appropriate :techniques have heen developed by 

Johansen (1988). 

Unfortunatel}', 'testing fora stochastic trend in the residuals from a .cointegrating 

re,gression is not just ,a straightforward ,application of the Dickey-Fuller and PhiUips

Perron unit root tests. The problem is :that the cointegrating parameter 0 must he 

estimated, ibut willonl¥ :00 identified by the OLSestimator 'when the null hypothesis of no 
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cointegration is false. Because OIS seeks the 0 which minimises the residual variance, 

and therefore is most likely to generate stationary residuals. then the standard Dickey

Fuller and Phillips-Perron tests arc biased towards rejecting the null too often (Engle and 

Granger, 1987). This problem can be corrected by using the same test statistic but an 

alternative distribution to conduct the test. An appropriate asymptotic distribution has 

been tabulated by Phillips and Ouliaris (1990). 

Results from applying the Dickey-Fuller and PhillipS-Perron unit root tests to 

residuals from an OLS regression of wheat prices on cattle prices are shown in Table 3. 

The critical values are from the distribution tabulated by Phillips and Ouliaris (1990). The 

results do not support co integration between cattle and wheat prices, even though both 

series have stochastic trends and appear to move together regularly. These results are 

consistent with some unpublished research from the World Bank which indicates that 

cointegration between commodity prices is the exception rather than the rule (for an 

~xception see Vogelvang, 1990). Thus, comovement among commodity prices appears to 

be due mainly to short-run correlations in the data. rather than the existence of a common 

stochastic trend which keeps the series in a long-run equilibrium relationship. 

Despite the finding that commodity prices often are not cointegrated, stochastic 

trends and cointegration play a crucial role in interpreting econometric studies of supply 

and demand for commodities. We have already seen that commodity prices generally 

have stochastic trends. Thus, if structural supply and demand equation~ ~l\,;l11de price 

variables and have stationary errors then the commodity price must be cointegrated with at 

least one other variable in the system. This issue is addressed in detail further below. 
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2.4 Time-Varying Volatility 

Some of the ead-iest research on the distribution of commodity prices assumed that 

price changes are independent draws from an identical normal distribution. It soon 

became apparent, however, that this simple model missed some important characteristics 

of commodity prir:e data. In particular, it was found that the volatility of price changes 

varies over time as the series moves between highly volatile periods, where large price 

changes tend to be followed by other large changes (of either sign) and less volatile 

periods, where small pric.e changes tend to be followed by other small changes (again of 

either sign). This temporal instability in the variance of commodity price innovations has 

become a well-known feature in empirical studies. 

It should be clear that time-varying volatility can be quite consistent with the 

existence of a stochastic trend in commodity prices. In fact, most of the research on 

time-varying volatility has focused on price changes, which implies that the stochastic 

trend in the series has been removed by first differencing. Once the stochastic trend has 

been removed, many commodity price series exhibit little residual autocorrelation. This 

does not necessarily mean, however, that the variance of the price innovations (e.g. price 

changes) is constant. If the series experiences time-varying volatility then the variance of 

price innovations will change over time in response to different shocks to the commodity 

market. 

Time-varying volatility in commodity price series leads to autocorrelation patterns 

in the conditional variance of price innovations, where the variance is conditional on an 

information set available at the time forecasts are being formed. Engle (1982) has termed 

this 'conditional heteroscedasticity' and developed the autoregressive conditional 
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heteroscedasticity (ARCH) model to capture such effects. A sequence of innovations e 
f 

follow an ARCH( q) model if they can be represented: 

(Sa) 

(5b) 
q 2 

h, = (0 + E a,e,_i 
i-I 

where D is some arbitrary distribution with mean zero and variance h conditional on a ,t 

set of information g available at t-1. The conditional variance h is a weighted ,-I I 

sum of past squared innovations, leading to autocorrelation in the squared residuals and 

time-varying conditional variances. 

Bollerslev (1986) has generalised the ARCH model to the so-called generalised 

autoregressive conditional heteroscedasticity (GARCH) model by including lagged 

conditional variances as well as lagged squared innovations in the equation explaining 

conditional variance movements. A simple yet useful example of a GARCH model is the 

GARCH (1.1) model of price changes: 

(6a) P, - P,-l = 1..\ + e, 

(6b) e,ICH - D(O, h,) 

(6c) h, = (0 + ne':1 + fVJ,-l 

In this example, price changes are equal to a constant f.I. plus a serially uncorrelatcd error 

e . The error e is sampled from some arbitrary distribution D with mean zero and 
t I 

variance h conditional on a set of information 0t-1; and the conditional variance h 
~ , 
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evolves based on last period's conditional variance and the realised value of last period's 

squared innovation Note that (6c) allows for a wide range of temporal patterns in 

the conditional variance of price innovations. This model has been applied successfully to 

a number of primary commodity prices by Baillie and Myers (1991). 

A simple test for conditional heteroscedasticity has been developed by Engle 

(1982) and is applied to the cattle and wheat price series analysed here. The test involves 

first estimating an ARIMA model to account for any autocorrelation in the series. Then 

the residuals from the ARIMA model are squared and regressed on q lagged squared 

residuals. Under the null hypothesis of no ARCH effects against an alternative of an 

ARCH(q) model then the statistic TR2, where T is the sample size and R2 is the coefficient 

of determination from the lagged squared residuals regression, is distributed chi-square 

with q degrees of freedom. Results from applying this test to the cattle and wheat data 

used here are shown in Table 4. The null hypothesis of no ARCH effects is soundly 

rejected in the case of cattle prices. The evidence is less decisive in the case of wheat 

prices but there does appear to be significant second-order autocorrelation in the squared 

residual series. Thu:>, roth commodity prices seem to exhibit time-varying volatility and, 

as we shall see, this has implications for econometric analysis of commodity markets. 

2.5 Excess Kurtosis 

Another weakness of early research on the distribution of commodity prices was 

the assumption that price changes are normally distributed. Subsequent work has shown 

that the tails of empirical price distributions appear to be much fatter than the Donnal, 

indicating excess kurtosi;s in commodity price changes (Gordon, 198'\). This excess 
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kurtosis cannot be handled within the confines of the usual nonnal distributional 

assumption. 

Perhaps surprisingly t the ARCH model leads to a partial solution to the excess 

kurtosis problem. Even if the conditional distribution of price changes is assumed nonnal 

in the ARCH model, then the unconditional distribution is not Donnal and, in fact, has 

fatter tails than the nonnal (Engle, 1982). Thus, ARCH and GARCH models go part of 

the way towards accounting for apparent non-normalities in the empirical distribution of 

commodity prices. Never~hcless, empirical resecn·ch has shown that even the ARCH and 

GARCH models fail to capture all of the excess kurtosis in commodity priccs, if thc 

assumption of a nonnal conditional distribution for price innovations is maintained. 

One solution which has been quite effective is to assume the conditional 

distribution of price innovations in the GARCH model follows a t-distribution with 

degrees of freedom treatcd as a parameter to be estimated. This provides the model with 

the necessary flexibility to fully capture the excess kurtosis inherent in commodity price 

data. The GARCH model with conditional t-distribution has done a good job of 

representing commodity price data for a range of different commodities (Baillie and 

Myers, 1991). 

To investigate excess kurtosis in commodity prices the residuals from the ARlMA 

models of cattle and wheat prices used to conduct the ARCH test were standardised by 

dividing by their respective standard errors. If the distribution of the errors was nonnal 

then the distribution of the standardised errors would be standard nonnal with kurtosis 

equal to three. The sample kurtosis of the actual standardised errors was found to be 4.66 

for cattle and 9.12 for wheat, thus casting considerable doubt on the nonnality of the 

residuals, especially for wheat. 
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3. Implications for Econometric Analysis of Commodity Markets 

Statistical inference in econometric studies of commodity markets is usually 

conducted under the assumption that all variables are stationary (no stochastic trends), and 

often the additional assumption of normally distributed errcrs is also invoked. We have 

just seen, however, that these assumptions are inappropriate for commodity prices. 

Commodity prices typically feature stochastic trends and may share trends with other 

commodity market variables (i.e. be cointegrated). Commodity prices also tcnd to 

experience time-varying volatility and follow distributions that have excess kurtosis 

compared to the normal. 

In this section, the implications which some of these empirical attributes of 

commodity prices have for conventional econometric analysis of commodity markets are 

outlined and discussed. It turns out that in some cases these attributes create significant 

difficulties in estimation and inference. 

3.1 High Volatility 

High volatility of commodity prices is perhaps their least problematic attribute 

from the perspective of undertaking appropriate statistical inference. Certainly, highly 

volatile prices may be difficult to explain using standard econometric models and 

techniques, so that the R2 in equations trying to explain price movements may be quite 

small. This in itself, however, poses no particular statistical problems. The challenge 

presented by highly volatile commodity prices lies in explaining why the volatility occurs 

and deciding what, if anything, needs to be done to alleviate any undesirable 

consequences. Since this is not the focus of the current paper a discussion of these issues 

is left for another time. 
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3.2 Stochastic Trends and Co integration 

Stochastic trends and cointegra,'ion can be much more important fo: statistical 

inference. The issues are addressed within the context of the most simple te,.tbook model 

of commodity supply and demand. The model is: 

(7a) 

(7b) 

(7c) 

tI 
y, = Y21 P, + Yz:z. x, + u2t 

s tI y, = y, 

(Supply) 

(Demand) 

(Market equilibrium) 

where y,' is quantity supplied; y,tI is quantity demanded; P, is the commodity 

price; k, is a supply shifter (e.g. technical change); x is a demand shifter (e.g. 
t 

income); and u and u are random supply and demand disturbances. All variables 
}. 2t 

are in logarithms, so that the y coefficients represent supply and demand elasticities. 
ij 

Variables are also expressed as deviations from their respective means to eliminate 

constant terms. The variables in this model could easily be interpreted as vectors, and 

lagged prices and quantities included in the model, without changing the substance of the 

discussion which follows. 

The supply and demand shift variables are assumed to follow strictly exogenous 

autoregressive processes: 

(Sa) k, = P1k,_1 + Ell 

(8b) X, = P~'-l + E2t 
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where the random disturbances Ell and £ll are uncon-elated with the U
il

• It iE important 

to note that IPil = 1 as well as Ipd < 1 is allowed so that the exogenous variables may 

have a stochastic trend or be stationary, depending on the value of Pi. 

The model is exactly identified and has reduced fonn: 

ltn = -YI2Y21/ (Y11 - Y
21

); and VII and v2t are correlated functions of the structural 

errors "11 and u2t• 
The reduced form plays an important role in conventional 

estimation and inference in the model. 

The conventional approach to estimation when I P A< 1 and all variables are 

stationary is to apply 015 to the reduced fonn and an instrumental variables (IV) 

estimator, such as two-stage least squares (2SLS), to the structural equations. The 

structural equations can also be estimated via systems methods such as three stage least 

;quares or full information maximum likelihood. However, these systems methods have 

the disadvantage that any misspecification in one equation can spill over and cause 

problems in estimation of every equation. If all of the variables are stationary then IV 

estimation and inference usually takes place on the basis of asymptotic results because the 

small sample properties of the IV estimator are generally unknown. 

Now suppose that the supply and demand shift variables in the commodity market 

model (7) follow independent random walks, PI = Pz = 1, and are therefore not 

cointegrated. Then by the reduced form (9) price and quantity both have stochastic trends 

as well because they are a linear combination of k and x. In this case, the supply 
I I 
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and demand equations (7a) and (7b) each represent linear combinations of stochastically 

trending variables. There are two possibilities. The first is that the linear combinations 

represented by the supply and demand equations (i.e. the structural errors "u) 

themselves have a stochastic trend. In this case there is no long-run relationship between 

the variables and the result is a 'spurious regression' in the sense of Granger and Nelvbold 

(1974). Results from IV estimation of such equations are notoriously unreliable because 

estimated coefficients are not consistent and the R2 converges to a random number. 

Clearly, estimation and inference in this case is frought with difficulties and the 

application of standard techniques will lead to major errors. 

The second possibiHty is that the structural disturbances Uu are stationary and 

the supply and demand equations therefore represent stationary linear combinations of 

stochastically trending variables. In other words, (Y" P" k) and (y" P" x,) are two 

cointegrated vectors with the relevant supply and demand elasticities representing the 

long-run relationship between the series. 

What are the implications of this scenario for estimation and statistical inference? 

Fortunately, the conventional IV estimator applied to the supply and demand equations 

remains consistent (Phillips and Hansen, 1988). In fact, the IV estimator applied to a 

cointegrating regression converges more rapidly to the true parameter values than it would 

if all of the variables were stationary. On the other hand, the asymptotic distribution of 

the IV estimator is generally not nonnal, as it would be with stationary variables. Thus, 

normal distribution theory cannot be used in hypothesis testing, even when relying on 

large sample results. This is an obvious problem {;f "onventional inference in these types 

of models. 
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Furthermore, it turns out that the IV estimator of the cointegrated supply and 

demand equations is not the only consistentestimator~ In particular, simple OIS is also 

consistent and converges rapidly to the true parameter values, despite the obvious 

simultaneity problem. The re3S0n for this fsuper consistency' is that all linear 

combinations of, for example, the supply equation variables (v" Ptt k,) other than that 

given by the supply equation itself have asymptotically infinite variance. Because OIS 

minimises the residual variance it moves very quickly to the finite residual variance 

defined by the supply equation parameters. 

Like the IV estimator, the asymptotic distribution of the OIS estimator of 

cointegrated relationships is not Donnal either~ Thus conventional inference cannot 

proceed as usual even when relying on large sample results. However, Hansen and 

Phillips (1988) have developed methods for 'modifying' OIS (and IV) estimators and 

standard errors so as to reduce small sample bias and allow conventional asymptotic 

inference. 

The choice between IV and OLS estimators of cointegrated supply and demand 

equations comes down to two issues. First, which is easier to apply? OLS is obviously 

easier than IV, although with modem computer technology the difference must be 

described as marginal. Second, which estimator performs better in .small samples? Monte 

Carlo simulations have shown that this depends on the signal to noise ratio. If the 

variance of the innovations in the random walks which drive the long-run behaviour of 

the variables is high relative to the variance of the short-term dynamics (the structural 

disturbances in the commodity market model) then the signal to noise ratio is high, small 

sample bias is negligible,and OLS works well. Modified OLS estimates will then allow 

conventional inference. When the variance of the random walks is relatively low, 
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howev.er, then the signal :to noise ratio is low and the IV estimator will generally work 

be tter, although again modified estimators are required before conventional inference can 

be applied. Some Monte Carlo evidence supporting these conclusions for our commodity 

market model is presented later. 

To .see the potential power and utility of accounting for stochastic trends .and 

cointegration in commodity market studies, consider the case when the supply shift 

variable k is stationary but the demand shift variable x has a stochastic trend. By 
I , 

the reduced form, both price and quantity depend on x so these variables both have , 
stochastic trends as well. Nevertheless the :supply equation (7a) defines .a linear 

combination of price and quantity y, - 'VuP, which is stationary, and the cointeg.;ating 

vector (1, -Y11) defines the price elasticity .of supply. 

Now suppose one wanted to estimate the supply elasticity. Instead of worrying 

about conventional identification and simultaneous .equations bias, ail that is required is to 

run an OlS regression of quantity on price. Because all other linear combinatklDs of 

quantity and price (besides .the supply equation) have infinite variance, chis simple 

bivariate linear regression gives a consistent estimate of the supply elasticity_ The 

estimate also converges very quickly to the true parameter value, though one would not 

trust .standard errors computed with the usual formula when undertaking statistical 

inference. All of this occurs despite the fact that price and quantity are determined 

simultaneously, and that the regression is 'misspecified' by exclusion of the supply shift 

variables in the regression. 

Finally, consider the possibility that commodity price has a stochastic trend but that 

the quantity variable is stationary. This implies that the supply and demand shift variables 

both hav.e stochastic trends but that the linear combination ~~, + 1tzlct is stationary. 
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In this case, the reduced form price equation (9a) is a cointegratingregression,and 

therefore inference must proceed with caution Buttbe reduced form quantity ,equation 

(9b) has a stationary dependent variable and .a linear ,combination of thestoehastically 

trending regressors is stationary_ In these circumstances we can proceed as if all variables 

ar.e stationary and conventional inference is applicable (Stock and Watson, 1988; Sims, 

Stock .and Watson, 1990). 

In the structural fonn, the dependent vanablequantity in the supply .and demand 

equations is stationary but the explanatory variables have a stochastic trend. Thus 

YuP, +Y1.Jc, and 1
2
1', + YziX, represent cointegratingreiationshipsand all of the 

coefficients of interest can he written as coefficients on stationary variables. This implies 

that conventional inference is applicable and .that the IV estimator may perform better than 

OLS because price and quantity are simultaneously determined. 

!-Aost commodity prices appear to be characterised by .astocbastic trend and this 

has crucial implications for estimation and inference. If quantity is stationary then price 

must be '.cointegrated with supply and demand .shifters in the commodity market model. 

Thus, supply and demand equations have statio.nary dependent variables and a linear 

combination of the stochastically trending explanatory variables is 'Stationary. In thiscasc, 

IV estimation of the structural form leads to conventional asymptotic inference. On the 

other hand, if price and quantity both have stochastic trends then the supply and demand 

equationsrepresentcointegrating regressions and the conventional asymptotic distribution 

theory fo1' the IV ,estimator breaks down. The IV estimator remains consistent but so is 

OLS.Greatcare must be taken in using estimated :standarderrors from either estimator in 

these .circumstances. Theperfonnance of ,the estimators in smaUsamples depends on the 
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variance of the random walks driving the system compared to the variance of the 

stationary disturbances. 

3.3 Time-Varying Volatility and Excess Kurtosis 

Time-varying volatility in commodity prices has the same general effect on 

statistical inference as any other form of heteroscedasticity. In particular, the standard 

OIS and IV estimators remain unbiased and consistent. However, there is a loss of 

efficiency and estimated standard errors may be biased. Indeed, Engle (1982) points out 

that the main problem with applying OIS to a model with ARCH disturbances is the 

resulting loss in efficiency. 

It is important to note, however, that time-varying volatility has little effect on 

DLS and IV estimation. of cointegrating regressions. The reason is that the 'super 

consistency' of such estimators causes rapid convergence to the true parameter values 

irrrspective of the presence of heteroscedasticity. On the other hand, it is important that 

any 'modified' estimates used to undertake statistical inference in cointegrating regressions 

be robust to the presence of heteroscedasticity, because heteroscedasticity will affect the 

standard errors. 

Excess kurtosis causes problems whenever inference requires a particular 

distributional assumption on the disturbance terms. Although the normal is typically 

chosen, the actual distribution of commodity prices appears to have fatter tails than the 

normal. This can be a particular problem in maximum likelihood estimation of 

commodity market models. 

Time-varying volatility and excess kurtosis can be modelled parametrically using 

GARCH models and a conditional t-distribution for price innovations. If properly 
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specified, such models should lead to increased efficiency and more accurate standard 

errors in commodity market estimation. Some nonparametric methods which are more 

robust to specification error have also been developed (e.g. Pagan and Ullah, 1988). 

4. A Monte Carlo Simulation 

A Monte Carlo experiment was undertaken to highlight some of the issues raised in 

the discussion of stochastic trends and cOintegration above. The data generating process 

used in the simulation is a simple version of the commodity market model: 

(lOa) Y, = O.5p, + k, + u11 
(Supply) 

(lOb) Y, = -O.5p, + x, + u2t 
(Demand) 

(10e) k, = Ell 

(9d) X, = X,_l + ~2t 

where all of the disturbance terms u
il 

and Eit are identically and independently 

distributed N(O,l) variables. Notice that the parameter A determines the signal to noise 

ratio. If A is large then the variance of the random walk is large relative to the variance 

of stationary disturbances (high signal to noise ratio) while if A is small the reverse 

occurs. 

Each time the model was simulated, a series of 50 observations on 4 independent 

N(O,l) variables was drawn using the random number generator RNDN in GAUSS. These 

random numbers were then applied to Equation (10) to generate a series of 50 

observations on 0', P, k, x,) , using Xo = 0 as a start up value for X" Alternative 

estimators were then applied to the data set and their performance compared. The whole 
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process was then repeated a total of 1000 times and summary results tabulated. The aim 

is to get an idea of how alternative estimators perform in small samples under stochastic 

trends and cointcgration. 

It is assumed that the aim of the exercise is to estimate the price elasticity of 

supply. Three alternative estimators are compared. First there is the conventional IV 

(2SLS) estimator of the supply equation, using k, and X, as instruments for p" Second is a 

simple bivariate DLS regression of y, on P" Because the supply shift variable k, is 

stationary, this should generate a consistent estimate of the supply elasticity, Third is a 

multivariate OLS regression of Y, on (P, kJ . Inclusion of the stationary regressork, 

should not affect the consistency of the supply elasticity estimate from the cointegrating 

regression. In small samples, however, inclusion of the kt variable in the regression may 

lead to a different performance in inference. The experiment was repeated for two values 

of A, A = 1 and A = 10. 

Results from the experiment are reported in Table 5. In the case of low signal to 

Hoise ratio Q. = 1) conventional 2SLS clearly performs best. The mean supply 

elasticity estimate is very close to the true value of O.S and it has a significantly lower 

root mean square error (RMSE) than the DLS estimators. Nevertheless, the standard 

errors from the 2SLS estimators cannot be trusted because the mean standard error 

estimate differs considerably from the actual RMSE of the estimator and the null 

hypothesis that the supply elasticity equals 5.0 is rejected 19% of the time when 

conventional distribution theory says it should be Ont5( 5%. Bivariate OLS performs the 

worst under low signal to noise with considerable bias in both the estimated supply 

elasticity and its standard error. 



27 

In the case of high signal to noise ratio, however, a simple bivariate regression of 

quantity on price gives a remarkably good estimate of the supply elasticity. The mean 

estimate is very close to the true value of 0.5 and the mean estimated standard error from 

a standard regression package is very close to the actual RMSE of 0.011. Using 

conventional inference the null hypothesis y = 0.5 is rejected 9% of the time when u 

the figure should be 5%. Thus, gre are still must be taken in undertaking inference in 

this model. The 2SLS and rnultivanate OIS estimators also perform well although the 

distribution theory for the 2SLS estimator is more distorted than the OLS estimators with 

the null hypothesis being rejected 18% of the time when it should be 5%. 

These simulation results highlight two important facts about estimating supply and 

demand equations when prices have stochastic trends and are cointegrated with other 

variables. First, standard errors from the usual IV techniques. such as 2SLS, are not to be 

trusted and significant errors can be made in hypothesis testing if one naively uses 

standard tests and standard distribution theory. Second, in the case of high signal to noise 

ratios then simple OIS estimation of equations in a simultaneous equation system can 

provide remarkably good results. Here too, however, standard errors are not to be trusted 

and great care must be taken in hypothesis testing and statistical inferenc!. 

5. Concluding Comments 

Developments in time-series econometrics have proceeded at a remarkable pace 

ever the past decadc and the full implications for econometric analysis of commodity 

markets are only just beginning to bc widely understood. Many commodity prices appear 

to contain stochastic trcnds and be cointegrated with other commodity market variables. 

Time-varying volatility and excess kurtosis also characterise many commodity price 
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series. These time-series characteristics have several significant implications for 

econometric analysis of commodity markets. 

Most importantly, the presence of stochastic trends raises a number of econometric 

pitfalls for the unwary, paracularly when it comes to inference regarding supply and 

demand elasticity estimates. New approaches are needed to account for the special 

distributional characteristics of stochastically trending variables. Time-varying volatility 

and excess kurtosis in commodity prices also need to be properly accounted for if 

estimation is to proceed with maximum efficiency. Indeed, to avoid major errors in 

estimation, inference and interpretation, commodity market a~alysts must become 

increasingly aware of the time-series characteristics of their data, and of the resulting 

implications for the use of various econometric methods and techniques. 
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Notes 

1. Cattle prices in cents per kilogram are from January 1970 through June 1990 and 

are average monthly prices at Brisbane markets from various issues of the 

Australian Meat and Livestock Corporation's Annual Statistical Review. Wheat 

prices in U.S. dollars per ton are from January 1970 through February 1987 and 

are average Australian export prices from various issues of the IntemationalWheat 

Council's World Wheat Statistics. 
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Table 1 

Testing for Stochastic Trends in Cattle Prices· 

Statisti~ llnd~[ Lag Valu~ Critical Valu~s 
Test 

£=0 £=4 £=12 5% 10% 

Dickey-Fulle[ 

P, = f.1 + ap'.l + ~t + £, 

Ho : Q=1 -1.76 -2.27 -2.94 -3.43 -3.13 

Ho : a= 1; i3=O 1.66 2.61 4.40 6.34 5.39 

Pbillips-Perron 

Pt = f.1 + apr-l + f3t + E, 

Ho : Q=l -1.77 -2.15 -2.41 -3.43 -3.13 
Ho : a=l; ~=O 1.68 2.38 2.96 6.43 5.39 

KESS 

P, = f.1 + w, + f3t + £, 

w, = W'.l + e, 

Ho : ~ = 0 1.62 0.34 0.15 0.15 0.12 

a The null hypothesis is rejected if the statistic is greater in absolute value than the 
critical value. Critical values are from Fuller (1976), Dickey and Fuller (1981), and 
Kwiatkowski, Phillips, Schmidt and Shin (1992). 
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Table 2 

Testing for Stochastic Trends in Wheat Prices· 

Statistik IIDd~[ Lag Valu~ Crlti~l Valll~s 
Test 

£=0 £=4 £=12 5% 10% 

Dkkey-Fuller 

P, = J.I. + ap,-l + f3t + £, 

Ho ; <1=1 -1.13 -1.67 -2.40 -3.43 -3.13 

Ho : <1=1; fl=O 1.01 3.07 3.60 6.34 5.39 

PbiJUps-PerroD 

P, = J.1 + ap,-l + ~ + £, 

Ho : <1=1 -1.14 -1.53 -1.58 -3.43 -3.13 

Ho : 0.=1; i3=O 3.06 .2.56 2.59 6.34 5.39 

KfS.S 

p, = J.I. + w, + ~t + E, 

w, = W,_l + e, 

Ho:o!=O 2.55 0.54 0.23 0.15 0.12 

a The null hypothesis is rejected if the statistic is greater in absolute value than the 
critical value. Critical values are from Fuller (1976), Dickey and Fuller (1981), and 
Kwiatkowski, Phillips, Schmidt and Shin (1992). 

'-_ ........ ____ ...... ____________ .--_______ ........ __ ,.i.' "" . .-____ ..... _ .. 



", " 

35 

Table 3 

Testing for Cointegration Between Cattle and Wheat Prices· 

Statistic Under Lag Value Critical Values 
Test 

£=0 2=12 5% 10% 

Dickey-Fuller 

Z, = oZ'_l + E, 

Ho : a=l -0.29 -0.72 -L09 -3.37 -3.07 

PhillipS-Perron 

Zt = aZt_1 + E, 

Ho : <l=1 -0.30 -0.68 -0.94 -3.37 -3.07 

a The null hypothesis of no cointegration is rejected if the statistic is greater in absolute 
value than the critical value. Critical values are from Phillips and Ouliaris (1990). 

.iI .... : 
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Table 4 

Testing for Conditional Heteroscedasticity in Cattle and Wheat Prices 

Statistic Criti~l Valu~s 
Model 

TR2 5% 10% 

Qillk 

(l-a~-a-l ~AP, = (1 +bJL+b-l2+b~ s)e, 

e,IQ'_J - D(O)r.,) 
q ., 

h, = ro+E a,e;"1 
i-I 

q=l 11.14 3.84 2.71 
q=2 15.08 5.99 4.61 
q=3 20.14 7.81 6.25 
q=4 22.80 9.49 7.78 
q=5 23.56 11.07 9.24 

~ 

(1-a 1L-a-l1AP, = (1+blL+biJ2+bgL~t 

e,IQ'_1 - D(O)r.,) 
q 

h, = rotE ., 
a,e;"{ 

i-I 

q=l 0.00 3.84 2.71 
q=2 5.84 5.99 4.61 
q=3 6.74 7.81 6.25 
q=4 7.39 9.49 7.78 
q=5 7.48 11.07 9.24 
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Table 5 

Simulation Results· 

Estimator Mean 
Estimate 

Case 1: Low Signal to Noise Ratio 

2SLS 0.507 
Bivariate OIS 0.275 
Multivariate OLS 0.367 

Case 2: High Signal to Noise Ratio 

2SLS 0.499 
Bivariate OLS 0.495 
Multivariate OLS 0.497 

Root Mean Mean Estimate 
Square Error of Standard 

Error 

(0 = 1) 

0.0792 0.045 
0.2549 0.058 
0.1581 0.047 

(0 = 10) 

0.0067 0.004 
0.0110 0.009 
0.0072 0.006 

Percent of b 

Rejections at 
the 5% Level 

18.9 
85.1 
67.8 

17.9 
9.1 
7.3 

a. Results are from estimating the supply elasticity in model (9) with 50 observations 
and 1000 repetitions of the experiment. 

b. Percent of rejections of H : y = 0.5 using the standard regression t-statistic 
and the conventional 5% siiftifici1nce level in a two-sided test. 



.. " ., ~ 

38 

Logarithm of Cattle Prices 

70 71 72 73 7+ 75 76 77 76 79 80 81 82 83 8~ 65 86 67 88 89 90 

Logarithm of Wheat Prices 

70 71 72 73 74 75 76 77 78 79 80 81 82 83 8+ 85 86 87 

Figure 1. Logarithm of Monthly Commodity Prices 




