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introduction

Australian primary producers pay levies to fund investments in on- and off-farm
research and development (R&D), and promotion. Little is known about the returns
being eamned by these alternative investments and hence it is difficult to judge the
relative profitability of the present portfoiio of investments. Scobie, Mullen and
Alston (1992) speculated that the return to investment in on-farm R&D in the wool
industry may be of the order of nine nercent to Australian taxpayers and 25 percent
to Australian woolgrowers. To arrive at this estimate they assumied that productivity
growth in the industry attributable to R&D has been about 1.5 parcent per year.
(This estimate also depended on assumptions about lags in the development and
adoption of new technology and about demand and supply elasticities.)

The final objective of our research is to measure the nature anct extent of the
contribution of R&D to productivity growth and to estimate the reiurns from this
investment to Australian primary producers and taxpayers. Because much of
Australian agriculture is characterised by jointness in production and in the supply
of R&D services, the focus of this project has been broadened from the wool
industry to broadacre agriculture encompassing the wool, cattle and cropping
industries.

The purpose of this paper is to raise for discussion three issues that we have
encountered in choosing how best to measure productivity growth using the data
set from ABARE's survey of broadacre agriculture. The first issue concerns the
extent to which outputs and inputs can be aggregated. A widely used approach, the
index number or growth accounting approach (Lawrence, 1980; Lawrence and
McKay, 1980; Paul, 1984; Paul, Abbay and Ockwell, 1984; and Beck, Moir, Fraser
and Paul, 1985}, estimates productivity growth as the difference in the rates of
growth in aggregate measures of outputs and inputs. Used less often has been the
econometric approacn based on cost or profit functions (McKay, Lawrence and
Viastuin, 1982; Fisher and Wall, 1990). Both approaches usually make strong
assumptions about the separability of inputs and outputs using a particular
functional forr - represent technology. In this paper a non-parametric approach is
used to assess which alternative ways of aggregating inputs and outputs are
consistent with profit maximisation.

The second issue that follows from the aggregation question is how to measure
productivity growth. We compared estimates of productivity growth from a translog
cost function with the traditional discrete Divisia TFP index and with several non-
parametric measures which while independent of functional form, represent
different views of the nature of technical change and of returns to scale in
agriculture.

The third issue concerns the appropriate way of incorporating the impact of
weather when measuring productivity growth and technical change. Clearly weather
affects the supply of agricultural products and hence Is an appropriate explanatory
variable in supply, production and profit functions. However the extent to which
weather influences producers' input demand decisions and hence enters input
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demand and cost functions as an explanatory variable is unclear and has not been
discussed in production economics literature.

Data

ABARE has been conducting a survey of breadacre agricultural industries in
Australia since 1952~-53, More information about the extent of the survey, the
methodology used and the definition of variables can be found In several papers by
ABARE staff (Paul, 1984; Beck, Moir, Fraser and Paul, 1985; and Knopke, 1988).
The number of producers in the sample, who had to have at least 200 sheep,
ranged from 600 to 700 and the sample can be stratified by three climatic zones
known as the high rainfall, wheat-sheep and pastoral zones.

The four outputs were crop, livestock sales, wool and other outputs. The eight
inputs were contracts, services, materials, labour, livestock purchases, use of
livestock capital, use of land capital, and use of plant and structures. Divisia indices
of aggregate output, aggregate inputs and total factor productivity were also
available. Other data serles available included an index for pasture growth.

The most disconcerting feature of the data is the number of years in which total
expenditure exceeds total revenue. Prior to 1981 there were nine years in which
costs exceeded revenue. However since 1981 costs have exceeded revenue in
every year. Drought and unexpected price falls may explain occasional years of
loss but eight consecutive years of loss does not appear to be consistent with profit
maximisation. This issue is raised again briefly later in the paper.

Apart from costs exceeding revenue for the last eight years, the other notable
feature of the data is the marked upward trend in prices since the early seventies.
This prompts questions about whether the nature of technical change and the rate
of productivity growth have been different under these two price regimes. This
issue has not yet been pursued.

Aggregation of Qutputs and inputs

Following Varian (p. 588), a nonparametric test for weak separability of the implicit
production technology under the behavioral assumption of profit maximization is
given by the T? - T inequalities:

(1) hl - hs + Yip('(x( - xs} 2 00 'Y: > o' Sltl = 1;-"91.

where T is the total number of observations, x, represents a vector of a subset of
netputs (following the negative inputs convention) with associated netput price
vector p, and y, = 1/A, the inverse of marginal cost. The existence of a solution (h,,
y) to these nonparametric inequalities is a necessary and sufficient condition for
the observed behavior X = {x,,...,x} to be consistent with the maintained
hypothesis, weak separability under profit maximization in this case. If the vector x
is a subset of the netputs, then this allows nonparametric testing of whether there
is an aggregator, h, of the subset of netputs under consideration. If, in contrast, the
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vector x includes all netputs, then a nonparametric test of Hicks-neutral technical
change in its most general form results (see Chavas and Cox (1988), p. 304-6).

We tested for the existence of solutions to (1) using linear programming (LP) with
GAMS/MINOS software. If the corresponding LP problem was infeasible, then the
data were considered to be inconsistent with the particular functional form being
tested, and hence provided nonparametric evidence against the existence of the
implied aggregator function via weak separability. In particular, we tested for the
existence of the following aggregators:

a) Hicks neutral technical change: All netputs.

b) Aggregate cutput: Crop, livestock sales, wool and other outputs.

c) Crop/other output: Crop and other outputs.

d) Wool/livestock output: Wool and livestock sales.

e) Aggregate input. Contracts, services, materials, labour, livestock
purchases, use of livestock capital, use of land capital, and use of plant and
structures.

f) Plant/structures and land input: Use of plant and structures and use of
land capital.

g) Livestock input: Livestock purchases and use of livestock capital.

h) Contracts/services/materials: Contracts, services, and materials.

All functional structure, weak separability hypotheses except for (h) were found to

generate infeasible solutions to the nonparametric inequalities in (1). Hence, these

data were only found to be consistent with the existence of a

contracts/services/materials input aggregator over the time pericd analyzed.
Parametric Measures of Productivity Growth

We used a translog cost function to estimate the extent and nature of productivity

growth in broadacre agriculture. The most general form of a multi-product, muiti-
input translog cost function is given by:

InC= ag+EofnWyeLEy W inWj+ B nQ
i 1]
1
*‘é‘%?ﬂ ,d,na 'k /ﬂafl»?%p ,‘In VV,Ianfga ’7;
1
“Eb,inZ;+ .12.225 InZ{nZ;-ZZenZ, ot
Iy
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where products are represented by the Q, terms, prices of variable inputs by the W,
terms, quantities of fixed inputs by the Z; terms and the technical change and
weather terms by T, and T,. Differentiating this cost function with respect to input
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prices gives a series of input demand equations where the dependent variable is
the shara of total cost, S, accounted for by an input. These demand equations take
the form:

! i

Differentiating the total cost function with respect to output quantities gives a series
of revenue share equations where the dependent variable is the ratio of revenue
from products to total cost, R. These revenue share equations take the form:

R = B k+§,:ﬂ Hl”a,'*'%p &In I‘V,+Eq: gT}'F?ﬂ &lnz,
J

The properties of cost functions are discussed in general terms in Chambers
(1988) and in terms specific to the translog functional form in Antle and Capalbo
(1988).

Referencing Ohta, Ball and Chambers define the rate of technical progress as:

= - (9‘ +§91 ITI+§¢1 ,[n VVI'PEI:!;S', IIIFQ i

This can be calculated at every data point but at the point of expansion reduces to
91.

Following the results of the non-parametric investigation of alternative ways of
aggregating inputs and outputs, the base parametric model consists of four outputs,
six variable inputs, one of which is an aggregate of contracts, services and
materials; and trend and weather variables. A system of equations consisting of the
cost function and input and output cost share equations were estimated using a
maximum likelihood estimator. The weather and technical change variables entered
the cost function interactively with the output and input price variables and hence
also appeared in the input and output share equations allowing for a biased impact
of these variables on outputs and inputs. Input cost shares must sum to one. To
avoid a singular residual covariance matrix, the cost share equation for the use
value of plant and structures was omitted during estimation and its parameters
derived from the restrictions applied. The properties of symmetry and homogeneity
in input prices were imposed.

This base model was compared with a model in which contracts, services and
materials were not aggregated, a four output — eight input model and a model in
which all outputs were aggregated, a single output - eight input model. The models
were compared on the basis of how well they met some of the conditions required
of a cost function that were discussed above and in terms of the nature of the
impact of technical change and weather.



Four output six input model

Parameter estimates for the base four output ~ six input model are presented in
Table 1 in the left hand columns headed weather to indicate that weather has been
included in all equations. The numbering system used to identify inputs and outputs
can be found in Table 3. Monotonicity in input prices and outputs requires first, that
cost and revenue shares be positive. This condition was met at the point of
-expansion because all q, and 3, were positive and significantly different from zero.
This condition was met at most data points except for the use value from livestock
capital and land which were negative for the four years from 1974 until 1977. The
share of crop output was negative in 1958 although very small.

A necessary condition for concavity in prices is that own price elasticities of input
substitution be negative. All elasticities of input substitution were negative at the
point of expansion although the elasticity for labour was not statistically significant.
Concavity in prices has not been checked for all data points.

A necessary condition for convexity in outputs is that the B; terms, the inverse of
the elasticity of product transformation, be positive. The function w-s not convex in
outputs. The elasticity for crop output was negative and statistically significant (t

= -2.07). The elasticity for livestock output was positive and significant but the
elasticities for wool and other output were both insignificant.

Many of the interaction terms were significant. Thirtesn of 21 y, terms and nine of
ten B, terms were significant suggesting that the supply of one product is influenced
by the supply of other products. Hence it seems unlikely that the cost function is
non-joint in inputs allowing total cost to be estimated as the sum of individual cost
functions for each product. The log of the likelihood function for this model was
1066.

The rate of cost reduction was 1.7 percent at the point of expansion which means
that there has been a neutral component to technical change such that the cost
function has drifted down through time at a rate of 1.7 percent per year, which is
lower than the rate suggested by studies using an index number approach such as
Lawrence and McKay (1980) and by Beck et. al. (1885). However it should be
noted that the rate of cost reduction is only equivalent to a TFP index lunder
constant returns to scale. Technical change reduced the share of revenue from
livestock and wool. It was saving of labour and livestock and was biased towards
the use of land (but not plant and structures). These findings can be contrasted
with those of McKay et al. (1982) who found that technical change was land saving
and biased in favour of crop production. Weather was a significant explanatory
variable in the cost function itself and interacted significantly with three inputs but
not with any of the outputs.

Four output eight input model

Parameter estimates for aiternative models can be found in Table 2. Because
inputs and ‘outputs have been aggregated differently, their numbering is different
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but is described in Table 3. in one alternative model the contracts, services and
materials inputs were not aggregated. This model required the estimation of
another 27 parameters and increased the likelihood that some parameters would
not be precisely estimated because of collinearity between input prices. The log of
the likelihood function was 1434. ‘

The eight input model did not meet the condition of concavity in input prices. The
own price -elasticity of input substitution for services was significantly positive and
the elasticities for contracts and for labour were not significantly different from zero
although both were negative. The requirement for convexity in outputs, that the
elasticity of product transformation be positive, held for livestock output but did not
hold for the crop product category. The elasticities for wool and for other products
were not statistically significant.

Monotonicity in input prices and outputs was met at the point of expansion because
all g, and B, were positive and significantly different from zero. This condition was
met at most data points except for the use value from livestock capital and land
which were negative for the four years from 1974 until 1977. Of the 36 y; terms 20
had t-statistics greater than 1.8 despite very high correlations between many of
these variables.

The direct effects on the cost function of both technical change and weather were
significant and negative. In the case of technical change, the cost function has
drifted down through time at a rate of 1.7 percent per year. Several of the
interaction terms between technical change and input prices and outputs were also
significant suggesting that technical change has been saving of labour and
livestock purchases and bised towards the use of materials and land. Technical
change has reduced the revenue share from livestock.

Single output model

Past studies of productivity growth in the Australian sheep industry have often used
a single aggregate output measure. For this model, reported in Tablé 2, the log of
the likelihood function was 977. It was monotonic in input prices and output at the
point of expansion. The q, were all positive and significant and all y, terms except
for that associated with contract services were significant and positive. Again 20 of
the y; terms were significant. The direct output term, s, was not significant and B
was significant but negative.

As for the multiple output model, own price elasticities of substitution at the point of
expansion were negative, as required for concavity in prices, except for services.
Nor does this cost function appear to be convex in output as 7., which should be
nositive, was —106 at the point of expansion.

The effect of technical change on the cost function is to add to costs at the rate of
1.2 percent per year although with a t-stat of 1.6, this effect is probably not
significant. Technical change is biased towards the use of materials and land and
away from the use of livestock purchases and plant and structures. The interaction
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term between ouput and technologyaps, is pesitive and significant. The direct effect
of weather is also insignificant but many of its interaction terms are significant.

‘Modelling the impact of weather

As mertioned above there is some uncertainty about the appropriate way fo
incorpovate the impact of weather. In the models above weather has been treated
as a fixed input following Weaver (1983) and it serves as an explanatory variable in
all equations., An alternative view is that while weather certainly has an impact on
realized levels of cutput, it does not enter the ex ante decisions of farmers about
input use and hence it should not enter as an explanatory variable in cost and input
demand functions. Against this, it can be argued that for products with long
production cycles, farmers can adjust input use to some degree in vasponse to
changes in weather. A further issue is that realized levels of outputs have been
used as explanatory variables but these have clearly been affected by weather and
hence are not exogenous to input decisions in the same sense that planned levels
of output are.

When the weather variables were removed from the cost and input demand
functions but not the output functions in the base model, nine fewer parameters
were estimated. The log of the fikelihood function fell by 20 to 1046 which means
that the null hypothesis that weather does not enter the cost or input demand
equations can be accepted at the 99 percent significance level. There appeared to
be little change in the degree to which other conditions for a cost function were
met.

The rate of cost reducjtion estimated from this model was slightly higher at 1.9
percent. it was biased towards the use of land and away from the use of labour
and livestock. It reduced the share of revenue from livestock and wool. In three of
the four output equations, crop, livestock and wool, the weather term was zositive
and statistically significant.

The log of the likelihood function for the four output — eight inpur inodel in which
weather only appeared in the output functions was 1407, a decline of 26, or a log
likelihood test statistic of 52. The critical value of the «* statistic for eleven degrees
of freedom at the 99 percent level of significancs is 24.73, hence the null
hypothesis that weather only enters through output functions is rejected. Three of
the four weather terms in the output equation:; were significant and the fourth had a
t - value of 1.67.

Other properties of this reduced model were similar to those of the full model.
There were still problems with convexity in both inputs and outputs and the cost
shares of land and plant and structures were negative in some years. The
estimated rate of productivity growth was 1.8 percent. Technical change reduced
the revenue shares of crop and livestock output, was saving of labour and
operating livestock and wusing of land.



‘Negative Profits

An area of concern, mentioned above, is that from 1981 until 1988 expenditure on
inputs has exceeded revenue in every year. Such a long run of negative profits is
not consistent with profit maximising behaviour nor can it be explained by
unexpected price and weather conditions.

This situation has arisen in part because the use values of assets such as land and
plant and structures, which have been calculated using a real rate of interest and a
market valuation of capital assets, were large and rose significantly in these years.
The real rate of interest has fluctuated markedly. it was greater than five percent in
six years since 1981 and reached 9.24 percent in 1985. This raises the issue of the
return producers are prepared to accept from investments in inputs such as land
and consequently whether such inputs are best treated as fixed inputs. it is likely
that many farm families would accept a lower rate of return on these assets.

One solution 1o this problem is to treat land and plant and structures as being fixed
factors that earn a residual rather than a market rate of return. To do this requires
adjustments to some of the input categories. We have not yet been able to make
these adjustments in a way that is consistent with the rest of the input series and
hence have not reported the fixed input models in any detail. However some
general comments can be made from these fixed input models. In particular the
estimated rate of neutral technical change is much farger at about 3.1 percent. The
important implication of this is that estimation of the rate of cost reduction is
sensitive to the way in which technolgy is modelled. Given the qualification about
the data, the fixed input model is not concave in either input prices nor convex in
outputs and the log of the likelihood function is 1031.

Nonparametric Total Factor Productivity Measures

Cox znd Chavas (ERAE, 1990) showed that the existence of a solution to the
following T2 - T inequalities is necessary and sufficient for the data to be
consistent with profit maximization under the input and output additive
augmentation (translating) hypothesis:

@ PV -A-Y+Al - +B-%x-B]=0

where y, denotes output with associated price p,, X, denotes inputs with associated
prices r,, A, denote output augments (higher values of A denote higher productivity)
and B, denotes input augments (where B > 0 (B < 0) implies factor 4-aving {using)
input bias). Furthermore, if such a solution exists, then [y(A,x)/y(A,x)] can be
viewed as a productivity index measuring the shift in the production function
between time t.and fime 5. Since y(AX)/¥(AX) = 1 + {(A~A)ly, under the
translating hypothesis, it follows that [1 + (A,—A)/y] can be interpreted as a
productivity index for situation s measuring the impact of technical change on
production, using tas a reference point. Note, however, that this formulation holds
for a single output while these data were shown above fo be inconsistent with the
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existence -of such an output aggregator. This suggests that a multiple—~output
productivity index is likely to be more appropriate for these data.

‘We compuiied this output based TFP index as suggested by Cox and Chavas for
ian aggregate output and disaggregate input {AODI) specification and refer to it as
AODIWIOT {(input/output translating) O/P (i.e., an output versus input based
productivity measure) in the results that follow. Note however, that potential
aggregation bias may contaminate these productivity measures given the
nonparametric evidence @bove that these data are not consistent with the existence
of an output aggregator. We contrasted this index with the more traditional discrete
divisia TFP index suggested by Christensen and Jorgensen (CJ), which is the
method used by ABARE in the past. Caves, et.al. {1982a) have showed this index
1o be superiative and exact for constant returns 1o scale, translog transformation
functions with constant second .order ccoefficients {across time and/or across firms
To the extent that these maintained hypotheses are not supported by the data, the
CJ TFP index is likewise potentially biased.

Given the questionable a priori functional structure required to fully raticnalize the
AODI/IOT and 'CJ productivity indices, more -general, multiple output total factor
productivity measures are desirable. Caves, et.al. {1882b) succinctly summarize
the relationship between distance functions as developed by Shephard and
productivity indices. Afriat, Banker and Maindiratta, and :Chavas and Cox (1892)
show that these distance functions can be readily computed with standard
nonparametric techniques.

For the underlying technology implied by the production possibility set T, where
{y, -X) € T (and the set T is non-empty, closed, convex and negative monotonic),
Shephard {(p. 64-78) defines the input distance function as:

(3  Dyly,x) =sup{s: {y, x8) €T}

The input distance function yields the input requirement set IR(y) = {x: Dy, X) =
1} as well as the frontier isoquant of a production set 1S{y) = {x: D¢y, X) = 1)}
{Shephard, p. 67). Hence, the input distance function completely characterizes the
technology T and measures the proportional {or radial) reduction in all inputs x that
wouild bring the firm to the frontier isoquant 1S(y).

Similarly, the output distance function is defined by Shephard {p. 206-212) as:
{4) Frly, %) = inf{5: (y/5, -x) € T}

The output distance function yields the production correspondence PC(x) = {y:
F{ly, X) = 1} and the frontier correspondence FC(x) = {y: F{y, X) = 1} (Shephard,
. 208). Hence, as with the input distance function, the output distance function
provides @ complete characterization :of the underlying technology where 1/F:(y, X)
measures the proportional rescaling of all outputs, y, that would bring the firm to
the frontier production correspondence FC(x).
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Caves et al. (1982b) propose the input based productivity index:

which measures the radial inflation factor for all inputs such that the inflated inputs
{IP x) = x/Dy{y, x) lie on the frontier isoquant 1R;(y) generated by technology T
{(Caves et al,, p. 1407). in this context, a firm choosing (v, %) has a higher (lower)
pproductivity thar the reference technology Tif IP > 1 {< 1), Caves et al. (1882b)
;also propose the output based productivity index:

{6) OP = Fr{y,x)

which measures the radial deflation factor for all outputs by which the deflated
ouitputs (y/OP) = y/F:(y, X) lie on the frontier correspondence FCx) generated by
technology T (Caves et al., p. 1402). Thus, afirm choosing {y, X) has a higher
{lower) productivity than the reference technology T if OP > 1 {< 1).

Under .constant returns 1o scale, the input and output distance functions are
reciprocal to each other (Shephard, p. 207-208). Hence, the input based and
output based productivity measures in (5) and (6), respectively, will be jidentical
under constant returns to scale (Caves, et.al., p. 1408). Therefore, empiriral
evidence that these measures are differen: indicates the existence cf varizole
wversus :iconstant returns to scale.

Following Banker and Maindiratta, Chavas :and ‘Cox (1992) show that the dual input
distance function D,(y, x) in (3) can be obtained from the solution of the linear
programming problem:

() 1/Dyly; x) = mings: piy; - X3 < Py, - 1%, 1 € E].

Similarly, the dual output distance function Fg(y, X) in {(4) can be cobtained from the
solution ‘of the linear programming problem:

(®) UF Ly, ) = maxj[s: p/yS - ¥ =y, - 1, 1 € El.

The dual nonparametric resuits from (7) and (8) can be wsed to obtain the input
‘based, radial productivity measures IP = 1/D(y, X) as well as the output based,
radial productivity measures OP = F{y, X). We computed these input and output
ibased iproductivity measures for both the AODI as well as disaggregate
output/disaggregate input (DODI) specifications. This allowed ws 1o evaluate the
likely magnitude of the :aggregation (bias induced by incorrectly assuming the
existence of :an output aggregator (as in the AODI/IOT index). As well, comparison
«of the input and output productivity measures allowed us to evaluate the existence
of constant returns o scale.

Table 4 and Figures 1-4 summarize these alternative TFP measures for the data
from the survey «of Australian broadacre agriculture, 1853-88. Figure 1 compares
the Chavas and (Cox (1992) input and output hased, dual nonparametric
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iproductivity :measures for both the ACDI and [DCGD! specifications. The AOD! input
and output measures are ihigher than the corresponding DODI imeasures. This
difference ibetween the AODI and DODImeasures dive :some findication :of ;potential
;aggregation ibias attributable ito incorrectly 2ssuming the «existence ©of an output
:agaregator. iinthis case, the :assumption of AODI overestimates the jproductivity
growth iin Australian agriculture relative ‘to DODI.

The divergence ibetween the input and output based imeasures in Figure 1, holding
the ilevel «of aggregation «constant, provides nonparametric ;evidence :of non-
constant returns 1o :scale in Australian agriculture over the period analyzed. This
also implies that the imore #raditional (C&J TFP index, which is &n exact index wnder
the [CRT'S assumptions inoted :above, may ibe ibiased as well. Figures 2:and 3 llend
further support to these dnferences.

{Figure :2 compares the alternative, nonparametric :output ibased jproductivity
measures with the (C&J TFP. Note that the (C&J and IOT/AODI measures @are quite
similar wp through 1974, then diverge ‘Similarly, ithe CC/AGDI and CC/DODI
measures are quite similar wp through mid- 1o flate 1960!s. Both of these «distance
function based measures suggest the (C&4J :and IOT/AOD! measures are overstated
wp through the «2arly to mid-1970's. After this jperiod, ithe alternative
nonparametric, 2ggregate :output based measures (IOT/AQD! and CC/AQDI) are
roughly jparallel and :suggest that the (C8J TFP is overstated. incontrast, the
CC/DOD! output measure :suggests that both of these aggregate output ibased as
wall ;as the C&J measures are iikely overstated :due #o iincorrect functional » “ructure
;assumptions. iFigure 3 reveals & similar story with respect o the monparamedic,
input based versus the (C&J TFP measures. The CC/ADDI is consistently thigher
than the {CC/DOD! index {except in 1958 and 1972), again :suggesting jpotential
aggregation ibias due to incorrect assumption «of aggregate output. in contrast, the
CC/DODI and ‘C&J measures are quite similar from 1874~ 1988.

/Atdtis ipoint the we 'have several alternative TFP measures to choose from. in
'some rrespects, the nonparametric indices based on the IDODI specification are the
least restrictive, hence most supported by these data. But, as the previous
discussion suggests, different conclusions arise from wise «of the iinput wersus output
thased ;measures under variable returns o :scale. {One solution s o wse geometric
:means of the input and output measures togenerate a ‘composite”. Table 4
scompares these composite measures for the (CC/AODI and {CC/DODI indexes (they
are re-normalized to 100 in the base year, 1953), the IOT/AODI and the C&J TFP
measures.

iNote that the composite CC/AGDI and (C84 measures in Figure 4 are quite similar
over imost of the period anal~ed. Previous rrestilts/discussion suggests tiat these
measures are llikely ovarstated diie 1o the incorrect assumptions of CRTS (C&Jd) or
output :;aggregation (CC/ADDY). The 10T/AODI and composite CC/DODI measures
iin ffigure 44 are @lso wery similar over the jperiod analyzed. Aside from the different
@ggregation assumptions of these two imeasures, they are slightly different
renresentations of technical change. On the one ikand, the CCindexisa
scomposite radial measure {(i:e., aproportional rescaling «of inpuits or outputs)
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derived from the underlying distance functions. In contrast the IOT index is more
of a mixed specification allowing for the rescaling a single output (in a sense a
radial measure) and non-radial input bias measures (the Bt of equation {2)). This
latter specification allows for differential versus proportional rates of technical
change (bias) in each input. Further work on the differences and relative
benefits/costs of these alternative productivity measures is clearly warranted.

Average annual rates of productivity growth from each of these measures, noted at
the bottom of Table 4, were estimated by dividing the change in each index from
1953 until 1988 by the number years, 36. They varied from 1.4 percent for the
CC/DODI autput based measure to 4.3 percent for the CC/AOD! input based
measure. The average rate of growth from the C&J measure, the approach used
by ABARE, was 3.5 percent.

Conclusions

Parametric and non-parametric methodologies have been applied to data from the
ABARE survey of breadacre agriculture in Australia for the period 1953-88 to
examine the extent and nature of productivity growth.

The ABARE data set consisted of price and quantity indices for four outputs and
eight inputs. Nonparametric separability tests suggested that only the aggregation
of the contracts, services and materials inputs was consistent with profit
maximisation. In particular the data do not seem to support the aggregation of all
outputs, which has been a coramon practice.

Our parametric approach to analysing productivity growth using a translog cost
function has not been wholly successful to date. None of the models estimated so
far fully comply with properties expscted of a well behaved cost function.
Nevertheless the econometric approach used here has provided an estimate of the
average rate of cost reduction in agriculture of about 1.7 percent which is lower
than past estimates of the rate of productivity growth from index number
approaches which have bsen about 2.7 percent (Beck et. al. p.8).

Perhaps stronger evidence for this finding comes from the nonparametric analysis
of productivity growth, which suggested a rate of growth of about 2.3 percent. To
the extent that one accepts the appropriateness of radial productivity measures and
the nonparametric functional structure tests employed in these results, the
CC/DODI measures suggest previous TFP measurement for Australian agriculture
are likely to be overstated due to the imposition of CRTS and aggregation
structures not supported by the data.

Areas for further research include investigating the properties of alternative
nonparametric productivity measures; estimating the use value of assets and the
problem of negative profits; and the appropriate way of modelling the impact of
weather. It is also our intention to attempt to isolate the contribution of R&D to
productivity growth when data on R&D expenditure in agriculture are finally
assembled.



14

“Table 1: Four 'Six Input Cost Functions T 1
Weather No Weather
Coefficient t - stat Coeff. t - stat
a, 10.686 730.06 10.683 657.27
a, 0.238 50.31 0.240
i, a, 0.261 52.11 0.262
fa, 0.138 17.70 0.122
a, 0.028 17.51 0.031
as 0.110 20,69 0.110
a, 0.224 42.38 0.234
Yor 0.098 316 0.106
. 0,082 —3.98 ~0.087
f v 0.014 2.20 0.386E02
LK -0.029 -5.02 | -0.025
{ E -0.570E02 -1.01 ~0.849E02
v 0.484E02 0.35 0.011
Yoz 0.168 6.82 0.174
Yos -0.055 -8.36 -0.055
You 0.151E02 0.27 |  -0.202E02
1 as -0.038 -6.62 -0.032
Yoo 0.443E02 0.29 0.177E02
Yo 0.054 6.99 0.079
Yos ~0.825E02 -3.83 -0.013
Yos ~0.345E02 -0.87 0.303E02
Yas ~0.150E02 -0.23 -0.018
Yeu 0.015 5.79 0.016
Yes -0.104E02 -0.44 -0.202E02
[ Yas 0.022 4.87 0.027
Yes 0.069 19.42 0.066
Yoo -0.021 -4.59 -0.026
Yes -0.879E02 -0.54 0.445E02
B, 0.275 18.94 0.286
B, 0.314 25.96 0.303
B, 0.345 11.13 0.346
8. 0.023 20.26 0.023
B, 0.128 7.90 0.133
B,z -0.034 -2.64 ~0.050
B -0.088 -2.55 -0.094
IB. -0.406E02 -3.58 ~0.447E02
1B 0.419 14.29 0.426
Bas -0.655E02 -0.14 -0.023
B 0.013 3.84 0.014
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Weather No Weather
Coefficient t-stat Coeff.
0.265 2.07 0.311
-0.023 -4.48 -0.022
0.026 19.49 0.025
~0.010 -2.15 ~0.858E02
-0.449E03 -0.09 -0.8696E03
0.846E02 1.03 ~0.699E02
L -0.883E02 ~6.10 | -0.673E02
ps ‘ -0.030 -552 | -0.027
E Pro 0.041 8.22 0.051
Pay -0.027 186 | -0.027
Pz ~0.074 -4.94 -0.077
Do 0.172 14.84 0.977
Pas 0.505E02 1.29 0.662E02
0, -0.036 -5.48 -0.035
. ~5.040 306 | -0.044
. 0.106 5.43 0.102
E Paz 0.012 0.61 0.018
Pas -0.844E02 -0.36 | -0.030
'™ -0.478E02 -0.85 -0.191E02
Pas -0.076 -5.52 -0.076
Pas -0.030 -1.39 -0.012
Par 0.019 4,59 0.020
¥ Pec 0.165E02 0.41 0.481E03
i Py ~0.663E02 ~4.26 ~0.579E02
g Dea 0.274E02 214 0.287E02
Pas -0.473E02 -3.84 ~0.493E02
Pas -0.012 -3.19 ~0.012
9, -0.017 -10.31 -0.019
g, -0.141E02 -3.41
0, 0.203E03 0.68 0.494E03
[ -0.739E04 -2.59
6,, 0.982E05 _ 0.72 -
{ on 0.106E02 1.38 0.746E03
Ora ~0.175E02 -2.05 ~0.186E02
o -0.892E02 -8.18 ~0.596E02
o, 0.283E03 1.1 ~0.247E03
Tos 0.801E02 10.66 0.794E02
§ 6, 0.132E02 1.46 -0.622
1o -0.299E03 -4.05
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. ‘ Weather No Waeather
Coefficient t - stat Coeff.

-0.664E04 -0.85

0.150E03 0.91

~0.506E05 -0.18
~0.388E03 3.36 |

~0.168E03 —2.01

-0.280E02 -1.45 ~0.340E02
-0.010 548 |  -0.796E02
—0.830E02 -1.76 ~0.862E02
0.534E05 0.03 0.694E04
0.183E03 0.50 0.100E02
0.434E03 1.67 0.401E03
0.845E03 1.35 0.849E03
0.161E04 _ 0.89 -0.188E04
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¥ ‘Multiple Output Singie Output
| Cocfficient t - stat Cocff. ~ t - stat
‘ o, 10.700 780.00 10.700 642.0
; o, 0.021 718 0.018 ~6.79
I o "0.084 21.1 0.071 16.7
a, 0.127 335 0.141 312
i x, 0.268 558 0254 4232
\ O 0.135 173 0.119 143
i 0 0031 185 0,029 168
] o, 0111 213 0.130 26.2
| O 0.223 433 0239 40.4
] Y -0.018 =0.77 —0.278E02 014
Y2 -0.016 -1.01 -0.020 -1.24
: Y3 0.700E02 111 0.894E02 1.57
E e 0.012 116 0.356E02 0.39
Y15 0.013 5.15 0.182E02 0711
E Y16 -0.537E02 -1.54 0.315E02 107
i Y7 0.305E02 0.90 —0.538E02 -1.89
g Y18 0.383E02 0.76 0.011 2.
Yoz 0.199 9.70 0.122 491
Yo -0.666E02 -0.69 ~0.621E03 -0.045
You -0.112 -832 -0.990E02 045
Yas -0.036 935 -0.019 -3.23
i Yas -0.225 -0.48 0.779E02 135
i Yo7 -0.615E02 -143 -0.013 -231
i Y5 -0.021 229 -0.068 -5.66
i a3 0.010 0.76 0.062 3.10
Yot -0.024 —2.11 ~0.083 —4.81
Yas 0.044 845 0.040 5.39
f V2o -0.017_ 415 0022 -4.57
i Yo7 -0.823E03 -020 0.373E02 0.74
i Yo -0,012 113 ~0.852E02 -0.60
i Y 0.174 10.20 0.147 496
i Yas —0.053_ -8.84 -0.036_ —3.40
I Yes -0.805E02 -172 ~0.758E03 -0.12
Yar -0.034 —7.22 -0.033 -499
E Yoo 0.045 3.74 0.012 0.73
i Yss 0,049 6.03 0.063 4.40
i Yss -0.7“341502 -346 -0.933E02 -3.76
i Y7 -0.625E02 -157 ~0.238E02 ~0.52
1 Vsg ~0.332E02 -0,50 -0.038 -4.26
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§"Table 2: Multiple and Single Output Cost Functions
' Multiple Output Single Output
Coefficient t - stat Coeff. t - stat
Yes 0.013 492 0.023 ¥
Yer 0.670E03 0.29 -0.735E02 =2.79
Yes 0027 6.01 0.631E02
Yre 0.068 19.7 0.070 1838
Yrs -0.024 -539 -0.014 -2.98
Yes -0.015 092 0.098 ~
~ B, 0.281 20.7
B, 0.307 277
Bs 0327 11.0
Ba 0.023 19.1
Bs 0.184 1.40
B 0.133 9.20
Bu -0.039 -325
B -0.107 -3.19
[ ~0.398E02 334
Bz 0.394 15.20 :
E Bx —0.809E02 -0.19
Bas 0.012 3.60
{ B 0.268 2.16 .
f Bas -0.019 -3.73 |
i Ba 0.027 18.10 1
Bss 344 215 |
O 0.592E02 4.58 |
P2 0.515E02 0.00 ||
P ~0.022 —5.74
P 0.113E02 0.24 i
Pis 0.760E02 0.93 f
Pis ~0.845E02 -5.99 ||
P17 -0.027 —5.23 i
g Pis 0.043 8.88 i
] Pas o.m____Eoz 0.25 [
P 0.173E02 022 j
‘ P -0.049 ~4.23
: Pas ~0.056 356
i Pas 0.184 16.4
| Pas 0.798E02 210
i P -0.038 -6.19
: Pos ~0.051 ~4.16
! P 0.495E02 0.79
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' ~ Multiple Output Single Output )
! Coefficient t - stat Coeff. | t-sat §
P -0.010 -0.94 o
P ~0.067 4.07 | |
Pas 0.030 1.58 ' ||
Pas 0.014 0.57
Pss ~0.682E02 -1.21
P37 -0.079 597
Pas ~0.019 092
Pa —0.738E03 -0.46
Daz -0.441E02 -153
P 0.013 420
Pas 0.013 378
: Pas ~0.654E02 —4.01
Das 0.264E02 1.96
: Par -0.463E02 -3.65
Pas -0.012 -3.11
Psy 0.020
| Psa -0.592E02
' Ps3 ~0.018
Psa -0.113
E Pss 0.079
Pss ~0.012
Ps7 —0.071 =293 |
Pss 0.120 4.79 |
8, ~0.017 -10.70 0.012 1.61
E' 8, ~0.172E02 -4.35 0.148E02 2.54
g 0, 0.222E03 0.84 ~0.672E02 —4.48
{ 0,2 —0.598E04 =270 ~0.906E03 -525 |
0. 0.430E04 4.18 0.837E05 ¥
®n —0.630E03 -1.37 ~0.671E03 :
dra -0.492E03 ~082 0.136E02
O3 0.420E02 6.68 0.256E02
Oua ~0.325E02 —4.11 0.126E02
Oys —0.901E02 837 —0.456E02
. b16 ~0.380E04 -0.15 0.303E03
i 17 0.781E02 10.8 0.445E02
i b 0.140E02 1.61 ~0471E02
i dn ~0.385E04 ~194 0356504 |
i on 0.262E04 0.41 0.535E04 091 |
| > ~0.274E03 ~3.64 —0.297E03 -390 |
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Multiple Output Singie Output i
Cocfficient t - stat Coeff. t—stat |
e ~0.814E04 -1.05 0.932E04 091 |
] s 0.162E03 1.01 —0.114E03 068
f ', ~0.103E04 -038 0.501E06 002
: - 0.381E03 3.60 0.450E03 416
E [ -0.165E03 -198 —0.151E03 -134
| Wy —0.319E02 -1.88 (
, V2 —0.837E02 —5.08 z
! g3 —0.522E02 115 ~
( Vya ~0.832E05 -0.04 :
: Vs 0.151 315 §
Ya 0.190E03 053 |
ﬁ Y 0.432E03 1.82 1
Wa 0.798E03 1.35 1
I Yoy 0.162E04 0.87 j i
'l Wos 0.017 5.18
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TABLE 3: NUMBERING OF INPUTS AND QUTPUTS IN TABLES 1 & 2.

Numbering in Numbering in
Table 1 Table 2

Inputs

Contracts 1 1
Services 1 2
Materials 1 3
Labour 2 4
Livestock purchases 3 5
Livestock use 4 6
Land use 5 7
Plant, structures use 6 8
OQuiputs

Crop 1 1
Livestock 2 2
Wool 3 3
Others 4 4
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‘TABLE 4: NONPARAMETRIC TFP MEASUREMENT ((ASSUMING PROFIT MAXIMIZATION) FOR THE
195388 AGGREGATE AUSTRALIAN BROADACRE INDUSTRIES SURVEY DATA.

ADAI AODI AODI DODI A DODI "
YEAR fe'l 10T OP ___cCoP o CCIP___CC AODI _CCDODI
53 1000 1000 1000 e 1000 1000 1000 1000
54 980 9.4 887 872 966 960 927 917
55 290 1011 881 858 967 9538 925 909
56 1076 1071 996 972 1059 1039 1028 1006
57 1083 1074 1041 1009 143 122 1093 1067
s8 950 1038 B4S 849 1087 1092 973 9738
59 137 1173 901 889 178 1145 1049 10255
0 1150 170 ) 936 1252 1222 110 10838
6 1214 1215 971 937 1299 - 1228 147 1092
62 1242 1226 978 961 1310 1270 1156 126
6 1281 1255 1028 969 1384 1286 1217 1139
64 1328 1278 1083 1030 1466 1375 1289 1215
€ 1273 1281 107:6 1005 1440 - 1329 1271 178
6 1079 144 1050 997 1402 1322 1238 171
67 1346 1332 133 107.0 1531 1442 1347 1270
68 1197 1246 1090 996 1447 1343 1281 1182
6 1517 1501 1366 1241 1848 1705 1625 1491
7 1453 1452 1304 1181 1756 1616 1547 1415
7 1503 1448 1342 1187 1817 1630 1597 1426
£ 1285 1304 1135 1234 1504 1693 1332 1483
7 1483 1433 1307 1046 1757 1409 1548 1241
7 1636 1551 1453 1198 19658 1636 1730 1434
7s 2060 1629 1781 1457 2530 2083 2188 1798
6 266 1660 1764 1443 283 2045 2154 1770
7 18456 1605 1535 1245 2101 171 1840 1498
) 1865 1732 1581 1289 2153 1774 1889 1549
) 2174 1847 1839 1503 2536 2094 215 1823
80 2082 1832 1776 1485 2429 2057 21238 1794
81 1758 1603 1492 1224 2013 1667 1772 1462
8 2007 1795 1m3 1425 2334 1965 2047 M6
8 1701 1569 1408 1185 1879 1599 1660 1407
8 2322 1941 1967 1658 ma2 2317 2369 2014
85 2415 1966 1996 167.4 2748 2337 2402 2033
6 2379 1984 2032 1698 2817 2385 2456 2070
87 2434 2040 2048 1Mz 2826 2396 2468 2082
88 2265 1847 1840 1492 2530 2073 212 1806
Av, 35 24 23 14 43 30 34 22

TRERES TEGENTD:
Cl: {Christensen and Jorgenson TFP Index.

JOT:  «Cox/Chavas (ERAE, 1991) TFP Index (assuming input and .output translating).
o Chavas/ :Cox Dudl, Radidl Nonparametric TFP Index.

AODIL:  Apgregate ‘Output, '8 Disaggregate Inputs
DODEL 4 Disaggrrgate Outputs, ‘8 Disapgregate Inputs
PRODUCTIVITY INDEX TEGEND;

OP: Output Based Productivity Measure.

TP Input Based Productivity Measure.
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PRODUCTIVITY INDEXES (1953 = 100
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