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The Effect of Rounding on the Probability
Distribution of Regrading in the U.S. 
Peanut Industry

Edgar F. Pebe Diaz, B. Wade Brorsen, Kim B. Anderson,
Francisca G.-C. Richter, and Phil Kenkel

This article determines the effect of rounding (pointing-off) of grade percentages
to the nearest whole number on the probability distribution of regrading in the
peanut industry. Results show that rounding causes graders to have to regrade an
extra 4% of samples even when they follow all directions and make no mistakes.
When rounding was not used, the sample weight had little effect on the probability
of regrading. With rounding, the probability of regrading was reduced by beginning
with a larger than 500-gram sample. Thus, rounding provides an incentive to take
overweight samples in order to avoid regrading. Overweight samples can over-
estimate the value of peanuts. A low-cost way to improve peanut grading accuracy
would be to round to tenths rather than whole numbers.

Key Words: grading, normal-jump distribution, peanuts, regrading, rounding

Under the U.S. peanut grading system, all loads of peanuts are officially inspected
and graded by the U.S. Department of Agriculture’s (USDA’s) Federal/State Inspec-
tion Service (FSIS). Producers or sellers take their loads to the buying points. Here,
peanut contract graders grade the loads. The FSIS employs approximately 2,000
graders at about 500 buying points across the producing areas to grade peanuts during
harvest from August to November (Dowell, Meyer, and Konstance, 1994).

Accurate pricing of peanuts depends on accurate grading. One possible source of
inaccuracy in peanut grading is the practice of some graders who have been
observed taking samples slightly greater than the prescribed 500g, presumably to
reduce chances of regrading (Anderson, 1998). Due to time constraints and pressure
during rush hours of the grading season, graders may use an overweight sample to
ensure the allowable tolerance is met if some of the sample weight is lost. For
example, if a 500g sample is required, graders may begin with a 501g sample. With
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overweight samples, graders tend to overestimate the grade factors measured, and
thus assign peanuts a higher price than is merited (Tsai et al., 1993; Whitaker, Dick-
ens, and Giesbretch, 1991; Whitaker et al., 1994).

Regardless of the actual sample weight, graders calculate grade percentages as if
the initial sample weight were exactly 500g and round off the percentages to the near-
est whole number, as required by the current grading procedure (USDA/FSIS, 1996).
Such severe rounding no longer seems necessary.

Although gains can be obtained by improving the grading procedure, there is no
published literature on the rounding of peanut grade factors. As shown by the results
of this analysis, rounding creates an incentive for graders to use overweight samples
in order to avoid regrading. The implications of this study may be useful for govern-
ment policy, when revising the USDA’s Farmers’ Stock Peanuts Inspection Instruc-
tions Handbook (USDA/FSIS, 1996), and for formal training programs for peanut
graders. To implement a change in policy, the benefits of a change must be demon-
strated. Toward that end, this analysis was undertaken at the request of people in the
peanut industry who disagree with the current rounding procedure.

The purpose of this study is to determine the effects of rounding on the probabil-
ity of regrading. A designed experiment is developed to generate data. Nonparametric
and parametric methods are then applied. The nonparametric approach uses the
empirical probability distribution function (pdf). Under the parametric approach, a
probability distribution function called the normal-jump distribution is used to model
weight discrepancy. The probability of regrading with and without rounding is then
obtained with Monte Carlo methods.

The Regrading of Peanuts

With the current peanut grading procedure, the measurement of grade factors begins
with a sample weight of 500g for truckloads of 10 tons or less. For single loads of
over 10 tons, a sample of 1,000g is used (Oklahoma FSIS, 1995). The grade factors
measured with the initial sample weight are sound mature kernels (SMK), sound
splits (SS), other kernels (OK), total damage (TD), and hulls (H).

Measuring grade factors involves randomness. When measured in tenths of grams,
regardless of the grader’s ability, there will be a discrepancy between the weight
before and after grading. This discrepancy is defined by the difference between the
initial sample weight and the total weight of graded material.

The weight discrepancy found after grading comes from the sample weight lost
as dust and kernels during the analysis, and infrequent human errors. The weight lost
is mostly dust or dirt created when the sample is shelled. Also, small pods or kernels
can fall through the sheller grate or get stuck in the grading screen. Under time pres-
sure, graders may neglect to clean the pan containing kernels from a previous analysis,
or might accidentally drop some kernels into the pan when grading. These kernels
will show up in the next sample graded. Hence, graders sometimes have total kernels
and hulls greater than the initial sample weight. Human or mental errors include
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errors in recording weights, calculating the percentages, and transcribing the results
(Powell, Sheppard, and Dowell, 1994). Usually graders do not lose pods and kernels
or make errors, but when they do, the errors may be large.

To check the accuracy of the grade factors measured, graders first round the per-
centages in each of the five categories to the nearest whole number. If the sum of
these percentages is less than 99% or greater than 101%, peanuts must be regraded.
Paradoxically, rounding alone can be responsible for the necessity to regrade—even
when the grader has made no errors.

Theory and Models

Let S be the sample weight and Gi the real weight of the ith grade factor, i = 1, ..., 5,
such that The measurements used to determine if the sample must be re-S ' Σ5

i'1 Gi.
graded include the following five steps:

P STEP 1: Weighing each grade factor. Each of the grade factors is weighed, so
(i = 1, ..., 5). Here, wi is the weight difference due to dust and kernels,G̃i ' Gi % wi

as well as infrequent human errors. is the measured weight for the ith gradeG̃i

factor. Units are grams.

P STEP 2: Taking percentages. Regardless of the sample weight, graders take per-
centages of grade factors with respect to an initial sample of 500g as follows:
PG̃i ' G̃i × (100/500) ' G̃i /5.

P STEP 3: Rounding percentages to the closest whole number. Rounding implies
adding a value, say ui, between !0.5 and 0.5 to each grade percentage, such that
the sum is the integer closest to the percentage obtained at Step 2. We obtain:
G̃i /5 % ui.

P STEP 4: Adding all rounded grade percentages. The rounded grade percentages
are summed by:

(1) T ' j
5

i'1
(G̃i /5 % ui ) '

1
5 j

5

i'1
Gi %

1
5 j

5

i'1
wi % j

5

i'1
ui .

Since the sum of true grade factors is the true sample weight S, expression (1) can
be simplified as:

(2) T ' S/5 % w/5 % u,

where w is the sum of the weight discrepancies, and u is the sum of all rounding
errors.

P STEP 5: Deciding whether to regrade or not. If T falls outside the interval (99,
101), regrade the sample. Thus, the probability of regrading is the probability of
T falling outside of this interval.
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To model this procedure following expression (2), we need to fit a probability
distribution for T. The total weight discrepancy, w, is modeled as a normal-jump
random variable. Widrow, Kollár, and Liu (1996) show it is possible to model the
ui’s as independent uniform random variables, each with parameters !0.5 and 0.5.
Furthermore, Widrow, Kollár, and Liu demonstrate that under certain conditions, the
ui’s are independent of the nonrounded variables. Thus, total weight discrepancy w
is independent of the sum of the ui’s, and the total rounding error, u.

However, to confirm rounding does in fact increase the probability of regrading,
it is sufficient to recognize that the variable u, due to rounding, adds more variability
to T, or increases its variance. So the probability distribution of T will be heavier in
the tails than the distribution of T! u, and thus the probability of falling in the tails
will be higher for T than for T! u: P[99 # T # 101] < P[99 # T! u # 101]. Therefore,
rounding is shown to increase the probability of regrading.

Nevertheless, it is common knowledge that rounding introduces error in any type
of measurement. Our objective is to measure by how much the rounding procedure
increases the probability of regrading. For this purpose, we develop two models in
the following section.

Models

The problem is approached with two models. The first, based on expression (2), uses
an approximation to rounding, but requires only a few estimation procedures. We
call it the theoretical model. The second model relies on empirical models for each
grade factor, but does not approximate rounding. We designate it the empirical model.
Both models lead to similar results.

The Theoretical Model

Recall expression (2): T = S/5 + w/5 + u. Let us model T as a random variable con-
sisting of a constant (S/5), plus a sum of independent random variables. The weight
discrepancy percentage (w/5) is a normal-jump variable, and u is modeled as the sum
of five independent uniforms (!0.5, 0.5). This model produces an estimate, denoted
by which takes continuous values, while the true T is discrete. Therefore, the fol-T̃,
lowing equivalency holds:

(3) P̂(T ' a) ' P T̃ 0 [a & 0.5, a % 0.5) , a 0 Z.

Equation (3) states that for any integer a, the probability of T being a can be
estimated by the probability of being in an interval closed in a !0.5 and open inT̃
a + 0.5. Thus, the probability of regrading is estimated as follows:

(4) P̂(regrading) ' 1 & P̂ T ' [99, 101] ' 1 & P T̃ 0 [99 & 0.5, 101% 0.5)
' 1 & P 98.5 # T̃ < 101.5

' 1 & P 98.5 & S/5 # w/5 % u < 101.5 & S/5 .
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If parameters for the normal jump are estimated, we can calculate this probability
with a Monte Carlo integration. To estimate the probability of regrading without
rounding, omit u and proceed as before.

The Empirical Model

Recall the first part of expression (1): This is equivalent to:T ' Σ5
i'1 (G̃i /5 % ui).

(5) T ' j
5

i'1
round(G̃i /5) ' jNround(G̃ /5).

Therefore, T can be expressed as a function of the vector of the five grade factors ,G̃
where j is a column vector of ones. The probability of regrading can be written as:

(6) P̂(regrading) ' 1 & m I[99,101] jNround(G̃/5) f (G̃) dG̃,

where IA[a] is the indicator function. Equation (6) thus implies integrating the pdf
of  over the range where T is between 99 and 101. This is, in fact, the probabilityG̃
of not having to regrade. One minus this integral gives the probability of regrading.
To solve (6), the pdf of must be estimated. By the law of total probability, weG̃
have:

(7)  f (G̃) ' m f (G̃/S, W ) f (W; θ) dW.

So, if we can fit a conditional distribution for each percentage grade factor, given the
weight discrepancy, and if the distribution of total weight discrepancy is taken as
jump-normal, we can estimate the pdf of the vector of grade factors. By definition,
each grade factor is a function of the sample weight, and the weight discrepancy
(refer to Step 1 of the grading procedure). Therefore, the following set of equations
is estimated:

(8) G̃i ' g(S, W ), i ' 1, ..., 4;

G̃5 ' S & W & j
4

i'1
G̃i .

These equations estimate the mean and variance of given W. Assuming the vectorG̃
is normally distributed, we can obtain its estimated density function, replace in (7)
to obtain the unconditional density function of and finally replace in (6) to esti-G̃,
mate the probability of regrading.

Data and Methods

The Data

Because of the lack of data on initial sample weights, and consequently on weight
discrepancy, there was a need to develop a designed experiment. Grade factors were



108   Spring 2002 Journal of Agribusiness

1  The simulated conditions were such that the graders likely made more errors than usual. Since this is only one
team of graders, the estimates of the probability of a human error cannot be extrapolated to the population of all grad-
ers. But the results are sufficient to support the use of the normal-jump distribution and to demonstrate that rounding
increases the probability of regrading.

2  An unshelled peanut with only one kernel will weigh about one gram. It is impractical to obtain weights exact
to one-tenth of a gram. Therefore, actual weights varied slightly from the target sample sizes.

measured by a team of three professional graders and two aides. They were asked
to complete the measurements quickly to simulate conditions during the peak of the
grading season.1 

The experiment used eighty-three 2,100g samples of peanuts. Twenty-five samples
were runner-type peanuts and 58 samples were Spanish-type peanuts. The samples
included a range of quality and cleanliness characteristics. A peanut divider was used
to separate the 2,100g sample into four approximately equal subsamples. The four
subsamples were then used to create samples of 500, 501.4, 503.7, and 505 grams
in order to have four different sizes2 from the same sample. All grade factors were
calculated in grams and percentages with and without rounding.

Estimation of the Grade Factor Equations

For the empirical method, it was necessary to estimate the grade factor equations.
These were estimated using random-effects models (fixed-effects models yield very
similar results):

(9) G̃ijk ' β0 % β1Sjk % β2Wjk % υij % νijk , i ' 1, ..., 4,

where is the weight of the ith factor in grams measured from the jth truckloadG̃ijk

and kth subsample size, Sjk is the initial sample weight in grams, Wjk is the weight
discrepancy in grams, υij is the random component due to truckload or across truck-
loads, and νijk is the error term due to within-truckload variation. A random-effects
model was chosen over a fixed-effects model since our data represent only a sample
of truckloads from the population. We are more interested in accounting for the vari-
ation due to truckloads than in the particular effects of each truckload in our sample.
Parameters in equation (9) were estimated with PROC MIXED in SAS (SAS Institute,
Inc., 1994).

The Normal-Jump Distribution to Model Weight Discrepancy

Weight discrepancy (w) is assumed to combine two sources of errors. One source is
associated with the weight lost as dust and kernels during grading, and the other is
attributable to infrequent human errors. Given these specific characteristics, a prob-
ability distribution we denote the “normal-jump distribution” was used to model the
distribution of weight discrepancy. This distribution is a modification of the mixed
diffusion-jump process used in earlier studies to model asset prices (Steigert and
Brorsen, 1996) and exchange rate movements (Akgiray and Booth, 1986, 1988;
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Oldfield, Rogalski, and Jarrow, 1977; Tucker and Pond, 1988). The two major differ-
ences reflected in the normal-jump distribution model are: (a) a normal distribution
is used rather than a lognormal, and (b) this model calls for a single random variable
rather than a continuous-time diffusion process.

The normal-jump distribution combines a normally distributed process and a jump
process. We assume the process associated with weight lost as dust and kernels fol-
lows a normal distribution with mean α and variance σN

2 . The magnitude of infrequent
human errors is also normal, but errors occur in a discrete manner, and so are modeled
as a Poisson process.

Thus, the size of the jump or error is normally distributed with mean µ and vari-
ance σJ

2 , while the jump intensity or rate of occurrence is λ $ 0. The jump process
is assumed to be independent of the normal process. The distribution is skewed if µ
is not zero and the direction of skewness is the same as the sign of µ. The distribution
is leptokurtic since λ is greater than zero.

Total weight discrepancy w is therefore represented with the random variable W,
whose normal-jump pdf is given by:

(10) f (W; θ) ' j
4

n'0

exp(&λ)
n!

λn exp & W & (α % nµ) 2/2 σ2
N % nσ2

J

2π σ2
N % nσ2

J

,

where θ is the vector of five parameters of the normal-jump distribution. The terms
in the summation tend to zero as n increases. For estimation purposes, the sum is cal-
culated up to n = 7 (larger values of n caused an underflow). Integration of f (W; θ)
to one was verified using the MAPLE 5.3 mathematical program (Char et al., 1993).
The function f (W; θ) is nonnegative since each of the terms is nonnegative. Therefore,
f (W; θ) is a valid pdf.

The parameters for the distribution of w were estimated maximizing the following
log-likelihood function, derived from equation (10), with respect to the five param-
eters (α, σN

2, λ, µ, and σJ
2 ):

(11)     Ln(Ω) ' j
n

t'1
ln j

4

n'0

1

2π σ2
N % nσ2

J

exp(&λ)
n!

λn

× exp &
wk & (α % nµ) 2

2 σ2
N % nσ2

J

.

The estimation of this nonlinear model requires a numerical optimization algorithm.
The parameters are estimated using the NL command and the LOGDEN option in
SHAZAM (White, 1993). The numerical Hessian matrix is computed using the
NUMCOV option to calculate standard errors.

Likelihood odds ratios were used to compare the fit of the proposed normal-jump
distribution versus normal and Student-t distributions. Likelihood-ratio tests compare
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Table 1.  Descriptive Statistics of Four Pricing Methods Using Paired Differ-
ences on Peanut Producer Prices
Description Mean Std. Dev. Minimum Maximum

500g Sample:
  Prices with Rounding 601.43 20.83 547.42 671.12
  Prices with No Rounding 601.17 20.29 550.07 665.36
  Paired Differences a 0.25   3.30 !6.44 7.98
  Mean Squared Error 10.94 13.00 0.00 63.70
  Number of Observations = 314
Actual Sample:
  Prices with Rounding 598.81 20.74 547.42 663.34
  Prices with No Rounding 598.46 20.24 546.57 660.54
  Paired Differences b 0.36   3.35 !7.03 8.31
  Mean Squared Error 11.34 13.18 0.00 69.04
  Number of Observations = 296

Notes: All prices related to observations requiring regrading have been excluded. Variability of prices is defined
as the standard deviation of the paired differences. Producer prices are expressed in dollars. Total number of obser-
vations is 332.
a The observed value of the t-statistic is 1.34, which is less than 1.96 (the critical value for the two-tailed test of
the t-statistics with 313 degrees of freedom and a 5% significance level). Thus, we failed to reject the null hypoth-
esis of average producer prices being the same under these two pricing methods.
b The observed value of the t-statistic is 1.85.

the likelihood of the data being generated from each distribution. For a description
of this test, see Greene (1997). To determine if the normal-jump distribution gives
a better fit than a pure normal process, we test that weight discrepancy is normally
distributed, and therefore there is no jump process. From equation (10), the null
hypothesis of a normal distribution is written as H0: µ = σJ

2  = λ = 0.

Nonparametric Estimation of the Probability of Regrading

The probability of regrading was also estimated using a nonparametric approach.
Under the nonparametric method, the probability of regrading with and without
rounding was estimated using the empirical pdf. That is, the probability of regrading
is calculated by dividing the observed number of times the sum of kernels and hulls
falls outside the 99S101% interval by the total number of observations in each size.
The nonparametric approach is unbiased, but has a higher variance than a correctly
specified parametric approach.

Empirical Results

Table 1 presents descriptive statistics of four pricing methods using paired differ-
ences on peanut producer prices. As seen from table 1, rounding introduces noise
into the measurement of producer prices. The standard deviation of the difference
in producer prices with and without rounding when dividing by 500g was $3.30/ton.
When dividing by the actual sample weight, it was $3.35/ton.
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Table 2.  Parameter Estimates of the Grade Factor Linear Equations with
Random Effects Models

Grade Factor / Parameter Estimate  Std. Error t-Ratio 

Sound Mature Kernels (SMK):
   Intercept !119.4897 76.77 !1.56
   Sample Weight 0.8751 0.15 5.72
   Weight Discrepancy !0.7296 0.33 !2.21
   Between-Groups Variance 286.3887
   Within-Groups Variance 26.0712
Sound Splits (SS):
   Intercept 90.5113 57.73 1.57
   Sample Weight !0.1222 0.12 !1.06
   Weight Discrepancy !0.0961 0.25 !0.39
   Between-Groups Variance 272.7718
   Within-Groups Variance 14.7302
Other Kernels (OK):
   Intercept 25.7835 42.97 0.60
   Sample Weight !0.0035 0.09 !0.04
   Weight Discrepancy !0.0670 0.18 !0.37
   Between-Groups Variance 54.8105
   Within-Groups Variance 8.1760
Total Damage (TD):
   Intercept 17.5863 14.68 1.20
   Sample Weight !0.0308 0.03 !1.05
   Weight Discrepancy !0.0464 0.06 !0.78
   Between-Groups Variance 1.3978
   Within-Groups Variance 0.9597
Hulls (H):
   Intercept !14.0701 26.74 !0.53
   Sample Weight 0.2807 0.05 5.27
   Weight Discrepancy !0.0580 0.12 !0.50
   Between-Groups Variance 94.5386
   Within-Groups Variance 3.1567

Note: Expected grade factors are expressed in grams and have been calculated with no rounding since weight dis-
crepancy is a continuous variable.

Table 2 reports the estimated parameters for the grade factor equations required
for the empirical model. Note that the effect of sample weight on grade factors was
only significant for sound mature kernels (SMK) and hulls (H). With little variation
of the sample weight variable in the data, insignificance is expected. Weight discrep-
ancy was found to negatively influence SMK. This finding implies most of the large
errors are in measuring SMK. Table 3 details the probability of regrading with and
without rounding using the empirical pdf. Rounding does tend to increase the prob-
ability of regrading as sample weights increase.

Values of the weight discrepancy ranged from !24.20 to 47.70g, with the mean
and the variance being 2.77 and 4.44g, respectively. From table 4, all five parameter
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Table 3.  Probability of Regrading Based on the Empirical pdf
Sample Weight

Method of Grade Factor Determination
Size A
(500g)

Size B
(501.4g)

Size C
(503.7g)

Size D
(505g)

Rounding / 500g Sample 0.0602 0.0241 0.0241 0.0723
No Rounding / 500g Sample 0.0482 0.0120 0.0361 0.0361
Rounding / Actual Sample 0.0602 0.0482 0.1084 0.1446
No Rounding / Actual Sample 0.0602 0.0241 0.0602 0.0723

Note: The probability of regrading is calculated by dividing the number of times the sum of total kernels and hulls
(grade factors measured) falls outside the 99S101% interval by the total number of observations in each size (83).
Note that with 100 observations and five regrades, the 95% confidence interval would be 0.0164S0.1129.

Table 4.  Parameter Estimates of the Normal-Jump Distribution of Weight
Discrepancy in Grams

Parameter Symbol  Estimate Std. Error t-Ratio 

Mean of the Normal Process α   2.2630  0.0582 38.8690
Variance of the Normal Process  σ2

N
  0.9390  0.0864 10.8640

Jump Intensity λ   0.0705  0.0188   3.7562
Mean of the Poisson Jump µ   5.9020  2.6662   2.2136
Variance of the Poisson Jump  σ2

J
145.3000  58.6860   2.4760

Notes: The log of the likelihood function is !578.0905. The number of observations is 332. No rounding of grade
percentages is done.

Table 5.  Probability of Regrading in the Peanut Industry
Initial

Sample Weight
(grams)

Probability of Regrading with Rounding Probability of
Regrading

without RoundingTheoretical Model Empirical Model

495 0.4900 0.5013 0.9786
496 0.3847 0.3893 0.8969
497 0.2868 0.2871 0.6193
498 0.2003 0.2136 0.2609
499 0.1422 0.1376 0.0857
500 0.0956 0.0946 0.0529
501 0.0691 0.0637 0.0499
502 0.0636 0.0524 0.0490
503 0.0653 0.0555 0.0483
504 0.0822 0.0628 0.0481
505 0.1132 0.0899 0.0563
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3  With nonnested models, the negative of the log-likelihood ratio is called a likelihood odds ratio. For the Student-t
and normal-jump models, the log-likelihood odds ratio is 1,119.70 ! 578.09 = 541.61. The interpretation is that the
normal-jump model is 541.61 times more likely to originate the sample data than the Student-t distribution. The likeli-
hood odds ratio is a selection criterion and not a formal nonnested test.

4  The percentages without rounding are calculated analytically. The percentages with rounding are calculated based
on the more conservative results from the empirical model. A contingency table produced from the Monte Carlo simu-
lations is used for this purpose.

estimates of the normal-jump distribution of weight discrepancy are statistically
significant. The process associated with the sample weight lost as dust and kernels
suggests graders making no errors average a loss of 2.26g of the sample. The 95%
confidence interval around these estimates (0.32 to 4.20g) falls within the allowable
tolerance (5g, or 1% of the sample weight). The probability of losing 5g when no
large error is made was only 0.0023. This result suggests the range of the allowable
tolerance is reasonable.

The estimates of the jump process imply there are about 7.05 large errors for every
100 samples, and the mean of this error is 5.90g. The probability of at least one large
error is 0.0657 as calculated using the Poisson probability mass function. Figure 1
shows the normal-jump distribution of weight discrepancy given an initial sample
weight of 500g.

The log-likelihood function values of the normal and Student-t distributions were
!916.30 and !1,119.70. For the nested test of a normal distribution, the χ2 test statis-
tic of 676.4 is considerably greater than the critical value of 7.81. So, the likelihood-
ratio test leads to the rejection of a normal distribution. The likelihood odds ratio3

strongly favors the normal-jump distribution over the Student-t distribution.
Based on both models, the probability of regrading was calculated with and with-

out rounding for a set of initial sample weights ranging from 495 to 505g. Both
models yield very similar results. These results are reported in table 5 and are plotted
in figure 2. Note, when rounding was not used, sample weights above 500g had little
effect on the probability of regrading. There is little incentive to take overweight
samples when rounding is not part of the grading procedure. With rounding, the
probability of regrading was greatly reduced when beginning with a 502g or 503g
sample. Thus, rounding does provide a strong incentive to use overweight samples.
This finding offers strong evidence that the policy of rounding alone increases costs
due to more frequent regrading, and reduces accuracy of grades and prices obtained
with the current grading procedure.

With a 500g sample and no rounding, more than 99% of the samples which are
regraded are identified as instances where the grader made a mistake. With rounding,
less than 47% of the regraded samples are a consequence of grader error.4 Without
rounding, 80% of the samples on which a human error occurs are regraded, but the
corresponding amount with rounding is only 63%. Therefore, regrading the wrong
samples is another source of error created by rounding.

The savings from reduced regrading are modest, but they likely are enough to pay
for the cost of making a change. Assuming peanut trailers average 5 tons, the 1.6
million tons produced in the United States (USDA, 2000) would provide 320,000
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 Figure 1. The normal-jump distribution of weight discrepancy in
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samples to be graded. If all samples were 500g, the decrease in the probability of re-
grading would be 0.0417, and so there would be 13,344 fewer regrades. At $9/grade
(the rate paid to private graders), this would mean reduced costs of around $120,000/
year. At a 5% discount rate, the present value of an income stream of $120,000/year
would be more than $2 million. Such cost savings would not be fully observed because
some graders now begin with samples greater than 500g.

The incentive to take overweight samples may be the greatest concern. Biases
created by taking overweight samples will not be reduced by aggregation. Graders
in some grading stations never use overweight samples, so the practice of taking
overweight samples moves the grading procedure away from its standards and
increases the variability in grading among different buying points. This creates an
inequity for producers and increases the buyer’s risk.

Conclusions

The proposed normal-jump distribution appears to be a good model for a process
composed of many small errors and occasional large errors. The current practice of
rounding of grade factors to the nearest whole number introduces noise, increases
costs due to more frequent regrading, causes the wrong samples to be regraded, and
provides a major incentive for graders to take overweight samples. A very low-cost
way to improve the peanut grading procedure would be to discontinue rounding.
Stopping the rounding of grade factors could pay for itself since it would reduce the
frequency of regrading. In this technology era of sophisticated computers and calcu-
lators, the practice of rounding to whole numbers is certainly no longer necessary.
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