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Models of production under uncertainty are central to ‘nodern economic theory. Besides
its obvious relevance to the theory of the firm facing upcertainty (Agnar Sandmo) and the
literature on price stabilization {David M.G. Newbery and Joseph Stiglitz), production under
uncertainty is also central to the incentives, comiracting, and principal-agent litératures .
Principal-agent models, in particular, are increasingiy Leing applied to problems In ail
areas of economics. An incompleic sarmpiing would include problems as diverse as insuranse
{Arthur Ravivl, auctien theory (Jeln Riley ond William Samuelson), the failure of labor
markets to clear (the efficiency-wage literature}, market regulation (Tracy Lewis and David
Sappington), and optimal risk sharing in the face of moral hazaerd (Mark Pauly; Dengt
Holinstrom).

While state-contingent comenodities, production, and markets play a central role in
generai-equilibrium uncertainy medels (Kerneth Arrow; Gerard Debreu; Roy Radner), the theswy
of production under unceriainty {Sandmo, Hayvie leland; Richard Hartman, Yasunort lstei;
Gershon Teder; and Newbery and Stiglitz) makes little use of these concepts. Broadly
speaking, producers are there vicwed as choosing an inpyl vector or scalar output prior o
the realization of a continuous random varistle {either a random price, a random demand, ¢ a2
random production input} to maxunize expected utility, The combination of the input vector
and the realization of the random variable uniquely determines the producer’s ex pasl return
Suppose, for example, the random variable 1epresents rainfall. Then for a given input
vector, the outpyt for each rainfall level is uniquely determined. Once producers sclect
their input bupdle, they have ne control over the output they recejve. If the random
variable only sssumes two values ("no rain” and "rain”), the trans{ormation Yunction betweon
"no-rain” output and “rain” ouipat is neccssarily (explained below) of the fixed coefficient
form illustrated In Figure 1.

The problem of producticn under uncertainiy is, thereby, trivialized because producers

are assumed to be incapable of arraying their available resources to prepare for different
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This paper suggests an alternative approach to producer decisionmaking under uncertaimy
1hat is simultaneocusly more realistic, more gencral, and {perhaps most importsntly for
economists) more analytically tractable than the traditional approach. Moreover, the
approach s congruent with the modern axiomatic approach to nonstochastic production analysis
{Rolf Fare; Ronald Shephard), the stase~contingent approach of Arrow and Debreu, and the
modern approach to decisions wndcr uncertainty, in which actions are represented as mapp'ngs
from a state space to a spece of oulcumes Thus, our approach offers a natural bridge
between these apparently related [but previously disparate) literatures

The central idea is that produccrs chivose not only an input vector bul » state-
contingent output vector 25 well. Tor any input burdle, a large set of state-contingem
output vectors may Le feasible. In the ranfall example, producers can allocate capital and
labor in a way which protects them apamnst low rainfoll. Alternatively, they may allocate
the same capital and labor endewment it a way which yiclds high returns when rainfall is
high, and low or negative returns when rainfs!l is low,

In what follows, we first develsp a notien of a state-contingent production technology.
The state-contingent technolegy is shown to gencralize all existing models of production
under both price and production unccrtainty. The technology is then used to analyze the
production decisions of a risk-averse producer under @ very general {i.e. more generel than
is usually considered) version of the expected utility model  The first step is the
development and characterization of an effuri-cost function having properties in state-
contingent revenues that are entirely analspous to properties usually possessed by multiple-
output cost functicns (e.g. nonnegative and jucreasing marginal cost). The effort-cost

function Is then uscd to characterize the production decisions of a risk=averse, cxpected-
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utility maximizing producer in terms of two expected-utility functions: One {the m-expected
utility function) maps probability space inte ex post returns, the other (the p-expected
utility function) maps state-contingent price schedules into ex post returns.

The effort-cost functicn i{s observaticnally eguivalent 1o 3 partial ordering that
evaluates uncertaln revenue alternatives exactly as a risk averter would., In the equal
probability case, this latter resuit impiies that the effort-cost function is ajways
observationally equivalent to an S-concave Tunction.

After characterizing the behavics of risk-averse producers, the power of our approach 1%

iHusirated by applyving it 1o the spec.ei case of 1he additively separable utility structure

studied extensively by David Newbery snd Josepl. Stigiitz. Our first result there cstablishes

a duality between the effori-cost function and +he n~-indirect expected utility function. The
remander of the illustration devclops comparative static results for the additively
= separable case that both gereral.ze ans extend existing results for this model. The final
soction conciudes by sunmar.zirg and $i50uSSing SOMC of the many possible future apphicaticns

of aur model 1o problems Involving decisicimaking under uncertainty: moral hazard, adverse

e

celection, tnsurance, futures markel analyses are but a few examples.

1. A State-Contingent Technology

‘
e The standard epproach to production unceriainty specifics a productlon function that
f cepencs upon physical inputs comunitied pricr to the resolution of uncertaiuty and a raundom

:

input that indexes the state of nature Ir that mocel, output price uncertainty is
ezuivalent to having the random input shift t'1e production function multiplicatively.

Letting X € R': denote the physical inp.its, 8 € R denote the random Input, and f : ﬁf" R

denote the production function, random cutput z(0) is then defined by
2(8) = 1x,8)
Qur approach follows Arrow and Debreu by dealing in state-contingent commogdities.

(There is no requirement, however, that 2 complete set of contingent markets exist.)

3
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Following Debreu, assume that "Nature" makes a choice from among & finite set of
alternatives. Each of these alternztives is called a “state” and is indexed by a finite sect
of the form 0 = {1.2,3.....,S}. S, thus, denotcs the number of different states of nature.
Once the index s given, all possible factors determining production conditions (weather,
ete.) are known.

(mxS}

Production relations are governed by a tcchnology set T & tv’e': x R defined by

T = { {x.7) : ¥ can produce 2, X € R':. z € Rmxs).

Here x is an input vector committed prier to the realization of the index of the state of
nature and z is & matrix of state-contingent cutputs with typical element 2 ; {izl,, .. an)
{j=i.....S) corresponding, ex ante, 1o the amount of the jth output that would be produced if
the jth state of nature occurs Multipic outputs arc explicitly allowed. Notice, however,
shat if m = 1 (a s:ngle output} the technology, ex ante, 1s formally identical to the
s+andard case of multiple-outp.at production under certainty where n inputs are used %o
produce S outputs. The only difference s that the outputs are now state-contingent. lhus,
ounly one output level actuaily cccurs ex post. In the more general case, for each state
there 1s a distinct outprt vecior with m scparate entries each corresponding to a distinct
output

In iine with the traditional approach, a!l inputs arc assumed to be chosen prior 1o
the resolution of uncertainty. However, it is casy to gencralize T to cover the more
renlistic case of sequential resolution of uncertainty by redefining z to include negative
entries corresponding to inputs committed after the rasolution of uncertainty. Sinularly, it
is also possible to extend T 1o cover the case where some outputs are produced under
conditions of certainty by redefining x to inciude ncgative entries corresponding to outpans
produced under certainty.

To relate T to the more traditional approach, coasider the output correspondence Z: ®' o

R™ that maps an Input bundle into subscts Z(x) € R'™S of state-contingent outputs:

q

24
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Zix) = { 2z : (x,2) € T},

In words, 2(x}, the state-contingent output set, represents all feasible combinations of
state-contingent outputs for input committal, x. Z(x) is easicst visualized by considering
the traditional case of a scalar output generated by the production function f(x, 8) when @
can only assumc two discrcte values (I and 2). Then,

Zix})={ 2z e Rf : Tx,1) & z, and fix,2) = zz).

Z(x). in this case, is depicted graphically by 1he shiaded area in Figure 1. The outer
boundary of Z(x), formally the cfficient subset of Z(x), might be heuristically thought of as
the transformation function between siate-1 and state-2 contingent outputs. The state-
contingent output sct in Figure | corresponds to what would be derived from a fixed-
coefficient transformation function {c.g. Robert Chambers, p. 2661}

In the traditional model, only thec vertex of Zix) in Figure 1 can ever be observed. This
liappens because the standard medel explicitiy forces the Inequalities in the definition of
Z(x) 10 be equalities. Once inputs are chosen the range of outputs available effectively
degenerates 10 a single point in R'?xs. Even if i3 producer wished to operate at a paint
like A in Figure 1, it is precluded by assumption. This restriction, whick departs markedly
from most modern represcntations of technology, nccessarily circumscribes the analytical
results that emerge by imposing an overly narrow notion of technical ef ficiency.

The single~output, fixed-cocfficient naturc of this state-contingent output set
illustrates the principal shortcomings of the preduction function approach. once praducers
have seiected the inpnt bundle they have no conirol over the single ouiput they ultjmately
receive. After the input bundle is chosen there is no substitutability between state-
contingent outputs. This is entircly unrealistic in mos. cases tecause it implies producers
cannol organize their inputs in 2 manner thal prepares differentially for different
contingent outcomes, A more general and realistic approach allows producers this

flexibility. Pictorially, this Implies allowing the transformation function In Figure 1 to

5
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assume somcthing other than z . xed-coefTicient form, T affords this flexibility.
To develop analytical results, it {s coavenient 10 consider the natural inverse of Z{x)
-~ the input corresporidence V: 3""”(&-9 Ri‘ that maps the state-contingent output array into
subsets V(2) € R” of Inputs
Viz) = {x: {x, 2} € T}

V{z), the tnput set, gives the input ccmbinations that can produce the state-coptinpen:

output array 2. Returning to the production-function representation where 8 can oaly assume

two values then

Viz) = { % : fix.1) 2 z, and f{x.2) zz).
Thus, V{z} is the intersection of the upper contour scts {in x} of the production function
evaluated at 8 = | and 8 = 2.

Developing analytical results requires specifying properties of T (axioms). Qur axisms
are:

Properties of the Input Set {(V):

1. Vlz) is nonempty:

2. uv.(z’) + (- p) V(2% ¢ ‘\’{uz' « {1- 1)2°): and

3. forz' 2z Viz'}) & Vlz)

Property V.1 requires that z be producible. Property V. 2, implies that T §s a couvex
set (see Rolf Fire). In a static producticn mozc!, convexity cf T is equivalent to concavity
of the scalar production function in inputs. Concavity in inputs is typically imposed in the
standard model] of production uncertainty. Preperty V.3 requires the input set to exhibit
free disposability of output. In words, V.3 says that if an input bundle can be used to
produce z that same input bundle is capable cf preducing any smaller output array, there 18
no congestion among outputs. Pictoriaily V.3 allows for points like A in Figure L

Before proceeding. several comments should Le made aboul properties V. Perhaps most

obviously, V contains no analogue of positive marginal productivities of inputs. Although

6
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intuitive and universally imposed, such an assumption is unnecessary 1o what follows. Sccond,
all of the axioms are not necessary for all ¢f the results that follow. For example, the
main role of V.3 is 1o guarantee monotonicity (positive marginal costs) of the effori-cost
function developed below. While Intuitive, and graphically convenient, effort-cost
monotenicity (and hence V.3) is required only 10 provide a lower bound for the indirect
expeoted utility functions. V.2, on the other haid, is critical and represents a central
assumption in what follows.

Often it is desireable to work in terms of monuciary returns from the technology. All
existing models of producer decisionmaking under uncertainty can be represented by 8
canonical version of the current model expresscd in terms of state-coniingent revenues. Fe
the case of production unccrtainty only, this recqiires introducing a vecior p € R':" of output
prices and a fixed payment [cest, assct) @ € F. Because there exists no price uncertainty,
prices arc nes differentiated according Lo ihic state of nature that occurs. V{z) induces &
representation of the technclegy in terms of statco-centingent revenues. Formally,

VPy) = (% y =a+pz, (i =1..8) and (x,2) € T
Here 2, € R” is the i-state-ccatingent output vecior. The notation VP%(y) reminds the
rcader that this representation of the techrology is for fixed p and a.

In the case of purc price uncertainty (no procuction uncertainty), i.e. z € R, there

exists a complete set of state-contingent prices p € ._,(m':s A representation of the
technology in terms of state-contingent returrs is
VPiy) = ( x y=a<pzand (xzl €l x2 &,z € R'f‘).

Finally. in the case of joint production srd crutvract unccerlaimyz there exists a set of
state-contingent fixed payments {assets, cns‘.-;. a € 335’ ard a sct of state-contingent output
prices p € G’f‘fs. A representation of the technelsgy in terms of state-contingent revenues is
given by

VP (y) = (x: Y, =23 *+pz, and (x,z) e Th

7
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In an abuse of terminology and notation, the same notation is used for each of the three
different types of uncertrainty, and v"‘(y) is referred to as the input set. This is done for
two reasons: to reinforce the notion that V*%(y} is a canonical technology; and for given p
and a, VP*y) is easily shown to satisfy properties V when z's are replaced by y's. (A
demonstration of this fact is Jeft to the interested reader.)

3. Producer Preferences
The producer's Information and or beliefs about the relative likelihcod of Nature

_— : . . 3
picking @ particular state is summarized by m € 7 £ R where

3
<
T=dn.neR ax”.é}:n’: 1
i=3
No state occurs with zero probability. ‘The present paper only restricts {iself o
expected-utility maximization, although more gencral behavioral models can easily be
accomocdated  Produser prefsrences cver stale-sontingent returns and inpuis, therefore, are
- (mx5} n
=

capturcd by W 8 K *» R 4R

e -

s
Wiy, x} '=Zn‘w(y‘. X}
1=}
where the elementary {ex post) utility function w: R » B:’ 5 R satisfies
w{yi,xl = F(yi. glxi)
Here IR » d » R is continuous, stricily increasing and concave in ¥ and nonincreasing and
concave in g while g: R? - ti‘ is nondecreasing, conunyous, and convex. F satisfies the
von-Neumann-Morgenstern postulates. Speciai cases of F include the expected utility of net
return model
Fly. gix) = ?‘(yﬁ - glx))
with F strictly increasing and uirictly concave and the sepurable utility model
FI}", glx)) = u(yl) - glx)

with 1 strictly Increasing and concave.
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4. The Effort-Cost Function

The function g measures the producer's disutility of committing the input bundie X 1o

1he uncertain production process. Special cases of g(x) include

g{x) = Glwx)
with G: «R' - B‘ js strictly increasing and strictly convex and w € 'R’:’ a vector of input
prices  The effort-cost function, ¢: Rf 2 R, is defined by

cly) = Min {elx) : x € V(yl)

Result 1: The effort-cost function, ciy), satisfies:

1. clylzclyl 2 clos} for ¥ =¥

2. \pc(yii + 0 =wely) 2 c(;zyl + 00 - ) IR TIR G

3 for y restricted to the demain Ri. cly) is continuous.

The effort-cost function measures in utility units the cost G producing a given state-
contingent rcvenue vector. cly) lias essentially the same properties as are usually imposed
on multipie-output cost functions: Marginal cost for cach state-contingent revenue 15
nonncgative (property 1) and npndecreasing {property 7). Moreover, If glx) = wx, the effori-
cost Tunction has all the properties traditionally associated with cost functions
ihomogeneity and concavity in w and Shephiard's l.cmma) {Shephard; Rolf Farel.

The effort-cost function derived here is based on the canonical representatjon of the
1echmology, VOo(y). and thus holds for fixec p and 2 {suppressed notationally). Onc can alec
define an effort-cost function mapping the primitives, i.c., the state-contingent ouviputs,
into effort units. The properties of such an cffori-cost { unctjon, apart from its dema,
are identical to those in Result 1 after replacing y with z. (The derivation of these
properties is left to the reader tut the method of proof is virtually identical to the proef

of Result 1. An effort-cost function of this type is used in section 6.)

Although properties 1.1 - 1.3 are virtually jdentical to these of multiple-outpul cost

functions under certainty, they now have 2 somewhat differcnt economic meaning. Figure 2

9
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depicis the isocost contour:

HC) ={y eR:cly)=C}
for § = 2. By Result 11, I{C} is negatively sloped. Result 1.2 implies that UC) is
concave to the origin as drawn. For concretengss sake, take the two states of nature to Le
"s3in" {measured along the vertical axis) and “nc rain® {mecasured along the horizontal axish
The point {A) where a bisector culs J(Cla represents tle certamty oulcome {(same revenuc in
poth states) for that cost level. The slope of ch) at A measures the rate at which rain-
state revenuc must be sacrificed in order 1o compensute cxactly lin effori-cost units) for
increases In no-rain revenucs. As such, il represens @ local measure of tcchnologically
induced “risk” (or, altcrnatively, of thc cost of seif insuring). Suppose that toth staics
are equally probable. In Figurc 2, more than onc unit of rain-staie revenue must be
sucrificed to increase nmo-rain revenue by one unit along HC]}. Thus, movirg from the
certainty outcome at A to, say, point B implies Wiy.x) falls. At A the marginal wlititics of

i

both, the “rain” and "no Tein” reventes are egual bat moving to B jmplics rain reveauss T al

more than no-rain revenues rise. DBscause cogl is constani, moving from A 1v B always mean.

utility loss. Hence, no risk~averse individual weuld operate on I%(;C]A below the biseclor.

By the same reasoning, moving from B to A always implies a ptility gain. But A naolves
“complete self-insurance”. Thus, the curvaturc of UC) offers a natural measure of the
insurance premium associated with points A and B.

Figure 2 also illustrates another lmporiant fshorxcox:xi‘r%g’ of the stancard model of
production under upcertalnty. That js, unlike the present model, it does not recognize that
wlhether a particular state of nature would be ciaseed as either "‘gpt;d" or “bad" In some
gencric context generally depends on the 1echnology. Consider IXCZQ in Figure 2. As drawn,
2 slop~ of I(:t:z? at the bisector just reverses the situation at A. Now, no risk-averse
individual would operate on 1~[‘623 above the bisector. Put another way, whercas on JX%C’?. the

no-rain state is the one requiring inscrance, now the rajn state requires insurance. This

10
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might occur, for example, if the input bundic consistent with I(C,) was devoted mizinly toward
drought control. Only for very spccial functional! structures, for .example, c{y) homothetic,
will 1t be truc that the division between good and bad stutes is independent of the scale of
operation.

5. The m-Indirect Expected Utility Function

The producer chooscs & state-contingent Tevenue vector 1o sclve
s

Ulnd = Max { zm):r—‘a(yl. cly)i}.
1=1

30
U: U = R is the n~{ndlrect expected wtility fx:ﬁﬁon. The convexity of clyv) and the sirict

concavity of F guarantee an unigue seluticr.  Denote

yinl =& ',gm4ax ():u mﬂ}". iyl
i=

Our next result establishes the properucs of Lind and yin).
Result 2: UQn) and yla) satisfy:

1. Ulm = F(O,c a{ﬂosﬂ;

2. gUm') « 0 = ) Wn®) 2 Ulpn’ + L - mS) O <p <)

3. Uln) is continuous,
s

4, Ziu‘ - ﬁ:a,lﬁ(y,z(zu ), elyla’)) - Fly (n"), cwin®N] = 0; and
1=t

5 iy > yin) then cly) = ciylnl).

In the statement of the result a > b is 10 be read “a second-order stochastically

dominates b given "
Result 2.1 establishes a Jower bound for the w-indirect expected uility function.

Property 2.2 is that the m-indirect expected utinty function is convex in m. Convexity here

1
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is a well~known consequence of the producer's objective function being linear in the
probabilities (i.e., the expected utisity model). The economic implications of this result,
however, are somewhat different than usually derived from the convexity properties of other
indirect objective functions, Here convexity implies that the value of information is

positive  Suppose the producer can observe a signal which takes the value 0 with probability
u and ! with probability (1-u}. The producer’s subjective probabllity distribution, given

the observance of a signal of O {resp 1) is giver by w {resp. w’')., Without a signal, the
producer's subjective probebility distributinn is pn® + () - pin’. Resuit 2.2 implies that it

is atways benefictal to obscrve the signal

Result 2.3 says that Uln} has no breaks. Resuis 24 Implies thal changes in the
probabitity vector and changes in the clementary revenue uiility function, at the optimwum,
are positively “corrclated” Intuitively, therefore, ene expects an increasc in a particulay
state’s probability of occurrense to be associated with an increase in the utility maximizing
revenue for that state once cost lovels are compensated. It is misleading, however, to infer
from 2.4 that the m-indirect expected vtility funciion is increasing or nondecreasing in any
particular probability. The simplicial nature of 1l precludes any single probability from
changing in isolation.

Finsily. 2.5 shows that In a ncighborkeod of the cquilibrium, the effori-cost function
defings a partial ordering over uacertain revenue alternatives that is equivalent to what a
risk-averse individual would choose. To undersiand 2.5 note that if y e yim) but ely) <
clyln}), then a risk-averse producer shotld prefer y to yln) violating the definition of
vin). Moreover, in the equal probability case, e, n = 1#S (i =1,...,8), the following
coroliary fotlows immediateiy from property 5 in Result 2.

Corellary 2.1; 1If LA 148 U =1,..,5) then cly) & clyln} if y *m yin),

The notatiosn a "m b is to be read "a is majorized by b" or more simply "b ma jorizes

a*. Therefore, the Corollary implies that in a neighborhood of the cquilibrium, the effort-

12
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cost function is always consistent with Schur concavity {abbreviated as S-concavity) in the
equal probability case. (For the definition ansd discussion of majorization, S-concavily, and
related concepts, consult Albert Marshall and Ingram Olkin, notice, however that our notation
differs slightly from thelr notation.} Intuitively, for y to majorize y¥' means that both
these state contingent revenue vectors have the same mean but that y’ is "more evenly”
distributed than y. Op, more simply, y is rviskier than y’. If regions of cly)’s domain

exist for which 2§ is not satisfied, a» expected-utility maximizer will never produce in
thase regions.

6. The p~Indirect Expected Utility Function

As noted carlicr, just as one gan define an cffort-cost functlon in terms of revenue,
one can develop an effort-cost functicn in terme of the primitives, i.e. the state-contingent
outputs. Define thls effort-coss functicn by

Clz) = Min { gix) : x ¢ Vi2))

The reader can easily verify that Clz) satisfies properties 1.1 - 1.3 In Result 1 (apart
from tac obvious change in domain)  Frequently, one is Interested in determining how the
state-contingent vectors a and p affcct the allceation of state-contingent outputs by the
producer. The n-indirect expected utility furciion, which suppresses these vectors, is

inappropriate this case. This section develops a representation that can be used. To

conserve on notation and to cinphasize the role of p 2nd a, we revert to the equal-probabiiity

case.  And for simplicily we alse concentrate o the case of a scalar output {the results
easily extend to the case of vector outpuis)
=3 T PR3
. Sx2
Define the p-fndirect expectad utliily function U: R;"? -+ R by
s
Utp,a) = Max §) Fla, + pz,. Clzd)
1=
The strict concavity and monotonicity of F(3 and the cenvexity of Clz) insure that a unique

13
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global solution exists to this problem. Denote the optimizer

5
2{p,a) = argmay S“VIX F!a’ + P2, Clz)).
1=

Qur next resuit develops the propertics of Ulp,s) and z(p,a):

Result 3: Ulp,al and z(p.a) satisfy:
$
i Upa) 2 ST Fla, clo b
} 5

1 =]
2. Ulp,al is nondecreasing in a;
3. Ulp.a} is nondecreasing in p;
4. {1} Ulp,a) Is concave in a:
{ii} if F is joinuly concave in p and 2, Uip,a} is concave in p;

, 5 . . ,
S. for & restricied o R Ulp.al is cominuouns in a3

$ 5

6 Xﬂa; *Pzlp, 2t Tizptiathil ~ZFia.;?p;zJp".a"),C(z(p“.a")J}

123 i=l
s s
- Zﬂa: . p‘l’zl(p". a”), Ciz(p®,a®n) ~ZF[af + p‘:zlfp’. a’)),Clzip'.a' N & 0
1=] {4

T ifa+pz ndt peip,al then Clz) = Clz(p,al).

P'roperty 3.1 is the same result as 2.1 fcr this formulation. Propertics 3.2 and 3 13

show thal In any state of nature the producer always prefers elther a higher (nitial wealth

or a higher commodity price. Preoperties 3.4 1) and {ii) are easily interpreted in terms of
rardomization of payment schedules Suppuse that the states of Nature (i = 1,2, ..S)

artually refer to weather states If demmand csnditions for the commodity depend upon randosm
factors other than weather, returns from preducing a given level of output in siate | tnay

themselves be rondom. To illustrate, suppose that if state { occurs and the producer

14
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produces 2, the producer’s return Is ¥y = Pi4= a; with probability u and y;’ = ‘p:’zx + a:
with probability I - p. Result 3.4 (1) says that the producer always prefers to receive the
expected value of the downpaymnent pai + {1 - u)a‘: = 1,2...,8) for a glven pI to facing
the additional uncertalnty that the randomization of the downpayment Introduces. Property
3.4 ij) gives a sufficlent condition for the producer to prefer facing up; + {1 - n}p:’ {for
given '5‘1) rather than facing the additional ucertymty that weather-state coptlingent
randomlzation of the output price bLrings. (Randomization of rewsrns Is discussed further in
he next scctlon.) Property 3.5 is a smosthness condition. Property 3.6 is essentially the
sam.. as property 2.4 except sisted In terme of prices and initial wealths. Property 3.7 is
another manifestation of 2.5.

If Ulp,a) Is differentiable it also mamfests o geveralization of Hotelling's Lemma:

z(pa) = iém‘p,a)/ap])/16‘(1{‘;.1,::}/63‘I.

We now examine the meastoricity propertics of zip,a) in the state-coutinigent initial
wealth {fixed payment) and price vectors. In the abeunce of risk aversion, differences in
Initial wealth have no impact cn cutput allocation decisions. But differences in initial
wealth can affect output allocation decisiors {ur risk-averse producers, In the present

framework, thi. is particularly interesting Lecause it implics vhat changes in both prices

and the fixed payment may cause changes in the state-Contingent output veetor,

-3 Result 4; If there Is no price uncertainty, T is differentiable in y, and the effort-

E cost function, Clz), is symmetric then: (i) z‘t;a,a) > ;:jtp.a) il and only if 3 sa X and

{ii) pzl(p,a) +a < pzj(p.a) + a if and ealy if n < ap

. Result 4 s particularly easy to understand if Clz) is symmetric there are in effect no

technically good or bad states of naturc because, at least In terms of costs, state-

? contingent outputs are interchargcable. Herce, the only way to encourage higher output in
une state aver another, given fixed prices, is w give the producer a greater marginal

incentive to Increase state-contingent output. Because the farmer is risk-averse {marginal
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utitity of income is deereasing), providing a greater marginal incentive for a bhigher £ axe-
contingent ocutput for fixed p hmplies decreasing the initial wealth of the producer,
However, as is shown in part (ii) of the result, the extra outputl only partially offsets the
mnitial wealth variation.

Absent risk aversion, producers equate price and marginal cost in each state, So, if
costs are also symimnetric, more is produced in states where prices are high. Result 4 shows
that this 'substitution effect” beiween states migla be offset by a wealth effect for risk-
averse individuals. A standard result in uynseriainty mcdels is that the substitution cffect
predominates If the cosl.jcient of relotive risk aversion {or if base wealth is zero, the
coefficient of proportional risk aversicn) is Jess than 1. This result holds here, with
appropriate modifications. For fixed Clz), the ciemertary utility function F yields a
function [y, Clz)} which behaves as a von Nevmanu-Morgenstern utility function in y = 2 «
pz. Thus, a coefficient of partial risk ave:sion may be defined as

RP(ps) = - pz Fyy/ F,.

Although the response cf effort to price difforenzes beiween states is ambiguous in the
absence of information on KP , a simple stochastic dominance argument shows that differences
in effort will never completely offset the cffecty of price variation so that revenue is
always higher in high-price states

Result 5: If there Is no wealth uncertainty, b is twice differentiable in y, and the
effort-cost function, C(z), Is symmetric: (i) if A < | then (p; - p))z)(p,a) - 2/(p.,a)] &

0; and (1) y,(p,a) < y,lp.a} If and enly if p, <y

Resuits 4 and 5 yicld infermation on preducer’s output vectors when prices and wealth
vary over the set of states of the world, that is the veéctor p (and al) is not equal to scme
scalar p. This Is different from the potion of supuly response most commonly analyzed in the
litcrature on uncertainty and stabilization, which focuses on,upward or downward shifts in

the entire trajectory of state-contingent prices. This issue is addressed in the next

16
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section,

The symmetric effort-cost casc also aliews an analysis of producer risk attitudes [n
lerms of S-concavity. Decause S-concavity of U in p or a implies that the producer prefers
the relevant varlable to be stabilized at the mean, it jpay be of more interest than concavity
results presented in Result 2.4.

Result 6: If Ulp,a) is continuotsly differcatiable, and the effort-cost function, Ciz},
is symmetric: (1) Ulp,a) is Schur-concave in a if there is no price uncertainty; and (1)
Ulp,a) is Schur-concave in F o therc is no wealth uncertainty and p, > p; inplics

Fila « pzi(p,a), Cl2))7\(p.a) < by(a + peyipaal, Clzhizylp,al.

Result 6 (i) gives conditions under which cifferences in base wealth across states will
reduce welfare. Recause the producer is 1,s% averse, differences in wealth across stutes
will, ceterls partbus, reduce welfarce relative 1o the case where the same mean wealth is
available in every state,

Result 6 (ii) gives conditions vnde: which differences in prices across states will
reduce welfare. The condition certainly holds if the came 2, i{s produced in each state.
Thus, the condition Is also satisfied for any technology sufficiently close to this case.

Thus, the less flexible the technology (i.e..the closer 1o fixed proportions), the more
hikely price uncertainty is to be welfare reducing.

Now consider the general case when the cost function is symmetric. By Result S(i), if
the producer is very risk-averse (RP is greater than onc), z, will not increase with Py
And, more generally, the more risk-averse is '}lae individyal, the more slowly wili z; increase
with p,.  Alse, the more rigk-averse is the individual, the more rapidly ex post marginal
utility of revenue decreases with mere revenue. Henee, as would be expected, the higher is
the cocfficient of risk aversion, the more iively price uncertainty is to be welfare

reducing.

17
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7. The Special Case of Additively Scparable Utllity

To this polnt, the analysis has uscd a very general utility structure. To illustrate
the power of the statc-contingent production model, the utility structure is now specialized
to the form assumed in Newbery and Stigiitz's seminal work on price stabilization and
production under risk,

l—‘(yl. glx)l = u£y‘) - glx).

Without loss of generality cardinalize units so that v{0) = 0.
4 Dual Relationship

Our first resuit in this scetion heips establish a duality between the effort-cost
function cly) and Uln). For artitrary y, the definition of the m-indirect expecred utility

function implics that under additive separability
s
Uin) = S-lzn‘u(y‘) - ciyl
t=3
whence
5
clyl 2 S'lzn uly ) - Ulnl.
[
151
Moreaover, because
3
elytm)) = §7 Tmuty (m) - Uln),
1-]
it follows that

<

max { S"’Zﬂ ely ) - Uln)),
i i
nell

1151
o .
has a welj-defincd solution given by ely(n)). The dual effort-cost function. c (y), is
defined:

i

18
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s

e (y) = max &1 muly) - Ut
nell
1=t
Denoting

S

nly) = argmax { S Zn’u(y) - Ulm)},
nell . !

=]

[
the properties of ¢ (y) and n(y) arc summorized in the following result.

Result 7: When F(yl. glxli = u(yx) - glx), :‘(y«) and nly) satisfy:

1

2.

3

7.

c.(OS) & - Uln);
c‘(y’) = c.(y) z c-{Osi for y' = y;
e ! . . » ’ °
ey J+ U ~plecly)zclpyy +(0-puly) O<puc<t
for y ¢ Rf’ c’(y) is continuous;
ify > y® then ¢ 1y ) = ¢ (3%
S
PLCEE r(y*Nluly 1 - uly M) = 0
11

c.(y{n}) = c{yim).

Results 2 and 7 establish a duality beiween Uln) and cly) for the additively separable casc.

Either is rccapturable from the other given knowjedge of the other and u(y)., Thus, as with

other duality results, it Is a matter of indifference as to whether analysis proceeds in

primal terins (that is the state-contingent revenues) or in dual terms (that is in terms of

the probabilities).

The properties of cly) as listed in Result | are a subset of those listed in Result 7 (1

. -
- 6). Unless these additional properties arc imposed upon cly), the function ¢ (y) recaplured

from the dual program will not bc 1he original ¢(y). However, an obvious consequence of

Result 7 is

19
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3

Cln) = Max (s~} Yu ufy ) - c.ly‘l),
~ 3 ]

y i=1

Regardless of whether c'~(y) is the original effori~cost function, using it in the producer's
maximization problem generates the same economic choices as cly). Hence, c.(,v) is
observaticnally equivalent to cly). Consequently, no generality is lost In imposing
properties 7.1 ~ 7.6 upon cly).

Much as Indirect~utility minimization jr ceusumer theory offers an algorithm far
recapturing the relative consumer prices that wii} raticnalize an observed vector of consemer
demands, the dual relationship between Ufn) and ¢{5) thus offers an algorithm for recapturing
subjoctive probalities from the simplex T that will rationalize any observed set of state-
contingent revenues.

Additlve Separabllity and Ulp,a)

We now turn our attentic 1 Ulp,a). Censicer again the case of sca'ar output wheer th-

payment schedule satisfies:

Y

=8t RE
where P. 2, 2 € ‘R. {i = 1L2,...,8). This is properly interproted as the case where outpul
prices, output, and fixed payments (beginning wealth levels) are all state-contingent, For
the remainder of the paper, assumc that baik uly) and Cfz) are at least twice differentisbic
Monotontctly Results

Our first result here establishes anothcr suffirient condition for a monotonic
rejutionship between the fixed payment schedule and the vector of the state-contingent
outputs. FEarlier it was established (Restit 4) that symmetry of C(z) was sufficient for such
a rclationship. However, symmetry of the effori-cest function js a polar case, where the
character of the technology severcly mitigeics the cffects of production uncertainty.
Another polar case is given by the absence of e¢ffort-cost economies of scope across states af
nature. In this case, what s done to brepare fcr one state of naturc Is independent of what

20
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is done to prepare for other states of nature -- at least in effort-cost terms. We shall
refer to this case as exhibiting no effort econcmles of scope. If the producer gains
something by preparing for distinet states jointly, 1lien cffort cconomies of scope exist.
The formal requircment for the prescnce of effort sconomies of scope js
Csz. 0,...,0} + C(O.zy TGl e Clo, ...,0, zS) > Cfz).
Effort cconomies - 9T - «bsent when the incquality always holds as an eguality

implying that C{z} can be repressntcd as having an additively separabie cost structure:
5

Clz) = Zx’lz )

Yot
where x‘(z!) (I =1, ...,S) is nondecreasing, convex, and twice differentiable. We can then
csiablish:
Resuit 8: If no effort eccnomiss of scene exist and there eXists a reordering of 2, O’
= { 1), ...,IS). such thai [i} =z {3} implies 1(;112;3 zzz’n{z} fer all z € R, then 2.

)

z‘m only if a .

m Y

n = ZiPy; - Pyt

Result 8 has the following interpretation: Gives the presence of naturally good and bad
states, a "bad-state” statc-contingent output can be higher than a “good-state” state-
contingent output only if the fixed paymeat in the bad state is set low enough relative 1o
the good state Tixed payment to enccurage cxira bad-state production. And particularly, if
there is no price unceriainty:

Corollary 81: Under the conditions of Resuit 8, if there is no price uncertainty then

-a = Q0.
i 0

:am 1
It is well known that many economic ctoice probicms, such as labor supply, may invoelve
backward-bending solutions in which the incone cffects of higher prices couuteract, and
outweigh, substitution effccts. It has been lcss widely cbserved that, for the separable
objective function, this backward-bending solution arises if and only if the coéfficient of

relative risk aversion is greater than I (John Quiggin 1991; Newbery and Stiglitz). To

21
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exclude this possiblity, our attention is initialiy confined to the €ase where () is a
consiant relative risk aversion utility function, We Legin with the case a =0, ¥, > P, 2,
, 1

Result 9: If & = 0 (i = 1,2,....S) and uly) = ayR (0 < g < 1. A > 0), then

s
z J'(p; PR (prll.a}lfzjlp’,.a);‘j'ﬁ - (zilp",anl'k} = 0.
31

Result 9 establishes 1hat changes in each siale-contingent price are Ppositively
correlated with changes in their respective state-contingent output. This is easily secen by
sclling all price changes EXCEPT one 10 Zero to pet

Ipy)™* - (pf)l’ah’{,z;ip‘.anl'n - (2% 2 0,
Mence, cach state-contingent supply is uzward sloping in its “own stale-contingent price.
An obvious corollary is

Corollary 9.1: Under :he conditiens ¢f Resuit 9 if all prices increase proportionately,

ie, p; = p‘pr 21U =12 ..S) then
. .
) (p:')l'RI«(z,(p‘,an"'" - %' = 0.
1=1

I the Slate~contingent price tra Jectory shifts up proportionately, then on average 1he
slate-contingent supply response wili be positive. Corollary 91 when combined with the
first-order conditions for the producer establishes that a proportional price shift leads 1o
an increase in producer effort in a8 generaiized cense.

Corollary 9.2: Under the conditions of Resuit 9 and Corollary 9.1,

S 5
L Cletp'an 207,20 2 L €l (z°a0.
=1 1-3

Formally Corollary 9.2 establistes that the effort-cost scale elasticity after the

proportjonal price change exceeds the effort-cost scale elasticity before the price change,

22
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In the special case where there are constant returns to scale in terms of effort cost,
Corollary 9.2 implies that effort as ineasured by cffort cost increases with a proportional
crice change. Formally,

Corollary 9.3: If Cltz) = 1C(2) t > 0, then under the conditions of Result 9 znd
Corollary 9.1, Clzlp’,8)) = Clz(p®,a)).

Result 9 and its corollaries can be extended 1o the case of fixed base wealth simgly by
replacing the coefficient of relative risk aversion with the coefficlent of Pproportional risk
aversion. In general, however, the more imeresiing case than either of the two studied is
when both the price and the fixed Payent {initia) wealth) can vary across states. Not
surprisingly, generally i1 is impossible 10 disentanglc the offects of simultancous changes
in both p and a because cach Las an incomc effeet and a substitution effect. However, if 1)e
way in which these changes occur is restricted, very strong results are available even
without restrictions apon the utility structure, Specifically, suppose that any price change
or fixed payment change must lcave the producer belter off in the sense that
= a:' . p:’z"; + p‘; '(z‘, - 2‘:).

{13 y;

Result 10: Suppose the change in & and p is restricted to the form of (1), then
s
s ¥ u(al + Pz = ple; - 2! - Bz ip ,at) - 2(p%2%) = 0.
1=]
By Result 10 if enly one price changes, the corresponding state~contingent supply respo:nse
will be positively corrclated with that change,
Increases in Price and Payment Risk
So far the results of this section have been about inonotonicity relationships between
changes In either the state-contingont price vector or tie f ixed-payment vector. But eguail:
important is the issue of how uncertain production rcsponds 1o changes in risk not associated
with the technology, i.e., changes in cither price risk or fixed-puyment risk. Newbery and
Stiglitz have studled the effect of increzses in multiplicative risk (either price or

23
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production) upon the organization of production. In the present model, an obvious way to

study how increasing the riskiness of the f ixed-payments and the state-contingent prices

affects production is to recognize that the siate-contingent prices and fixed payment may

themselves be randomized. As noted In the discussion of Result 3, this is particularly

sensible w-an Q indexes states of Nature only relevant to production {e.g. weather

conditions), and demand conditions depend upon random factors not indexed by Q. Formally,

the producer can then be envisioned as facing in each state of nature a conditional {on the

state of nature) price and f ixed-payment distribution: if state | oceurs then with
provability 17 K > 0, the state-continpent price is P, and the state-contingent fixed
payment Is a (218§ = 1,..,K). (The equal~probability case is considered to

. ‘conse;-vc on notation. The resvlts generalive in a straighiforward fashion.) Our previous

g
results represent the special case of this later scheme where stale-contingent price (and

K
-1

fixed payment) is always fixed at the mean of this distribution, e.g. p| = K X pu. So

=1

long as P, ; ® P, (similarly for the fixed-payment scheme) for some J and k, the randomized
rewards schemc majorizes the reward scheme that we have beepn considering. Put simpiy, the
randomized reward scheme is riskisr in the sense of Michael Rothschild and Joseph Stigiitz
than the one we have been considering.

Since the elementary utility function Fly, glx)) is concave in y, a Rothschild-Stiglitz

{R-8) ncreasge in the riskiness of the randomived reward scheme in any state will always

reduce welfare (also sec Result 3.4).7 But the question of the supply response to increased

8 risk remains unsettled for the present model.

These considerations lead us to consider the more general question of what happens when

*

a producer facing a randomized reward scheme js subject 1o an R-S increase in risk. This
includes the special case of a shut from the type of state-contingent reward scheme

. considered previously to a randomized payment scheme, Our next result covers the case when
k 24
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the state-contingent rrice is non random and the riskincss of the state contingent fixed
payment {s increased.

Result 11; Suppose that each State-contingent price is not randomized and the fixced
payment scheme is made riskicr in the R-S sense., A producer with nonincreasing absolute risk
aversion increases expected utility by expanding each state-contingent output beyond the
level optimal under the less risky fixed-payment scheme,

Increasing the riskiness of the fixed payment in each state gives the producer with
nonincreasing absolute risk aversion the incentive at the margin to increase output In all
states of nature, An cvact analogue is uot avaitable for the state-contingent price vector.
However, we can establish:

Result 12: Suppose the state-contingent Tixed payment Is not randomized and the state-
contingent payment scheme is made riskier Ly an R-S increase in the riskiness of the state-
contingent prices: if u'(px 2 +a )p!is convex in price the producer increascs expected
utllity by expanding each state-centingent oulput beyond the level optimal under the less
risky schems, If u'(plzl + a lp’ is concave in price the producer increases expected utility
by reducing each state-contingent cutput Lejow the level optimal under the less risky scheme

It follows easlly from Resujt 12 that:

Corollary 12,1: If the produccr's coelficient of relative risk aversion is constant and
smaller than unity, the producer increascs expected utility &y ceducing each state contingemy
output below the level optimal under the loss risky schowe,

Results 11 and 12 generalize results originally due to Newbery and Stiglitz in several
dircetions:  they Indicate what happens by increasing two sorts of payment risk (per unit and
fixed payment); production uncertainty can e of any general form and not Just multiplicative
uncertainty as in Newbery and Stiglitz Unultiplicative production uticertainty is equivalent
to price uncertainty); and effort no longer need be a scalar variable. Each of these

generalizations Is an immediate byproduct of the richer formulation of the producer problem

25
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used here.
8. Conelusion

This paper develops a representation of production uncertainty which is simultaneously
more realistic, more general, and more analytically tractabje than the traditional
preduction-function approach. Not only is the approach congruent with the Arrow-DNcbrey
state-contingent model, but it s also congruent with modern axiomatic models of
nonstochastic technologies (Chambers; Rolf Iare). Various indireet representations of ihe
technology {(effort-cost function, n-indircet expected viility function, and the p-indirect
expecied utility function) have been derived ard their cconomic properties analyzed. i cach
instance, the representations gencralize existing inodels of producer behavior. The power of
the new approach has been ilustrated by appiving it to the additively separable utility
case. Our results there include a duality betwews, the effort-cost function and the indirect
expected utility functions and geueralizations of the central results on supply response in
such models.

The additively separable utllity mode! only serves as a starting point for applications
of the general model. For example, the effort-cost functlicn of fers a natural method for
Trecing existing moral-hazard models from their reliance upon scalar "effort" and scalar
output medels of production uncertainty. And by disentangling the uncertaln technolopy in a
simple but informative faskion f rom ke producer's Leliefs about the likelihood of various
states of nature occuring, the model at the same time promises a way to circumvent some of
the morc analytically difflcult problems associated with mioral-hazard analyses {e.g. the
first-order problem) as well 8s offering a natural way 1o model differences in opinion abous
the state of nature. The model also offers a clear way to generalize existing models of
insurance markets to situations where productive activity takes place both in the presence of

moral hazard and the presence of adverse selection.

%
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Appendix: Proof of Results
Result 1: Because VP*(y) is nonempty there exists an x such that x e VPYy). The effort-cost
minimlzation problem can now be restated as

Min {glx) : glx) = g(x) and x € V™(y}).
The continuity and ‘monotenicity properties of & Insurc that the new feasible set is both
closed and bounded. Thercfore a minimum exists. Ta prove property 1 first denote
x(y) & argmin {glx) : x e V"*(y)
For ¥' & y property V.3 implies that
x(y') e vF(y)
where
ely’) = gixly’))
2 min felx) ; x « VP*(y)
= iyl
That cly) & ¢(0 ) now follows trivially.
Convexity follows by noting that V.2 implies (1 > y > 0)
xly) + (1 = wx(y®) € VPuy' + (1 - ) O,
Thus,
Hely') + 11 = pely®) = uglx(y’) + (1 = wiglx(y®))
= glux(y') + (3 ~ p}x(yoil
= min {glx) : x € VWuy’ « (1 - 1)y°)
= cluy’ + (1 - ;x)yo],
The first inequality follows from the convexity of g. Convex functions defined over an open

sel, eg, y € Rf.,. are continuous (Rockafellar, p. 82). The result Is established.

Result 2: By dcfinition

-
e

27
.



FROMiG.CF ™MD, AREC DEFT, T 9E2 571893 MAR S,

s

Ulm) 2 § mFiy, cly))
124

seL y = Os to obtain property 1. Convexity is established by
s
BLIR) (1 - U = ] wFy .ty )
lrl‘
s
0y 0 )
0= wly ) elynon)

1=]
S

w

) nlCty . elytuon)
l:‘&i
S
+ - m):1 Ty (m), clytmh)

i=1
$

U]

Tt + - wnFty o, oty
i=}

= Ulpn* » {1 - u‘m(’)

for m = un’ + {1 - ;x)n,u and O < u <1. The inequality follows by thc optimality of y(n') and

;\’(nal for n' and n°, respectively. Continuity follows from convexity becausc N is an open

set [Rockafellar). By the definition of y(n]

S s

J mFlym), ety & T owFiy (%), ctyta®),
1=1 =1
S S

T oty n®), etytam = T ¥ty (r'), clyln’ ).

1=1 bt
Adding these inequalities and rearranging establishes 4. To establish 5 suppose the

contrary, that is, y »¢ yin) and cfy) < cfy(ull. The strict concavity of F in y and its

nonincreasingness In cly) then imply

28
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s s
z u‘F(yl. cly)) = Z n"F(y,{n), cly(n)))
1=1 121

contradicting the fact that yin) Is an optimizer.

Corollary 2.1: In the equal probability case Y o> #(n) and y " y{n) are equivalent if Zl Y,
= L, ninl.

Result 3: Except for 3.2 - 3.4, the proof of Result 3 is virtually identical to Resul. 2.

To prove, 3.2 consider increasing any elemcnt of a from a‘ 10 a'l. If the producer chooscs
exactly the same set of state-contingent outputs as tef ore, expccted utility Increases by 1he
strict monotonicity of F(). Hence, the optimal response to changing a cannot lead to & fall
in expected utility., Result 3.3 is proved analcgously. The f ollowing chain of inequalities

proves 3.4;
s
Ulppa + (1 = pla’) 2 s ) Fluta+ b7 - L= wial + pz ],
1=]
Cluz « {3 - mwiz' )
)
-1 " P - fat .
zS X l'(u(a‘ »z) +(1 p),a’ + pza'l,
1=1
uClz) +(1 - pCtz' N
s
=) . . - XAt " .
S z ul-(a‘4 ")‘7:“:(2” + (1 p;r(a‘ * Pz £Llz )
1=
= plUip,a) + {1 - WU(p,a’),
where 2 = z(p,a) and 2’ = z(p,a’). The first incquality follows by the definition of Ulp,a)
as the maximum, the second inequality follows by the convexity of Ci(») and the fact that F()
is nonincreasing in g.  The third nequality follows by the concavity of F in y and g. The

last equality is definitional. Result 3.4(ii} Is proved similarly.

Result 4: (i) The proof is by contradiction. Beccause there is no price uncertainty, without
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loss of generality choose units so that the price equals one. Suppose the cffort-cost
function is symmetrie and choose i and J such that in the opthnum the producer chooses «(z, -
zj) > 0. Also suppose contrary to the result that (a‘ - aJ) > 0. Reallocating ?, to the ith
State and z to the jth state, respectively, causes no change in cost if C(z) is symmetric.
Definc
v(zJ + a‘) = ‘F(zJ +a, Clz).

v(zJ + a') is strictly increasing and strictly concave. Thus realjocating 2, and z, in, this
manner allows us to operate in terms of p instead of F because C{z} is unchanged. This
reallocation changes the producer’s expected utility by the amount

D= S"’(v(z‘J val-ulz . )+ vie, + ;aj) - v(z, + :aj)}.

The strict concavity of v() implies

-1 ¢, { - ’ - )
(a) p>sHv (zj + al).zJ z’) + v (7’ + aj)(z, z)))
and
{b) D> sy v'(z, - a,i’{a’ - "’,) + v'(zl + a,}faj - a‘l))A

By the presumption that in the optimun (z‘ - '/j) > 0 {a) requires that
{c) v'(zl + a}) - v (z’j + 3‘3 <0
otherwise the reallocation increcases the producer’s expected wtility contradicting the
presumption that the original allocation was an oplimum. By the presumption that (&1 - aJJ >
0. (b) requires that
td) vilz « a]) - v'[z} -al>0
ctherwise the reallocation increases the producer's expected utility. But (d) and (c} are
contradictory. This completes the proof of (i).

The proof of 4(if) is also by contradiction. First, we requiire a technical lemma
Lemma: If C(2) Is symmetric, a + p7 >, a « pz(p,a), and 2z *m 2(p,al, then Clz) = Clz(p.aj).
Proof: 1f C(z) is symmetric then Result 1.2 implies Clz) is Schur-convex (Marshall and

Olkin). Hence, If z »; z(p,a) then Clz) = Clz(p,a)). But if a + pz »q a + pzlp,a), Result

30
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3.7 implies C{z) & Cl(z(p,a)) establishing the lemma.

To proceed with the proof now supposc that 8; < a; but that at the optimum y; > y. In
state i the producer produces z; = y, - a; and in state j the producer produces 2z, = yy - 2y,
Now consider the alternative production vector given by 2| = yy - ay and 2§ =y, - a, This
new production vector (resp. return vector) is majiorized by the optimal production vector
{resp. optimal return vector). Hence, the Lemma implics that it is equally costly to the
optimal. Bul the strict concavity of F{) in y implies expected utility is higher with the
new vector than the optimal vector yielding a contradiction.

Result 5: To prove (i) we flrst show that if P, < » it cannot be true that z = z}.
Supposc 1o the contrary that P, <p and 7 = zJ in the optimum. A shift to z’ - & and 2, -
& resulls in a new schedule that is majorized by the old schedule. Because C(z) is S-convex
{sec the proof of the Lemma), costs cannot incrcase for the new schedule, If costs remain
the same with the new schedule, the change in the objective function is given by

8 f[p$F‘(a * P2, z)) - ij;(a * P2y C(z))]
which is positive for § > 0, {f R¥ < 1. ‘Thus, this reallocation must result in a striculy
greater expected utility (remember cost canniot increase) contradicting the optimality of the
origiral allocation. A similar argument establishes that z, can never be strictly greater
than z,. This cstablishes (i)

To prove lii} suppose to the contrary that p‘1 < p, but that y s >y, in the optimuni.
There alwavs cxists a ¢ > 0 such that the revenue vector that results by substituting
= yj - p)c and y; =y +pe whcre the original production vector majorizes the new
production vector. Because C(z) is S-convex, the new production vector fs less costly. Bul
even if costs were to recmain the same with the new production vector instead of decrecase, the
new revenue vector second-order stochastically dominates the original production vector and

hence will be preferred to the original by all risk averters again contradicting the

optimality of the original veetor.
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Result 6;: Theorem 3.A.¢ in Albert Marshall and Ingram Olkin yields the following conditions
for an arbitrary continuously differentiable function ¢: 1 3 R to be S-concave: (i) ¢ is
symmetric, (ii) ¢y(2) = 8¢/8z, is increasing in | for all z € D (that is arranged in
descending order). Assuming C(z) is symmetric, it follows immediately that in the absence of
price uncertainty U{p,a) is symmetric in a and in the abscnce of wealth uncertainty Ulp,a) is
symmezric in p. Hence, we only nce ! to verify that (ii) above holds under the conditions
stated in the result. For Ulp,a) continuously differentiable, the envelope theorem in the
absence of price uncertainty implies

8U/8a, = S {a, + pzip.al, Clzl).
Similarly, the envelope theorem in the case of & certain fixed payment yields

8Us8p, = SIF (a = p2i(p,a), Clzdizp,al
Rearranging the aj and the p; in descending order as required gives the result after making

use of Resuit 4 (I} and (i),

Result 7. Properties 1, 3, 4, and 7 are all proved analogously to methods used in Result 2.
Scparate proofs are not provided. Consider y' 2 y. By the fact thet u js nondecreasing in

Yy

S

¢ty = ¥ oy uly) - Ltnly)
i=3
5

= X n,(y) uly}) - Ulnly))

1=1
S

= z nity') u(y;) - Ulnly’ })
i=1
= c(y)

which cstablishes 2. By definltion
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s
¢ty 2 § oty uty)) - Utnty®)
1=1
Subtracting the definition of c.(yol from the above yields
s 3
® L 3
ety -y 2 T oat? ) - T o).
1=1 1=
If y e ¥ the right hand side of this expression is positive thus establishing 5.
S
clytm) 2 T muly (m) - utn)
1=1
for ali m € 1. Thus, cly(n)) is an upper bound for
s
}: u'u(yl(u)) - U(;z)
1=1

over n € 1. Because

<

ely(n)) = z m uly (n)) - Uln)
1=3
the upper bound is an achievable least upper bound over ;x € 1, where
s
c{y(n)) = max X n‘u(}-,(n}) - Ulm)
I‘(:Gﬂ 1=t
]
.= ¢ {yln)).
Result 8: If there are no effort economies of scope
Clz) =) x )
1=1

By thc presumptions of the result a reordering of @, @ = { {1], ....[S]), exists such that

1i] = {}] lmplies xI; ,(23 z x‘;‘(ﬂ for all z e R. Also suppose that in the optium z

%0 for some [i] = (jl. The producer's first-order conditions require

33
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METMERARCESS v Moy * Py

z & U a
(lll

~1
S u'(a -t
1 Y-z 1(2111)

m 2w Xy -
The inequality follows by the concavity of u and the conwcxny of x and the presumpilion that
zm z zm. Hence,

~1 . s . .
5u (am + pmzm) m(z )z sy (a Py 2, ) zw(z )

n

where the last inequality follows by the dcfiniticn of Y. The fact that u() is strictly

+ < 2
m T P T Py Gy

Result 9: Result 9 follows directly by appiying 3.6 to this utility structure.

concave then requires that a

Result 10: Apply 3.6 to cstablish that
3

L ute] + plz) « pi2) - 20 - ula® Py + pilz) - 2 = 0.
t=1
The expression in the result must be larger than the left-hand side here by the strict
concavity of u!). The result is demonsirated.
Result 11: For the incentive scheme where the farmer receives the fixed payment a, in state
i, the farmer's optimum, é, is characterized by
S‘ls‘;l’(p‘ii +alp = Cl(§)
i=12,..5 An R-S increase in risk for the fixcd payment schedule can be represented by
the eddition of a random variable &, to a, suel: that Lle,ia) = 0 {i = 1, 2,...,8).
If the producer exhibits nonincreasing absclute rigk aversion u'(} {s a convex function.
Hence, it follows immediately that
S"F.,:u’r(p‘i1 varelp & S"u’{p‘é‘ +ap
{i = 1,...,5) where E. denotes the expectation cver €. For each state of naturc expectec

marginal utility under the riskier reward scl.eme excecds marginal effort cost at z thus

establishing the resuit,

Result 12: For the incentive scheme where the farmer recelves a deterministic payment B, in

state i, the farmer's optlmum, z, is characierized by
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-

'l‘l «‘ P = 5
S wipz +alp c 2
i=12,..8

A R-S increase in risk can bLe represented by the introduction of another

random varjable e, such that E(e;ip) = 0. Now proceed exactly as in Result 11 to establish

the rcsult under the conditions stated.

PRy
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Footnotes

1. The resulting choice sct is very restricted. Jack Meyer (1987) shows that the choice sct
in the standard firm problem (Sandmo; Feder) may be regarded as a line in mean-standard
deviation space. This result Is generalized Ly Michiae!l Ormiston and John Quiggin (199)).

2. Herc it is assumed that Q indexcs all possible sources of uncertainty including both
production and payment uncertainty. This assumpticn is rclaxed in sectlons 6 and 7 below

3 Hy contrast, since producers may vary their output across states, the effects of
differences :n prices between states Is ambipuous. That the producer may prefer some price
variation across states Is well decumented from the price instability literature {Newbery and
Stiglitz). Result 3.4 (il) yields a sufficient condition for the producer to prefer a fixed

price p to a state-contingent price vector with mean p,
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