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Abstract

Many types of economic and social activities involve significant behavioral complemen-
tarities (peer effects) with neighbors in the social network. The same activities often exert
externalities, that cumulates in ”stocks” affecting agents’ welfare and incentives. For in-
stance, smoking is subject to peer effects, and the stock of passive smoke increases the
marginal risks of bad health, decreasing the incentives to smoke. In the linear quadratic
framework studied by Ballester et al. (2006), we consider contexts where agents’ incentives
decrease with the ”stock” to which neighbors are exposed (agents may, for instance, care
about their friends’ health). In such contexts, the patterns of strategic interaction differ
from the network of social relations, as agents display strategic substitution with distance-
two neighbors. We show that behavior is predicted by a weighted Bonacich centrality index,
with weights accounting for distance-two relations. We find that both maximal behavior
and key-players tend to move to the periphery of the network, and we discuss the effect of
close-knit communities and segregated groups on aggregate behavior. We finally discuss the
implications for peer effects identification and for the emergence of potential biases in the
estimation of social effects.
Keywords: Networks, Peer Effects, Key-player, Centrality, Substitutes, Altruism.

1 Introduction

Socio-economic behavior typically occurs within relational networks of various kinds, describ-
ing the pattern of interpersonal, institutional and technological ties, among others. Economic
agents typically interact with their direct neighbors in the network, jointly consuming or produc-
ing goods, discussing political opinions, sharing information, etc. Consequently, agents who are
linked in the network tend to display correlation in behavior. Positive correlation is particularly
pervasive in many social and economic contexts, and has been the object of a vast literature
in economics. Behavioral complementarities, or ”peer effects”, have commanded substantial
attention in economics because of their amplification of individual shocks in terms of aggregate
outcomes (Glaeser et al., 2003), and because of the related difficulty in correctly estimating in-
dividual elasticities to such shocks. In many instances where they have shown to be important,
peer effects stem from emulation, shared identity and conformity: examples include risky adoles-
cent behavior (smoking, drug use, educational attainments), criminal activities, health related
behavior, habits on the workplace (Evans et al., 1992; Gaviria and Raphael, 2001; Kirke, 2004;
Christakis and Fowler, 2007; Clark and Loheac, 2007; Poutvara and Siemers, 2008; Fowler and
Christakis, 2008; Calvó-Armengol et al., 2009; Fletcher, 2010). More in general, local comple-
mentarities arise whenever one’s incentives to act increase with neighbors’ actions. For instance,
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this is the case when links describe technological complementarities, so that firms face larger
demand and larger incentives to produce when neighbor firms increase their output. These
complementarities are also present when links transmit local spillovers in investment and firms
face higher incentives to invest when other neighbor firms invest more.

The same actions that generate peer effects often exert local externalities, that cumulate
in ”stocks” affecting agents’ welfare. For example, passive smoke, one determinant of health
risks, results from the sum of friends’ smoking intensities; the price of an intermediate product
produced by a neighbor firm depends on the aggregate demand for that product coming from
other neighbor firms; the profitability of investing in a neighbor market may depend on how
many neighbor firms have access to that market. These stocks not only affect welfare, but
typically affect the incentives of agents to act. If, for instance, a smoker perceives that the
marginal health risk due to an additional cigarette increases with the stock of passive and
active smoke, her incentive to smoke will depend (negatively) on the smoking intensity of her
friends, counteracting the peer effect. If she cares about her friends at all, her incentives will
also decrease with the stock of smoke her friends are exposed to. Similarly, firms’ incentives to
produce decrease with the price of their neighbors’ intermediary products, and firms’ investment
will decrease with the investments of firms that share common markets.

In the previous examples, agents end up interacting with agents at distance two in the
network, whose actions are strategic substitutes with their own. These additional interactions
are captured by augmenting the network of local interactions to include, together with direct
complementarities, indirect (i.e., with agents at distance two) substitutability. Equilibrium
behavior will depend on both types of interaction, and the behavioral consequences of a change
in the network of direct complementarities will relate to the changes in the augmented network.
While, for instance, increasing the density of social contacts has the unambiguous effect of
increasing the sources of complementarities (direct links) and behavior, the parallel increase of
common neighbors, with the associated substitute effects, may well counteract the increase in
behaviour.

In this paper we employ the analytical framework developed by Ballester et al. (2006) for
linear quadratic games on networks to study the joint effect of direct and indirect interaction.
In addition to the traditional peer effects with neighbors, agents suffer from the negative ex-
ternalities stemming form their neighbors’ actions, and, to an extent captured by a parameter,
from the stock of externalities to which their neighbors are exposed to. In both cases we as-
sume a quadratic loss function. The quadratic specification implies that an agent’s incentive to
act decreases with her distance-two neighbors’ actions, introducing the indirect strategic substi-
tutability discussed above. For this model, we characterize individual behavior as a function of
agents centralities in the augmented network of direct and indirect effects. We then show that
equilibrium behavior is predicted by a weighted variant of agents’ Bonacich centralities in the
original network of direct complementarities, where weights keep track of distance-two relations.
We show that agents who occupy a central position in the original network typically fail to be
central in the augmented network, due to their intense two-distance relations with other agents
and to the implied diffuse strategic substitutability. This tendency of behavior to move towards
the periphery of the network is consistent, for instance, with some robust evidence obtained
by Christakis and Fowler (2008) on the progressive marginalization of heavy smokers in social
networks.

We then study how the presence of indirect substitutes affects the design of network-based
policies. We first analyze how changes in the network affect individual and aggregate behavior.
For regular networks, we show that the relationship between network density and behavior is
non monotonic, with a positive correlation in sparse networks, and a negative correlation when
the network becomes dense. Intuitively, in dense networks the strategic substitutions that flow
on two-distance neighborhoods (of cardinality approximated by the square of the degree) tend
to dominate the complementarities that flow on one-distance relations (of cardinality equal to
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the degree). For the case of non regular networks, we show that aggregate behavior can be
decreased by creating clusters of agents and increased by dissolving existing clusters.

We then examine the problem of identifying key-players (in the definition of Ballester et al.,
2006) in this new context. We show that key players in the augmented network tend to be at
the periphery of the original network, and that this tendency is stronger the more important is
the strength of indirect substitutability compared to peer effects. Finally, we study the effect
of policies that affect the degree of segregation in the network, within a context of agents with
heterogeneous gains from the action. We show that aggregate behavior is minimal for moderate
levels of segregation, where agents have neighbors of mixed types.

In the final part of the paper we derive some implications for the empirical estimation of
peer effects. The interpretation of indirect substitutes is mainly that of altruism towards one’s
friends in the network. We both characterize the sign and the nature of the bias that originates
when externalities and altruism are not taken into account and we address the challenges in
identification of peer effects due to the reflection problem (Manski, 1993). In particular, we
derive conditions for the identification of peer effects to account for the presence of altruism
both in the case in which the peer effect is defined as the sum of peers’ actions (Liu and Lee,
2010) and in the one in which the peer effect is defined as its average (Bramoullé et al., 2009). In
the first case, even without altruism, peer effects cannot be identified if people interact in regular
networks. When altruism is included in the model, conditions for identification become more
stringent and some other types of networks (e.g. the star) have to be excluded. In addition, we
find not including altruism in the model makes the peer effects systematically underestimated.
Finally, we discuss the choice of the instruments needed to estimate both the endogenous peer
effect and the endogenous effect of altruism.

The paper is organized as follows. Section 2 describes the linear quadratic model. Section
3 characterizes behavior as a function of Bonacich centralities in the augmented network and
in the original network. Section 4 addresses various network-based policies. Section 5 discusses
empirical implications. Section 6 concludes.

2 The Model

We consider a set N of n agents, organized in a network g defined by a n× n matrix G whose
generic element gij ∈ {0, 1} measures the presence of a social tie (or link) between agents i and
j. We limit our analysis to symmetric networks, that is gij = gji for all i, j ∈ N . Agents i and
j are “neighbors”in g whenever gij = 1, and the degree di of agent i in the network g denotes
the number of neighbors of i in g. A path between i and j in g is a series of distinct agents
i1, i2, ...., im such that i1 = i, im = j and gipip−1 = 1 for all p = 2, 3, ...,m. Similarly, we define a
walk by dropping the requirement of distinct agents. We finally use the convention gii = 0, ∀i.

Each agent i chooses an action xi ∈ R+; for each agent i, we denote by

Qi ≡

(∑
k∈N

gikxk + xi

)

the sum of all actions taken in the neighborhood of i in g (that is, taken by i and by neighbors of
i). Agent i derives the following utility from the vector x̄ ∈ Rn+ of actions chosen in the network:

Ui = αixi − γ0
x2i
2

+ φ
∑
j∈N

gijxixj − γ1
Q2
i

2
− γ2

∑
j∈N

gij
Q2
j

2
(1)

The first two terms of the function U capture the private benefits from one’s own action,
which may be a source of heterogeneity when αi 6= αj for some i and j. These benefits are
the sum of a linear increasing part and a quadratic decreasing part, with intensity measured
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by the parameter γ0. The third term, with φ > 0, captures local complementarities that are
at work on the links of the network: the marginal incentive to act increases in the aggregate
level of actions taken by one’s neighbors in g. The parameter φ measures the intensity of such
complementarities. These first three terms make the functional form studied by Ballester et al.
(2006). The fourth term captures the external effects of agents’ actions on their neighbors
(externalities) and on themselves. The stock Qi is assumed to affect i’s payoffs quadratically.
Finally, the last term measures the effect on agent i’s payoff of the aggregate stock of actions
to which agent i’s neighbors are exposed. We provide three illustrative examples in which
the parameter γ2, measuring the intensity of the last effect, takes on different interpretations:
altruism, congestion and price effects.

Example 1. Peer effects, externalities and altruism in social networks. Actions
exert peer effects between neighbors, together with a negative externality. Consider for instance,
the case of smoking and passive smoke to which neighbors are exposed. The parameter φ
measures the intensity of local behavioral complementarities; the parameter γ1 measures the
concern for the negative externality to which one is exposed; the parameter γ2 measures the
degree of concern that agents have for the amount of negative externality that neighbors are
exposed to. This last term can be though of as an element of altruism towards neighbors.

Example 2. Investments with local spillovers and increasing returns. Each firm i
chooses a level of investment xi. Firm i’s return from the investment is given by some related
economic activity on i’s neighbourhood. Investment technology features increasing returns, and
there are local spillovers, so that neighbors’ investments decrease the marginal cost of investing.
The profitability of the economic activity on any given node depends negatively on the activity
of other firms on that node. Since the firm activity increases with its investment level, the
profitability of firm i’s activity on a given neighbor market j decreases with the overall activity
of firms that are neighbors of j. Summing up, φ measures the increase in incentives to invest
due to local spillovers in investment; γ1 is zero; γ2 measures the decrease in incentives to invest
due to the decreased profitability of the firm economic activity following an increase in rivals
activity on common markets.

Example 3. Local complementarities in production. A set of firms produces a
different commodity xi each. Each commodity is sold in a monopolistic market, and is also
used as input by neighbor firms. Complementarities in production imply that the demand for
a given product increases with the production level of neighbor firms. These complementarities
are measured by the term φ. In addition, the increase in production by firm neighbors’ of j
causes an increase in the demand for commodity j and therefore an increase in its price. If
i is one of j’s neighbors, this implies an increase in the marginal cost of production of i and,
therefore, a decrease in the incentives of i to produce. Hence the term γ2.

Rewrite (1), in order to isolate terms that depend linearly on agent i’s action, terms that
depend on the square of agent i’s action, terms that depend on the product of agents i and
j’s actions and terms that are independent from i’s actions. We can then frame our problem
in terms of the linear-quadratic form studied in Ballester et al. (2006)’s analysis of games on

networks. Let g
[2]
ij denote the generic term of the squared matrix G2, counting the number of

walks of length two from node i to node j in G. Let also h−i denote the sum of all terms that
in (1) do not depend on xi. We rewrite (1) as follows (see Appendix A):

Ui = αxi −
1

2
σix

2
i + (φ− γ1 − γ2)

∑
j∈N

gijxixj − γ2(
∑
k 6=i

g
[2]
ik )xixk + h−i, (2)

where we have denoted by
σi = γ0 + γ1 + γ2di
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the coefficient that multiplies the square of agent i’s action in (1) and we have used the fact
that

∑
j g

2
ij = di since gij ∈ {0, 1} for all ij.

Equation (2) shows two key features of our model. First, the sign and the intensity of
agents’ strategic interaction with neighbors is given by the “net complementarity” parameter
(φ − γ1 − γ2), where the strategic complementarity due to peer effects is corrected by agents’
concern for the effect of externalities (γ1) and for their concern for their neighbors’ (γ2). Due
to the convexity of these effects, agents’ actions acquire elements of strategic substitutability,
which reduce, and possible revert, peer-effects. Second, the parameter γ2 measures the strategic
interdependence (of the substitute type) with distance-two neighbors in the network g.

3 Equilibrium behavior on the Network

We now characterize the Nash Equilibrium of the game with set of players N , strategy set R+

for each player, and payoff functions given by (1). This section will heavily build on Ballester
et al. (2006)’s analysis of linear quadratic games played on networks. Assume by now that α
is homogeneous across agents, simplifying the analysis without changing the qualitative results;
we study the role of different α’s in section 4.3 for the case of two values.

3.1 Existence and Characterization

The first order conditions characterizing an internal equilibrium vector of actions x̄ are written
in the following matrix form, where each line refers to a specific agent:

α · 1̄ =
[
(γ1 + γ0)I− (φ− γ1 − γ2)G + γ2G

2
]
x̄. (3)

In obtaining (3) we have used the definition of σi and the fact that the main diagonal of G2 has
di at the ith row. Dividing by (γ1 + γ0) and factorizing terms we obtain:

α

(γ1 + γ0)
· 1̄ =

[
I− φ− γ1 − γ2

(γ1 + γ0)

(
G− γ2

φ− γ1 − γ2
G2

)]
x̄. (4)

3.1.1 A benchmark case: γ2 = 0

When γ2 = 0, condition (4) reduces to:

α

γ1 + γ0
· 1̄ =

[
I− (φ− γ1)

γ1 + γ0
G

]
x̄. (5)

As long as (φ − γ1) > 0, we can directly apply results from Ballester et al. (2006), that
characterize equilibrium behavior via the Bonacich centralities of agents in G. For completeness,
we introduce here this notion of centrality, which will be used throughout the paper.

Definition 1 Given the network g with adjacency matrix G, the Bonacich centrality matrix of
g with parameter a is given by:

M(G, a) ≡ (I − aG)−1. (6)

The matrix M(G, a) is well defined if µ(G) < 1
a with µ(G) being the largest eigenvalue

associated with the matrix G.

Definition 2 Given the network g with adjacency matrix G, the vector of Bonacich centralities
of g with parameter a is given by:

b(G, a) ≡M(G, a) · 1̄. (7)
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We will denote by b(G, a) the sum of all agents’ centralities, that is, the internal product
1̄′ · b(G, a). Using (5)-(7) we immediately obtain the next proposition, due to Ballester et al.
(2006):

Proposition 1 Let µ(G) < γ1+γ0
φ−γ1 , where µ(G) denotes the largest Eigenvalue of G. Then the

unique interior Nash Equilibrium of the game is given by:

x̄ =
α

γ1 + γ0
b(G,

φ− γ1
γ1 + γ0

). (8)

Proposition 1 establishes a proportional relation between the Nash equilibrium actions and
the Bonacich centralities in the network G with parameter φ−γ1

γ1+γ0
. More central agents choose

larger actions, due to their higher exposure to the direct and indirect effects of behavioral
complementarities. The constraints on the term φ−γ1

γ1+γ0
are meant to preserve the strategic

complementarity nature of the game, and to ensure that such complementarities do not cause
an unbounded increase in equilibrium actions (the largest Eigenvalue can be thought of as a
measure of the networks’ connectedness, and in regular networks it coincides with the average
degree).

Proposition 1 also shows that the (negative) local externalities stemming from agents’ actions
counteract the strength of peer effects in the parameter φ−γ1. This parameter acts as a weighting
factor applied to the various walks agents have in the network G, and contributes to form their
centrality indices: the larger this parameter, the more the centrality index of each agent is
affected by his longer walks in the network (relative to shorter paths). Moreover, the externality
parameter γ1 enters the proportionality factor between centralities and actions: the larger γ1,
the weaker the factor.

3.1.2 Equilibrium with γ2 > 0

Direct inspection of condition (4) provides insights on the role of the parameter γ2 in shaping
equilibrium behavior. Letting

η ≡ γ2
φ− γ1 − γ2

, (9)

the new matrix

G̃ ≡ G− ηG2 (10)

describes the patterns of interaction in the game. In this new matrix, strategic interaction
occurs between agents who are connected in G, and between agents that share common neighbors
in G (captured by the network G2, counting for each pair of agents the number of walks of length
two between these agents in G). More precisely, the generic element g̃ij is given by:

g̃ij =


0 if gij = 0 and g

[2]
ij = 0

1 if gij = 1 and g
[2]
ij = 0

−ηg[2]ij if gij = 0 and g
[2]
ij > 0

1− ηg[2]ij if gij = 1 and g
[2]
ij > 0

Note that G̃ always contains negative terms; in fact, diagonal terms are given by:

g̃ii = −ηdi.

Sufficient conditions for an interior positive equilibrium can be obtained applying Ballester
et al. (2006)’s normalization to the matrix G̃. Let c = max{g̃ij} = 1 and c = min{g̃ij} denote

6



respectively the maximal complementarity and substitutability in G̃, and let θ = −min{0, c} >
0. Let also λ = c+ θ denote the range between the maximal and minimal elements in G̃. Define
then the new matrix C whose generic element is as follows:

cij =
g̃ij + θ

λ
∈ [0, 1]. (11)

The system in (3) can be rewritten in terms of the matrix C as:

α1̄ =

[
(γ1 + γ0)I +

γ2
η

(θ · U − λC)

]
x̄.

The following proposition applies the results of Ballester et al. (2006) to the present setting.

Proposition 2 Consider a symmetric network g with adjacency matrix G, and the matrix C
defined as in (11). Let η(γ1+γ0)

λγ2
> µ(C). The unique Nash equilibrium of the game is given by:

x̄ =
αη b(C, λγ2

η(γ1+γ0)
)

η(γ1 + γ0) + γ2θb(C,
λγ2

η(γ1+γ0)
)
. (12)

Note that, when γ2 = 0, gij = g̃ij , λ = 1 and θ = 0, this implies that C = G and expression
(8) obtains again.

3.2 Centrality and behavior

The issue we address in this section is how equilibrium behavior relates to agents’ positions in
the social network G. Two aspects of behavior are of particular interest: the relation between
individual actions and individual positions in the network and the relation between the network
architecture and aggregate actions.

The following proposition shows that the equilibrium with γ2 > 0 is given by a weighted
variant of the Bonacich centrality vector of the network G, in which weights are functions of
both the Bonacich centrality matrix for G and of the topology of common neighborhoods in G.
We first define the notion of weighted centrality.

Definition 3 Let G be an n × n adjacency matrix, and let w̄ be a n × 1 positive vector. The
weighted Bonacich centrality vector for G with parameter a and with weights vector w̄ is defined
as follows:

b(G, a, w̄) = M(G, a) · w̄ (13)

Proposition 3 Let M the Bonacich centrality matrix M(G, φ−γ1γ1+γ0
). The vector of equilibrium

actions in (12) is given by:

x̄ =
α

γ1 + γ0
b(G,

φ− γ1
γ1 + γ0

, w̄) (14)

where the vector of weights is given by:

w̄ = [I +
γ2

γ1 + γ0
M(G + G2)]−1 · 1̄. (15)

Behavior is still related to the original centralities in G, but the (discounted) paths used to
compute centralities are weighted in a way that depends on the number of common neighbors
that agents have. We can better understand the effect of altruism on equilibrium actions by
rewriting (14) as follows:
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x̄ =
α

γ1 + γ0
b

(
G,

φ− γ1
γ1 + γ0

)
− γ2
γ1 + γ0

M(G + G2)x̄ (16)

The first term in (16) is the equilibrium vector of actions when γ2 = 0, while the second
term measures the correction of equilibrium behavior that is due to γ2. The term M(G + G2)x̄
can be viewed as the multiplication of the Bonacich matrix M times a vector z̄ = (G + G2)x̄.
The generic element

zi =
∑
j

[(gij + g
[2]
ij )xj ]

measures the aggregate equilibrium actions that agents j in i’s neighborhood are exposed to.
The correction of equilibrium behavior is therefore higher for those agents whose high centrality
(in G) comes from paths that lead to agents who are exposed to large amounts of actions in
equilibrium. Intuitively, given convexity of damages, such agents are those with larger associated
marginal costs due to the negative externality.

Example [Ballester et al. (2006)] Consider the network used by Ballester et al. (2006).

1
2

3

4

5

67
8

9

10
11

Figure 1: From Ballester et al. (2006).

There are basically three types of agents in this network, that we refer to as types 1, 2 and
3, from the names of the corresponding representative nodes. Figure 2 records the equilibrium
action of these types (x1, x2, x3) as a function of the parameter γ2 within a given interval.

0.075 0.080 0.085 0.090 0.095 0.100
Γ2

2

4

6

8

x

x3

x2

x1

Figure 2: Equilibrium actions with varying degrees of altruism (γ0 = 0, γ1 = 0.5, α = 0.6, φ = 1).
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Figure 2 makes clear that increases in γ2 may have a strong impact on the magnitude and
the ranking of centralities and equilibrium actions. In particular, the most central agent is type
2 for low levels of γ2, and switches to type 3 for higher levels of γ2. Note that while type 2
is more connected, and therefore more central when γ2 is small, an equilibrium where type 2’s
action is high is not sustainable when γ2 is high. This happens because in such equilibrium
agent 1, with whom type 2 agents are linked, would be exposed to large amount of externalities,
and this would substantially increase the marginal cost of type 2. This causes a switch to an
equilibrium in which type 3, more peripheral in the network G, chooses the largest action. The
switch between type 1 and 3, occurring at low levels of γ2, is explained along similar lines.

The next proposition formally qualifies the shift of behavior towards less central agents in
the network G we observed in the above example.

Proposition 4 The marginal effect of γ2 on equilibrium behavior is proportional to the effect of
a marginal increase in φ on the Bonacich centralities of the network G, weighted by the nodes’
degrees. Formally:

∂x̄∗

∂γ2
= − ∂

∂φ
b̄(G,

φ− γ1
γ1 + γ0

, d), (17)

Moreover, the magnitude of the effect of γ2 increases with φ.

Proposition 4 provides insights on the effect of γ2 on the vector of equilibrium actions, and
in particular on the ranking of its entries. We first note that if the network is almost regular (i.e,
degrees vary little across nodes), the effect of γ2 on behavior is essentially proportional to the
effect of φ. We know from Ballester et al. (2006) that this effect, alone, potentially alters the
ordering of agents’ equilibrium actions. When agents’ degrees vary substantially, the ranking is
also affected by the weighting vector. In particular, the decrease in action is the largest for those
agents who have a large discounted sum of paths to nodes with a large degree in G. This implies
that those agents whose high centrality in G is due to paths towards highly connected agents
will experience a large decrease in behavior as a consequence of γ2. This qualifies the generic
intuition we had from previous examples: marginalization of behavior as a result of γ2 occurs
when very central agents in G are characterized by a large number of paths towards agents with
large degree; from (17), these agents will suffer the largest decrease in behavior as a result of
an increase in γ2. This can be observed in the three different networks in figure 3 (equilibrium
choices are reported in table 4). These are non regular networks with 5 nodes, each obtained by
increasing the number of connections between peripheral agents, starting from a star.

1

2 3 4 5

1

2

34

5

1

2

3 4

5

Figure 3: Star, Papillon and Connected Star

When γ2 = 0, agent 1 is the most central in all networks. Note also that the three networks
differ with respect to the degree of agent’s 1 neighbors. Proposition 4 implies that the impact of
γ2 on agent 1’s behavior is stronger when agent 1’s neighbors are more connected. This is indeed
what we observe: in the papillon and the connected star, agent 1 reduces by a large amount her
equilibrium action, and the actions’ ordering in equilibrium are reversed as γ2 increases, while
this does not occur in the star network.
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Table 1: Effect of altruism on equilibrium actions (γ0 = 0, γ1 = 0.9, φ = 1, α = 2)

Network Players γ2 = 0 γ2 = 0.06

Star 1 3.38 2.01
2-5 2.59 1.82

Papillon 1 3.53 1.63
2-5 2.95 1.69

Connected Star 1 3.73 1.34
2-5 3.39 1.45

4 Network-Based Policy

In this section we wish to assess the implication of the indirect strategic interaction discussed
above for various kinds of network based policies considered in the literature. We will look at
policies that affect the structure of the network by either changing the number and the pattern
of connections or by deleting key nodes from the network. We mainly refer to an interpretation
of the parameter γ2 in terms of altruism that agents have towards their neighbors. This in order
to ease the exposition of the main ideas, and because of the prevalent importance of network
based policy in the context of interpersonal networks (see, for instance the work by Ballester
et al. (2010) on criminal networks and by Christakis and Fowler (2007) and Christakis and
Fowler (2008) on health related behavior).

4.1 Changing the Network

4.1.1 Network Density

Let us first look at changes in the number of links in the network. To get a first rough intuition,
let us compare behavior in the three networks of figure 3. For each network, we consider the
sum of equilibrium actions, first with γ2 = 0 and then with γ2 > 0.

Table 2: Effect of altruism on aggregate actions (γ0 = 0, γ1 = 0.9, φ = 1, α = 2)

Network γ2 = 0 γ2 = 0.06

Star 13.77 9.31
Papillon 15.29 8.42
Connected Star 17.29 7.17

We see that, while the introduction of altruism does not affect the ranking of individual
actions within each network, altruism reverts the trends in individual and aggregate behavior
as we add connections. Without altruism, increased connections imply increased individual
and aggregate behaviors (as a pure effect of increased complementarities), while with altruism
both individual and aggregate behaviors decrease with connectivity. The simultaneous creation
of distance-two interactions (of a strategic substitute type) in the network G̃ decreases the
incentives to act, although the centrality of all agents in the network G is increased by the new
connections,

We can perform a more systematic analysis of the effect of network density on behavior by
focusing on the class of regular networks, in which density is proportional to the common degree
d. Here, equilibrium behavior is characterized by the following first order condition for each
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agent i (a simplified version of condition (3)):

α− σixi + (φ− γ1 − γ2)
∑
j∈N

gijxj − γ2
∑
k 6=i

g
[2]
ik xk = 0. (18)

In a symmetric equilibrium, x∗i = x∗j for all i, j. Moreover, in a regular graph of degree d,∑
k∈N g

[2]
ik = d(d− 1). Using the expression for the term σi, we can rewrite (18) as follows:

α− x∗[γ1 + γ0 − d(φ− γ1 − γ2) + γ2d
2] = 0. (19)

When [γ1 +γ0−d(φ− γ1 − γ2) + γ2d
2] < 0, no positive action is consistent with equilibrium

(a simplified version of the constraint on the largest Eigenvalue of the matrix G, which in
regular network coincides with the degree). When [γ1 + γ0 − d(φ− γ1 − γ2) + γ2d

2] > 0, the
unique positive symmetric equilibrium is given by:

x∗ =
α

γ1 + γ0 − d(φ− γ1 − γ2) + γ2d
2 . (20)

The effect of network density on behavior is measured by the first derivative of (20) with
respect to d:

∂x∗

∂d
=

α(φ− γ1 − γ2 − 2dγ2)

[γ1 + γ0 − d(φ− γ1 − γ2) + γ2d
2]
2 .

The sign of the effect of density on behavior is determined by the following regions:
d < φ−γ1−γ2

2γ2
⇒ ∂x∗

∂d > 0

d = φ−γ1−γ2
2γ2

⇒ ∂x∗

∂d = 0

d > φ−γ1−γ2
2γ2

⇒ ∂x∗

∂d < 0

Note that when γ1 + γ2 > φ, behavior is always decreasing with network density and ap-
proaching zero for very large degrees. When instead γ1 + γ2 < φ, equilibrium behavior follows
a non monotonic pattern, reaching a maximum for dmax = φ−γ1−γ2

2γ2
. Before dmax, behavior

increases with network density as a result of the prevailing force of the net peer effect; after
dmax, behavior monotonically decreases as a result of altruism, and tends to zero for very large
degrees. Note also that, if γ1 < φ, then dmax is always decreasing in both γ1 and γ2. This leads
to the following:

Proposition 5 Let g be a regular network with identical agents. When γ1 +γ2 ≥ φ, equilibrium
behavior always decreases with the degree. When γ1 + γ2 < φ, equilibrium behavior is a non
monotonic function of the degree, increasing for low degrees (d < d∗) and decreasing for high
degrees (d > d∗). The threshold d∗ is decreasing with γ2, and d∗ →∞ when γ2 → 0.

While in the absence of altruism the “social multiplier” associated with the net peer effects
generates a positive and monotonic relation between network density and behavior, this is not
the case with altruism. The non monotonic relation is due to the presence of direct and indirect
strategic interactions in the network. A larger degree affects behavior through the growth of
an agent’s direct neighbors (complements) and through the growth of neighbors of distance
two (substitutes). Direct connections grow with d, while distance-two connections grow with
d2, possibly taking over and causing a decrease in overall behavior. Figure 4 gives a graphical
representation of the relationship between degree and behavior for different levels of γ2.
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Figure 4: Degree and behavior: γ2 ∈ {0.1, 0.2, 0.8}, d∗0.2 ≡ d∗|γ2=0.2, d
∗
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4.1.2 Adding and Severing Links

Policies that focus on decreases in behavior are of particular interest in the present setting of
negative externalities. Here we ask whether we can alter the structure of a generic network
to decrease the overall incentives of agents to act. The following result, due to Ballester et al.
(2006), rigorously states the intuitive idea that increasing channels of complementarities increase
aggregate behavior x∗.

Theorem 1 (Ballester et al. (2005)) Let G̃ and G̃′ be symmetric and such that g̃ij ≥ g̃′ij

for all i, j and g̃ij > g̃′ij for at least one ij. If η(γ1+γ0)
γ2

> λµ(C) and η(γ1+γ0)
λγ2

> µ(C′), then

x∗(G̃) > x∗(G̃′).

In the present context, the relevant policy problem is affecting the network G to obtain the
desired ordering on the induced network G̃. The following proposition finds sufficient conditions
under which this can be done.

Proposition 6 Consider ρ ∈ N such that (φ − γ1 − γ2) ≤ ργ2. Consider network G′ obtained
from G by fully connecting an independent set of nodes Z in G, and such that |Z|= ρ+2. Then
G̃′ < G̃ and x̄(G̃′) < x̄(G̃).

A sufficient condition to reduce aggregate behavior is therefore the presence of sparse sets
of agents unconnected in network G. The number of such individuals is inversely related to the
degree of altruism. Behavior is reduced by creating very dense relations among these agents,
so that new direct ties come together with enough new indirect ones. Note how this result
differs from the case without altruism, where second order effects are null and the creation
of clustered communities unambiguously increases behavior. As a final remark, note that a
converse argument also applies. Since clustered communities magnify the second order effects,
the effect of disconnecting such communities is always to increase behavior.

4.2 Key Players and Policy Targets

One important class of network based policies is the identification of players (or groups of players)
who, if targeted, would trigger a maximal change in aggregate behavior. Such key-players are
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of crucial importance in various health related policies and in policies that try to reduce crime
(see Ballester et al., 2010). Ballester et al. (2006) define the key-player as the node of the
network whose removal produces the largest reduction in aggregate behavior, and show that the
key-player is the node with the highest intercentrality in the network.

Theorem 2 (Ballester et al. 2006) If η(γ1+γ0)
λγ2

> µ(C), the key player is the agent with the

highest intercentrality index, measured by ci = b2i /mii.

As for the notion of Bonacich centrality, the ordering of intercentralities is potentially affected
by the degree of altruism. In particular, the same marginalization of central players we observed
in section 3.2 seems to characterize the intercentrality ordering. Consider, for instance, the case
of a “line” network (figure 5). We can identify 3 types of agents depending on their position:

1 2 3 4 5

Figure 5: Line network

type A (agents 1 and 5), type B (agents 2 and 4) and type C (agent 3). Table 3 provides the
ordering of centralities and intercentralities for different values of γ2.

Table 3: Key Player - Line network

γ2 bi ci
0 C > B > A C > B > A

0.05 A > B > C A > B > C

Parametrization: φ = 1, γ1 = 0.9, α = 2

With no altruism, the key-player is type C. Consider now altruism. Type C is responsi-
ble for several distance-two relations, that keep aggregate behavior low by creating strategic
substitutability. Removing type C from the network has therefore little effect in decreasing
behavior. Type A, in contrast, does not generate any distance-two relations, and A’s removal
results therefore more effective in decreasing behavior.

Inspection of the interconnected cliques network studied by Ballester at al. (2006) and in
section 3 of this paper (see figure 1) shows that not only key players move towards the periphery,
but also that inter-centrality and Bonacich centrality need not move together as γ2 grows. Table
4 reports the ordering of Bonacich centralities and inter-centralities for this network.

Table 4: Key Player - Ballester et al. (2006) network

γ2 bi ci
0 2 > 1 > 3 2 > 1 > 3
0.002 2 > 1 > 3 2 > 3 > 1
0.01 2 > 3 > 1 2 > 3 > 1
0.02 3 > 2 > 1 3 > 2 > 1

Parametrization: φ = 1, γ1 = 0.95, α = 2

For low but positive levels of γ2, type 3 agents have higher inter-centrality than type 1 agent,
but are less central. In fact, while agent 1 is critical for several two-distance relations, type 3
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agents are not. It follows that removing agent 1 would remove several sources of substitutability,
thereby offsetting the negative effect on behavior due to the removal of direct connections. For
larger levels of γ2, the two measures go alongside and produce the same ranking.

While the above notion of key-player rests on the assumption that agents can be removed
from the network, policies are often based on measures that affect agents’ incentives without
removing them from society. Suppose, for instance, that the policy maker aims at lowering the
private benefit from agents’ own actions (that is, lowering the parameter α in our model). The
following definition identifies the agent whose marginal reduction in such incentives would bring
about the largest reduction in aggregate behavior.

Definition 4 The α-key player is the agent i such that ∂x
∂αi

is maximal.

To characterize the position of the α-key player, we need to reformulate the equilibrium
characterization for the case of heterogenous α’s. Following Calvó-Armengol et al. (2009), the
vector of equilibrium actions is.

x̄ = ηb(C,
λγ2

η(γ1 + γ0)
, α)−

γ2θb(C,
λγ2

η(γ1+γ0)
, α)

(γ1 + γ0)[η(γ1 + γ0) + γ2θb(C,
λγ2

η(γ1+γ0)
)]

b(C,
λγ2

η(γ1 + γ0)
) (21)

Proposition 7 The α-key player is the agent with the highest Bonacich centrality in the network
C.

The difference between the key-player, with highest intercentrality, and the α-key player,
with highest Bonacich centrality, has to do with the different effect of policies that remove a
node compared to policies that affect a node’s behavior. Intercentrality corrects centrality by
“neglecting” those paths of complementarities connecting a node to itself. This happens because
once the key-player is removed from the network, the effect of the policy on her own action is
not considered. The α-key player, in contrast, affects aggregate behavior before and after the
policy intervention. For this reason, the reflection of players’ action on their own incentives to
act due to the network’s complementarities is important, and Bonacich centrality, rather than
inter-centrality, matters.

4.3 Policies that affect segregation

When agents are heterogeneous along some preference dimension, both aggregate behavior, its
distribution across individuals and societal welfare may depend on the extent to which social
interaction is segregated. In such cases, policies can increase welfare by affecting the patterns
of interaction between heterogeneous agents. In particular, policies may reduce segregation
by moderating the effects of homophily, or induce segregation by clustering agents with similar
habits (e.g.smoking bans and smoking areas). In this section we look at the effect of such policies
on behavior in the simple case of regular networks. Heterogeneity is captured by the terms αi,
which may now differ across agents. The degree of segregation in a given regular network with
degree d is instead captured by the parameter q, common to all agents, and measuring the
fraction of an agent’s neighbors that are of the same type as she is. For simplicity, we will also
assume that agents come in two typologies: those with high preferences αH for the action and
those with low preferences αL, with αH > αL. Populations of the two types are assumed of
equal sizes.

The type-symmetric equilibrium levels for typesH and L are (see appendix C for derivations):
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Figure 6: Three networks with increasing degrees of segregation.


xH = 1

2 [ αH+αL

γ1+γ0−d(φ− γ1 − γ2) + γ2d
2 + αH−αL

γ1+γ0+γ2d2(1−2q)
2
+d(1−2q)(φ−γ1−γ2)

]

xL = 1
2 [ αH+αL

γ1+γ0−d(φ− γ1 − γ2) + γ2d
2 + αL−αH

γ1+γ0+γ2d2(1−2q)
2
+d(1−2q)(φ−γ1−γ2)

]
(22)

Equilibrium behavior of each type is the sum of two terms. The first common term coincides
with the equilibrium behavior if all agents had preferences αH+αL

2 . The second term measures
how types’ actions are spread around this mean. Symmetry of the spread implies that the
average behavior is not affected by q. In the example of Figure 7, the spread is increasing for
low q and decreasing for high q, reaching its maximum at an intermediate level of segregation
q̄ = φ−γ1−γ2(1−2d)

4dγ2
> 1

2 . As proposition 8 shows, this non monotonic relation occurs in the range
of degrees for which the average action is a decreasing function of the degree:

xh

xl

q

Average Action

0.0 0.2 0.4 0.6 0.8 1.0
q

0.01

0.02

0.03

0.04

0.05

0.06

0.07
xh xl

Figure 7: Spread: Parametrization: γ0 = 0, γ1 = 0.85, γ2 = 0.1, φ = 1, αH = 1.5, αL = 1, d = 10.

Proposition 8 When d < d∗, the spread between xH and xL is monotonically increasing in q,
where d∗ is as in proposition 5. When d > d∗, the spread is non monotone in q, reaching its
maximum at q̄ ∈ (1/2, 1], where q̄ is decreasing in γ1, γ2 and d. Moreover, the maximal spread
is independent of the degree.
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Proposition 8 implies that increases in segregation are first followed by increased heterogene-
ity in behavior, and, as segregation increases, by homogenization of behavior. In a model of pure
peer effects (i.e, with γ2 = 0), segregation would unambiguously increase H types’ equilibrium
action and decrease L types’ action. From the expression of q̄, we also note that the presence
of externalities and of convex damages cannot, alone, imply the non monotone relation between
segregation and spread, since q̄ > 1 for very low levels of γ2.

The crucial role of altruism for this non monotonicity becomes clear once we consider the
forces at work as q increases. At low levels of q, H agents are mainly surrounded by L agents
and viceversa. Thus, given that H agents always choose higher actions than those chosen by L
agents, the stock of externality experienced by H agents from their neighbors is smaller than
the one experienced by L agents. An increase in q has the effect of replacing L agents with H
agents in the neighborhood of H agents. This naturally tends to drive H actions up via the
net peer effect. For low q’s, the lower stock experienced by the new H neighbors compared to
the replaced L agents reinforces the peer effect in driving the H action up. As q increases, H
agents tend to have more and more H neighbors, and therefore to be recipients of larger and
larger stocks of externality compared to L agents. For large enough q, replacing L neighbors
with H neighbors increases the overall marginal damage for H agent (this occurring sooner the
larger γ2), and when this outweigh the peer effect, H actions start decreasing. Key to the above
argument is the fact that, while peer effects apply to flows of individual actions, altruism applies
to stocks of actions in each agent’s neighborhood. While H actions always exceed L actions,
the stock in H neighborhoods is smaller for small q and larger for large q’s than the stock in L
neighborhoods. Hence the non monotonicity result follows.

5 Implications for empirical work on peer effects

In this final section we wish to discuss how the explicit consideration of externalities and altruism
modifies the procedure for the estimation of peer effects in social networks proposed in the recent
econometric literature on the subject (Bramoullé et al., 2009; Lee et al., 2010; Liu and Lee, 2010;
Liu et al., 2012).1 We start by considering the FOC in (2), allowing for a possibly heterogeneity
in αi:

αi − σixi + (φ− γ1 − γ2)
∑
j∈N

gijxj − γ2
∑
k 6=i

g
[2]
ik xk = 0 (23)

where, as previously defined, σi = γ0 + γ1 + γ2di. Letting σ = γ0 + γ1, (23) can be rewritten
as follows:

αi − σxi + (φ− γ1 − γ2)
∑
j∈N

gijxj − γ2
∑
k∈N

g
[2]
ik xk = 0, (24)

where αi accounts for a set of observable personal characteristics (zi),
2 average friends’

characteristics ( 1
di

∑
gijzi) and a random error term ε. The FOC to be estimated can now be

written as:

xi =
θ

σ
zi +

κ

σ

1

di

∑
j∈N

gijzi +
(φ− γ1 − γ2)

σ

∑
j∈N

gijxj −
γ2
σ

∑
k∈N

g
[2]
ik xk + ε. (25)

Note that the parameters are identified up to a normalization, since every coefficient is
divided by a factor σ measuring the concavity of agent’s utility function. Which parameters we

1To keep the model simple and to make it comparable to the previous literature we do not include in the
specification neither a constant term nor a network fixed effect

2Assume without loss of generality that we include in the model just one demographic characteristic.

16



are able to identify will depend on which (nested) model we want to estimate, that is whether
or not γ0 and γ1 are different from zero. In particular, under the appropriate identification
conditions, to be discussed in section 5.2, when γ0 = 0, the model identifies both φ

γ1
and γ2

γ1
,

capturing the pure net peer effects and the degree of altruism.
Define G∗ to be the row normalized matrix G, with g∗ij = 1

di
gij . As previously defined, G2

is the matrix counting the number of two-distance walks between agents, with diagonal terms
di. Calling ρ = θ

σ , ζ = κ
σ we obtain the following matrix form specification.

x = β1Gx+ β2G
2x+ ρz + ζG∗z + ε (26)

The action x is determined by the sum of the actions chosen by peers (Gx), the actions
chosen by two-distance neighbors (G2x), own demographics (z), own neighbors’ demographics
(G∗z) and a random error term ε.

The next subsections are structured as follows. In 5.1 we characterize the biases, due to
externalities and altruism, that arise in the estimation of peer effects, in 5.2 we derive new
conditions for identification of the model with altruism. Finally, in 5.3, we present the optimal
set of instruments.

5.1 Bias in the estimation of peer effects

Even when altruism is not present, the value of the parameter β1 can be interpreted as the peer
effect modified by the effect of externalities. Such a value would be smaller than the one we
would obtain if externalites did not play any role.

Let us now consider the case of altruism (γ2 > 0), and its effect for the estimation of β̂1.
Suppose that we do not include G2x in the model in equation (26) (as in Bramoullé et al., 2009;
Lee et al., 2010; Liu and Lee, 2010), thus estimating the following:

x = β1Gx+ ρz + ζG∗z + ε (27)

Using the usual omitted variable bias formula (see, for example, Angrist and Pischke, 2008),
the coefficient of the peer effect β̂1 can be written as the sum of the real effect β1 and a bias,
derived from the correlation between the omitted variable G2x and the included explanatory
one Gx:

Cov(x,Gx)

V ar(Gx)
= β1 + β2δG2x,Gx (28)

where δG2x,Gx is the coefficient from a regression of G2x on Gx. The theoretical model
suggests the patterns of substitutability and complementarity between the actions of the agents
in the network. In particular, we expect that altruistic agents decrease their equilibrium choices
when the stock of negative externalities their friends are exposed to increases. For such a reason
we expect the coefficient associated to second order neighbors β2 to be negative (see equation
25). However, the quantities chosen by friends and by second order neighbors are between
them strategic complements (because of peer effects) and thus δG2x,Gx is positive. Thus, the
omitted variable bias β2δG2x,Gx is always negative and the peer effects in (27) systematically
underestimated. Moreover, the larger the complementarities between first and second order
neighbors’ choices, the larger the bias.

5.2 Identification

As shown by Manski (1993), identification in a model with peer effect is difficult due to the
reflection problem. However, when networks are not complete so that people do not interact
in groups and data on the network interaction is available, identification can be achieved under
some conditions. This section expands the results provided in Bramoullé et al. (2009) by looking
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at the identification issue in a model with and without altruism, by focusing on two relevant
cases: G = G∗ and G 6= G∗. The first case is the one that received most theoretical attention.
In particular, the empirical peer effect literature starting from Manski (1993) considers peer
effect to be the result of the average behavior around each agent (see Bramoullé et al., 2009; Lee
et al., 2010). In this framework both neighbors’ behaviors and their characteristics influence the
agents by means of the same row-normalized social interaction matrix. The recent theoretical
literature on peer effects, in contrast, considers the aggregate of neighbors’ actions as the source
of local complementarities. Thus, if we assume that neighbors’ aggregate personal characteristics
influence agents’ choices, again G = G∗. This case, in which G = G∗ and the matrix is not row
normalized, is studied by Liu and Lee (2010). The case in which G 6= G∗, i.e. peer effects result
from aggregate neighbors’ behavior (as in our theoretical model, i.e. G not row-normalized),
while the average of neighbors’ demographic matters (i.e. G∗ is row-normalized) does not fall
in the previous two categories, and is explored in Case 2.

Case 1. G = G∗

Proposition 9 (Bramoullé et al. (2009)) If there is no altruism, the model in (27) identifies
β1, if ζ + β1ρ 6= 0 and I,G and G2 are linearly independent.

This sufficient condition states that, when demographics have some explanatory value (ζ +
β1ρ 6= 0), the peer effect cannot be identified in fully connected networks. Consider now the
case with altruism in (26):

Proposition 10 Let G = G∗. If I,G,G2,G3 are linearly independent, the net peer effect β1
and the effect of altruism β2 in (26) are identified if β1ζ + ζ2

ρ + β2ρ 6= 0 and ρ 6= 0.3

Notice that, with respect to the previous case with no altruism, when β2 6= 0 more restrictive
conditions are required in order to identify parameters β1 and β2. The conditions on the networks
are the same found by Bramoullé et al. (2009) in a model without altruism and with network
fixed effects.

Case 2. G 6= G∗

Consider the model without altruism in (27). Adapting to our framework the results from
Bramoullé et al. (2009), the following holds:

Proposition 11 Consider the model (27) and let G 6= G∗. If I,G,G∗,GG∗ are linearly inde-
pendent and if ρ 6= 0 or ζ 6= 0, the net peer effect β1 is identified .

It is now important to identify which classes of networks are ruled out by the above sufficient
conditions for indentification. Note first that I is linearly dependent with G and also with G∗

only in the empty network. Note then that G and G∗ are linearly dependent only in regular
networks, where d is the common degree and G = 1

dG
∗. Finally, let us consider when GG∗ is

linearly independent from both G and G∗. Since GG∗ keeps track of weighted distance-two
paths, while G and G∗ just consider distance-one neighbors, a necessary condition for linear
dependence is that all triangles in G close, leading to the complete network. However, a complete
network has already been excluded as it belongs to the class of regular networks. It follows that
in order to identify the peer effect in model (27), all regular networks must be excluded.

Let us then consider the model with altruism in equation (26).

3Note that this condition can be written as ζ + β1ρ + β2ρ
2

ζ
, which is a modification of the one found by

Bramoullé et al. (2009)
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Proposition 12 Consider model (26) and let G 6= G∗. If I,G,G2,G∗,GG∗,G2G∗ are lin-
early independent and if ρ 6= 0 or ζ 6= 0, the peer effect β1 and the effect of altruism β2 are
identified.

The introduction of altruism restricts the set of networks that enable the identification of
both peer effect and altruism. In fact, together with regular networks, other classes of networks
must be excluded. These include the star, where G2G∗ = (n− 1)G∗, and the network in figure
3b, in which GG∗ = 1

2G2.

5.3 Choice of the instruments

Let us write the complete model to be estimated as follows:

xr = β1Grxr + β2G
2
rxr + Zr

∗δ + εr (29)

where r is the number of networks in the dataset, nr the number of individuals in the
network, xr = (x1,r, ......, xnr,r)

′, zr = (z1,r, ......, znr,r)
′, εr=(ε1,r ,......, εnr,r), Z∗r = (zr,G

∗zr) and
δ = (ζ, ρ)′, β1 captures the peer effect, β2 the effect of altruism.

Defining M1r = [I − β1Gr]
−1, it is easy to see that the variables Grxr and G2

rxr are
endogenous because they are the result of the same maximization process.

Following Liu et al. (2012), we derive the explicit expression for the two endogenous variables
(see Appendix B), that can be rewritten as follows:

(30)

E(Gxr) = ρGr

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]jzr + ρβ1

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jG2

rz +

ζ
∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jGrG

∗
rzr

(31)

E(G2xr) = ρG2
r

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]jzr + ρβ1

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jG3

rzr

+ ζ

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jG2

rG∗rzr

The endogenous variable Gxr is still correlated with Gzr,G
2zr,GG∗zr (and some higher

terms) used in Liu et al. (2012). In addition, G2xr is correlated with G2zr,G
3zr,G

2G∗zr (and
some higher terms) but not with Gzr. Given that both Grxr and G2

rxr are endogenous variables,
the rank condition valid for identification is modified with respect to the case in which just one
endogenous variable is present. Call now W the total set of exogenous variables, i.e. exogenous
variables Z included in the model (demographics and friends characteristics) and instruments
Q, and V the set of all explanatory variables, i.e. W and the endogenous Gxr and G2xr. Thus,
the usual rank condition can be split in two parts: (Wooldridge, 2002):

1. rank E(W ′W ) = l

2. rank E(W ′V ) = k .

Where l is the number of exogenous variables W and k the total number of the explanatory
variables. Notice that identification is not achieved if the fitted values of the first stages Ĝxr
and ˆG2xr are perfectly collinear. Write both Ĝxr and ˆG2xr as a linear combination of two
instruments (Q1 = Gzr and Q2 = G2zr) multiplied by the coefficents obtained in the two
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(different) first stages, Ĝxr = b1Q1 + b2Q2 and ˆG2xr = c1Q1 + c2Q2. If c1 = 0 after controlling
for Q2, and if b1 and b2 are both different from zero, then the fitted values of the two endogenous
variables cannot be perfectly collinear and β̂1 and β̂2 are identified and consistent.4 Note that
the condition c1 = 0 is not necessary for identification, but it just ex ante rules out the presence
of multicollinearity in the set of instruments.

6 Conclusions

When social relations generate both peer effects and local externalities which are, to some extent,
internalized by agents, the network of strategic interaction generically differs from the network
of social relations. In particular, in our model agents that share neighbors end up displaying
strategic substitutability in the underlying game. We have shown that this has implications
for the relation between agents’ centralities in social relations and agents’ equilibrium behavior,
inducing peripheral agents to take larger actions than central ones. We have also shown that
key-players also move towards the periphery of the network, and that the optimal use of other
policy instruments is affected. In terms of empirical research, externalities and altruism have
been shown to have implications for the estimation of social effects, restricting the set of networks
for which identification is possible, and introducing biases in the estimation. The strategic
substitution between distance-two neighbors is a general feature of problems where actions
accumulate into stocks of externalities, and it is a new and previously unnoticed characteristic
of network models, that applies more generally than in the linear quadratic model studied in this
paper. Similar mechanisms could be introduced, for instance, in the “network games” framework
of Galeotti et al. (2010), where limited information on the network is assumed, but statistical
information about agents at distance two is available.
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Bramoullé, Y., Djebbari, H., and Fortin, B. (2009). Identification of peer effects through social
networks. Journal of Econometrics, vol. 150(1):41–55.
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Appendix A: Utility Function

In this Appendix we give all the computations necessary in order to rewrite the utility function
as in equation (2).

Ui = αixi − γ0
x2i
2

+ φ
∑
j∈N

gijxixj − γ1
1

2
(
∑
j∈N

gijxj + xi)
2 − γ2

1

2

∑
j 6=i

(
∑
k∈N

gjkxk + xj)
2 (32)

Now

(
∑
j∈N

gijxj + xi)
2 = x2i + (

∑
j∈N

gijxj)
2 + 2

∑
j∈N

gijxixj = x2i + h−i + 2
∑
j∈N

gijxixj

Consider the second part of (32)∑
j 6=i

(
∑
k∈N

gjkxk + xj)
2 =

∑
j 6=i

[
∑
k∈N

gjkxk + xj ]
2 =

∑
j 6=i

[x2j + (
∑
k∈N

gjkxk)
2 + 2

∑
k∈N

gjkxjxk] =

∑
j 6=i

x2j +
∑
j 6=i

(
∑
k∈N

gjkxk)
2 + 2

∑
j 6=i

∑
k∈N

gjkxjxk =

∑
j 6=i

x2j +
∑
j 6=i

(
∑
k∈N

gjkxk)
2 + 2

∑
j 6=i

∑
k∈N

gjkxjxk

Now, consider the second term of the last equation

(
∑
k∈N

gjkxk)
2 = (

∑
k 6=i

gjkxk + gjixi)
2 = (

∑
k 6=i

gjkxk)
2 + (gjixi)

2 + 2
∑
k 6=i

gjkgjixkxi

so that ∑
j 6=i

(
∑
k∈N

gjkxk)
2 =

∑
j 6=i

(
∑
k 6=i

gjkxk)
2 +

∑
j 6=i

(gjixi)
2 +

∑
j 6=i

2
∑
k 6=i

gjkgjixkxi =

= h−i + dix
2
i + 2

∑
k 6=i

g
[2]
ik xixk

Note now that

2
∑
j 6=i

∑
k∈N

gjkxjxk = 2
∑
j 6=i

gjixjxi + 2
∑
j 6=i

∑
k 6=i

gjkxjxk = 2
∑
j 6=i

gijxixj + h−i

Thus the utility is given by

Ui = αixi − γ0
x2i
2

+ φ
∑
j∈N

gijxixj −
1

2
γ1[x

2
i + h−i + 2

∑
j∈N

gijxixj ]−

1

2
γ2[
∑
j 6=i

x2j + h−i + dix
2
i + 2

∑
k 6=i

g
[2]
ik xixk + 2

∑
j 6=i

gijxixj + h−i]

so that

Ui = αixi − γ0
x2i
2

+ (φ− γ1 − γ2)
∑
j∈N

gijxixj −
1

2
[γ1 + γ2di]x

2
i − γ2

∑
k 6=i

g
[2]
ik xixk + h−i
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that becomes

Ui = αixi −
1

2
σix

2
i + (φ− γ1 − γ2)

∑
j∈N

gijxixj − γ2
∑
k 6=i

g
[2]
ik xixk + h−i

Appendix B: Choice of the instruments

E(Gxr) = β2GrM1rG
2
rx+ ρGrzr + ρβ1GrM1rGrzr + ζGrM1rG

∗
rzr (33)

and defining M2r = (I− β2M1rG
2
r )−1, we get

E(Gxr) = ρGrM2rzr + ρβ1GrM2rM1rGrzr + ζGrM2rM1rG
∗
rzr (34)

substituting M1r =
∑∞

j=0(β1Gr)
j we get

E(Gxr) = ρGrM2rzr + ρβ1M2r

∞∑
j=0

(β1Gr)
jG2

rz + ζM2r

∞∑
j=0

(β1Gr)
jGrG

∗
rz (35)

E(G2xr) = ρG2
rM2rzr + ρβ1M2r

∞∑
j=0

(β1Gr)
jG3

rzr + ζM2r

∞∑
j=0

(β1Gr)
jG2

rG∗rzr (36)

Substituting M2r =
∑∞

j=0[β2
∑∞

j=0(β1Gr)
jG2

r ]j into (35) and (36)

(37)

E(Gxr) = ρGr

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]jzr + ρβ1

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jG2

rz +

ζ

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jGrG

∗
rzr

(38)

E(G2xr) = ρG2
r

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]jzr + ρβ1

∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jG3

rzr

+ ζ
∞∑
j=0

[β2

∞∑
j=0

(β1Gr)
jG2

r ]j
∞∑
j=0

(β1Gr)
jG2

rG∗rzr

Appendix C: Proofs

Proof of Proposition 2. Let U denote the n × n matrix of ones. We can rewrite the first
order conditions (3) as follows:

α1̄ =

[
(γ1 + γ0)I +

γ2
η

(θ ·U− λC)

]
x̄.

Rearranging terms we get:

α

γ1 + γ0
1̄− γ2

η(γ1 + γ0)
θUx̄ =

[
I− γ2

η(γ1 + γ0)
λC

]
x̄.

By writing Ux̄ = x1̄

23



α

γ1 + γ0
1̄− γ2

η(γ1 + γ0)
θx1̄ =

[
I− γ2

η(γ1 + γ0)
λC

]
x̄.

A sufficient condition for the matrix
[
I − γ2

η(γ1+γ0)
λC
]

to admit a positive inverse is that

1 > λγ2
η(γ1+γ0)

µ(C), with µ(C) being the largest eigenvalue of the C matrix. Under this restriction
we write: [

I− γ2
η(γ1 + γ0)

λC

]−1
(

α

γ1 + γ0
− γ2
η(γ1 + γ0)

θ · x)1̄ = Ix̄. (39)

Using the definition of Bonacich centrality vector, we can now write:

α

γ1 + γ0
b

(
C,

λγ2
η(γ1 + γ0)

)
− γ2
η(γ1 + γ0)

θxb

(
C,

λγ2
η(γ1 + γ0)

)
= Ix̄ (40)

In order to ease notation, from now on we drop the argument of the centrality vectors.
Premultiplying by 1̄′ we get:

α

γ1 + γ0
b− γ2

η(γ1 + γ0)
θbx = x

and thus

x =
αηb

η(γ1 + γ0) + γ2θb

substituting this into (40) we get the result of the proposition.

Proof of Proposition 3. Let us rewrite the FOC (3) as follows:

αI1̄− γ2(G + G2)x̄ = ((γ1 + γ0)I− (φ− γ1)G)x̄ (41)

from which we obtain:

αI1̄− γ2(G + G2)x̄ = (γ1 + γ0)(I−
(φ− γ1)
γ1 + γ0

G)x̄ (42)

Recalling that (I− (φ−γ1)
γ1+γ0

G)−1 is the Bonacich centrality matrix M(G, (φ−γ1)γ1+γ0
), we can write

(dropping the arguments for simplicity):

α

γ1 + γ0
M1̄−M

γ2
γ1 + γ0

(G + G2)x̄ = x̄ (43)

Rearranging terms we get:

α

γ1 + γ0
M1̄ = [I +

γ2
γ1 + γ0

M (G + G2)]x̄ (44)

If the matrix [I + γ2M(G + G2)] is invertible, we write:

α

γ1 + γ0
[I +

γ2
γ1 + γ0

M(G + G2)]−1M1̄ = x̄. (45)

Since all matrices are symmetric, reorganizing terms and using the definition of weighted
centrality we obtain the desired expression.

Proof of Proposition 6. Consider first a node k 6∈ Z such that gkz = 0 for all z ∈ Z. We
have g̃ki = g̃′ki for all i ∈ N . Consider then a node k 6∈ Z such that gki = 1 for at least one
i ∈ Z. We have that g̃′ki <˙kiand˙kz≤ g̃kz for all z ∈ Z. Consider now any two nodes i, j ∈ Z,

24



for which, by construction, g′ij − gij = 1. We also have g′
[2]
ij − g

[2]
ij = ρ+ 2− 2, since all nodes in

Z are now linked with each other. Thus g̃′ij − g̃ij = 1− ργ2
φ−γ1−γ2 ≤ 0 since we have assumed that

(φ− γ1 − γ2) ≤ ργ2. Thus, g̃′ij ≤ g̃ij for all i, j ∈ Z with at least one strict inequality.

Proof of Proposition 7. For ease of notation call

A =
γ2θ

(γ1 + γ0)(η(γ1 + γ0) + γ2θb(C,
λγ2

η(γ1+γ0)
))

Consider now equation (21) and call b(C, λγ2
η(γ1+γ0)

, α) ≡ bα. We have that

∂xi

∂αj
=

1

γ1 + γ0
[ηmij −Abi ∂bα

∂αj
], ∀i, j

note that

∂bα
∂αj

=
∑
i

mij

Recall that, given symmetry of matrix M, we have that
∑
i

mij = bj , so that

∂xi

∂αj
=

1

γ1 + γ0
[ηmij −Abibj ]

Now

∂x

∂αj
=
∑
i

∂xi

∂αj

so that

∂x

∂αj
=

1

γ1 + γ0

∑
i

[ηmij −Abibj ] =
1

γ1 + γ0
[η −Ab]bj

so that the key player is the agent j with the highest bj .

Proof of Proposition 4. We start by considering the matrix:

M

(
G− γ2

(φ− γ1 − γ2)
G2,

(φ− γ1 − γ2)
γ1 + γ0

)

)
≡ [I− (φ− γ1 − γ2)

γ1 + γ0
(G− γ2

(φ− γ1 − γ2)
G2]−1 (46)

which by (4) determines equilibrium behavior up to proportionality factor.
This can be rewritten as:

∞∑
k=0

Gk[
(φ− γ1 − γ2)
γ1 + γ0

I +
γ2

γ1 + γ0
G]k =

∞∑
k=0

1

(γ1 + γ0)k
Gk[(φ− γ1 − γ2)I− γ2G]k (47)

Applying the binomial expansion to the second term we get:

∞∑
k=0

1

(γ1 + γ0)k
Gk

k∑
i=0

(
k

i

)
(φ− γ1 − γ2)i(−γk−i2 )Gk−i (48)

from which
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∞∑
k=0

1

(γ1 + γ0)k

k∑
i=0

(
k

i

)
(φ− γ1 − γ2)i(−γk−i2 )G2k−i (49)

The derivative of this with respect to γ2 evaluated at the point γ2 = 0 is:

lim
γ2→0

∑∞
k=0

1
(γ1+γ0)k

∑k
i=0

(
k
i

)
(φ− γ1 − γ2)i(−γ2)k−iG2k−i −

∑∞
k=0

1
(γ1+γ0)k

(φ− γ1)kGk

γ2
(50)

lim
γ2→0

∑∞
k=0

1
(γ1+γ0)k

[
∑k

i=0

(
k
i

)
(φ− γ1 − γ2)i(−γ2)k−iG2k−i − (φ− γ1)kGk]

γ2
(51)

Note now that: for k = i we have
(
k
i

)
= 1, γk−i2 = 1 and G2k−i = Gk; for k − i ≥ 2 we have

γk−i2
γ2

= 0; for k − i = 1 we have
(
k
i

)
= k, (−γk−i2 ) = −γ2 and G2k−i = Gk+1. Summing up we

obtain:

(52)

−
∞∑
k =0

1

(γ1 + γ0)k
k(φ− γ1)k−1Gk+1 = −G

∞∑
k=0

[
∂

∂(φ− γ1)
(φ− γ1)k]

1

(γ1 + γ0)k
Gk

= −G
∂

∂(φ− γ1)

∞∑
k=0

1

(γ1 + γ0)k
(φ− γ1)kGk

= −G
∂M(G, φ−γ1γ1+γ0

)

∂φ
.

Summing up we obtain:

∂

∂γ2
M

(
G̃,

(φ− γ1 − γ2)
γ1 + γ0

)
|γ2=0= −G

∂M(G, φ−γ1γ1
)

∂φ
= −

∂M(G, φ−γ1γ1+γ0
)

∂φ
G (53)

where the last equality comes from symmetry of all involved matrices. Post multiplying the
first and last term in the above equalities by 1̄ we finally get:

∂

∂γ2
M

(
G̃,

(φ− γ1 − γ2)
γ1 + γ0

)
|γ2=0·1̄ = − ∂

∂φ
b̄(G,

φ− γ1
γ1 + γ0

, d), (54)

which proves the first part of the proposition.
Turning now to the second part of the proposition, and using the following expression of the

centrality matrix for G:

M(G,
φ− γ1
γ1 + γ0

) =
∞∑
k=0

(
φ− γ1
γ1 + γ0

)kGk, (55)

Using (54) and taking derivatives with respect to φ:

∂2

∂γ2∂φ
b̄
(
G̃, (φ−γ1−γ2)γ1+γ0

)
|γ2=0= − ∂2

∂φ2
b̄(G, φ−γ1γ1+γ0

, d) = − 1
(γ1+γ0)2

∞∑
k=0

[Gkk(k − 1)(
φ− γ1
γ1 + γ0

)k−2] · d < 0

Proof of Proposition 8. Each agent has dq neighbors of own type and d(1− q) neighbors of
different type. Moreover, let t ∈ L,H and consider an agents of type t. dq(dq−1) is the number
of agents of type t (other then self) connected with neighbors of type t; d(1− q)[d(1− q)− 1] is
the number of agents of type t connected with neighbors of type different from t; dqd(1− q) is
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the number of agents of type different from t connected with neighbors of type t; d(1−q)dq is the
number of agents of different from t connected with neighbors of different from t. Consequently,
by imposing symmetry on the FOC of each type, we get

αH − σxH + dq(φ− γ1 − γ2)xH + d(1− q)(φ− γ1 − γ2)xL

−γ2{dq[dq − 1] + d(1− q)[d(1− q)− 1]}xH − γ2{dqd(1− q) + d(1− q)dq}xL = 0

αL − σxL + dq(φ− γ1 − γ2)xL + d(1− q)(φ− γ1 − γ2)xH

−γ2{dq[dq − 1] + d(1− q)[d(1− q)− 1]}xL − Γ2{dqd(1− q) + d(1− q)dq}xH = 0

(56)

and the equilibrium in (22) is derived.
In order to prove that the maximal spread in independent from d, simply note that q̄ is inde-
pendent from the level os segregation. Thus call the spread S and notice that

S(q =
φ− γ1 − γ2(1− 2d)

4dγ2
) = − 4(αH − αL)γ2

γ21 − 4γ0γ2 + (γ2 − φ)2 − 2γ1(γ2 + φ)

Proof of Proposition 10.
The reduced form is:

x = (I− β1G− β2G2)−1(ρI + ζG)z + (I− β1G− β2G2)−1ε

Consider two sets of structural parameters (α, β1, ρ, ζ, β2) and (α′, β′1, ρ
′, ζ ′, β′2). If they lead

to the same reduced form, it means that (I−β1G−β2G2)−1(ρI+ζG) = (I−β′1G−β′2G2)−1(ρ′I+
ζ ′G). Premultiply the second equality by (I− β1G− β2G2)(I− β′1G− β′2G2) we get

(I− β′1G− β′2G2)(ρI + ζG) = (I− β1G− β2G2)(ρ′I + ζ ′G)

which can be rewritten as

(ρ− ρ′)I + (ζ − ζ ′ + β1ρ
′ − β′1ρ)G + (β1ζ

′ − β′1ζ + β2ρ
′ − β′2ρ)G2 + (β2ζ

′ − β′2ζ)G3 = 0

if I,G,G2,G3 are linearly independent, then

ρ = ρ′ (57)

ζ ′ − β1ρ′ = ζ − β′1ρ (58)

β1ζ
′ − β2ρ′ = β′1ζ − β′2ρ (59)

β2ζ
′ = β′2ζ (60)

Consider now β′2ζ 6= 0, thus ζ 6= 0. From (60) define ζ ′ = λζ and β′2 = λβ2
so (59) becomes

β1λζ − β2ρ = β′1ζ − λβ2ρ (61)

and (58) becomes

λζ − β1ρ = ζ − β′1ρ (62)

from (62)

β′1 = β1 −
λζ

ρ
+
ζ

ρ
(63)

sustituting in (61) we get

β1λζ − β2ρ = (β1 −
λζ

ρ
+
ζ

ρ
)ζ − λβ2ρ (64)
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β1λζ − β2ρ = β1ζ −
λζ2

ρ
+
ζ2

ρ
− λβ2ρ (65)

β1λζ +
λζ2

ρ
+ λβ2ρ = β1ζ +

ζ2

ρ
+ β2ρ (66)

If β1ζ + ζ2

ρ + β2ρ 6= 0 and ρ 6= 0,

λ(β1ζ +
ζ2

ρ
+ β2ρ) = β1ζ +

ζ2

ρ
+ β2ρ (67)

i.e. λ=1, so the two sets of parameters are the same.
Consider now β2ζ = 0. This can be due to either ζ = 0, or β2 = 0 (or both).
Consider first the case of ζ = 0, then the coefficients associated to G and G2 become

β1ρ
′ = β′1ρ (68)

β2ρ
′ = β′2ρ (69)

So β1 and β2 are identified if ρ 6= 0, and thus identified from (57).
Consider now the case of β2 = 0 so that the problem collapses to the case of Bramoullé et al.
(2009) so that the coefficients are identified if ζ + β1ρ 6= 0.

Proof of Proposition 11. We can write (27) as:

x = (I− β1G)−1(ρI + ζG∗)z + (I− β1G)−1ε

Consider two sets of parameters (β1, ρ, ζ) and (β′1, ρ
′, ζ ′) that provide the same estimates. Then

(I− β1G)−1(ρI + ζG∗) = (I− β′1G)−1(ρ′I + ζ ′G∗)

Multiplying both sides by (I− β1G)(I− β′1G) we obtain

(I− β′1G)(ρI + ζG∗) = (I− β1G)(ρ′I + ζ ′G∗)

This can be rewritten as

(ρ− ρ′)I + (ζ − ζ ′)G∗ − (ρβ′1 − ρ′β1)G− (ζβ′1 − ζ ′β1)GG∗ = 0

Suppose I,G,G∗,GG∗ to be linearly independent. Then ρ = ρ′ and ζ = ζ ′. If ρ 6= 0 or ζ 6= 0
then it immediately follows that β1 = β′1.

Proof of Proposition 12. We can write (26) as

x = (I− β1G− β2G2)−1(ρI + ζG∗)z + (I− β1G− β2G2)−1ε

Consider two sets of parameters (β1, β2, ρ, ζ) and (β′1, β
′
2, ρ
′, ζ ′) that provide the same esti-

mates. Then

(I− β1G− β2G2)−1(ρI + ζG∗) = (I− β′1G− β′2G2)−1(ρ′I + ζ ′G∗)

Premultiplying both sides by (I− β1G− β2G2)(I− β′1G− β′2G2) we obtain

(I− β′1G− β′2G2)(ρI + ζG∗) = (I− β1G− β2G2)(ρ′I + ζ ′G∗)

This can be rewritten as
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(ρ−ρ′)I+(ζ−ζ ′)G∗−(ρβ′1−ρ′β1)G−(ζβ′1−ζ ′β1)GG∗−(ρβ′2−ρ′β2)G2−(ζβ′2−ζ ′β2)G2G∗ = 0

Suppose I,G,G2,G∗,GG∗,G2G∗ to be linearly independent. Then ρ = ρ′ and ζ = ζ ′. If
ρ 6= 0 or ζ 6= 0 then it immediately follows that β1 = β′1 and β2 = β′2.
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