

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

AGRICULTURAL HOUSEHOLD INCOME AND RMPLOYMENT A preliminary analysis for Rural Java
 M.Husein sawit and Dennig T. o'arien**

I. Introduction

The Problem

That in algo true of heuseheid vacour which is used on thet: Sares but 40 btcen aiso engaged in a wide zange of Sther artuvicuea. Hownenoids part of their labour
 4a prswided by the *amiz. The housenotia tact compex sesussion eareemang predsecion, aliccation of tamily Aatour and mansumption. Nowever. Eost studies concerning agrscu:*urai nousencias an Indenesia. have assumed that monsentids cehave eqther an pure consumers or pure producera an postuiated by necciansical economics. For oxampie. on the production side, see among others: Kasryns (1985\%. Hutabarat 11986): Smatupang 11986): and in the sensumptwen side. dee among ochers: Suryana and Rashman R19860. Sudaryanto 11990 .

The usvai anaiyces. do not provide a sufticienc Eramework so tnderstand the ceplexicy of rurai mousehoid behaviour in Java where the household is moch a preducer and consumer in several markecs.

The incention of thes paper is so intergrate both the production and conrumption unies of rurat households anto a theoretical Framework as developed by Lau. Lin and Yocopoulos (1978). and Barnum and Squire(1979). The man purpose of this paper 15 to evaluace the eftects aiternacive pricing polietes for inputs and outputs on different household types. The analysis examines: fil housenoid inceme. (12) housenold labour supply. (114)

[^0]mowbehold agricuituraz demand and marketabie surplus of agricuituras preduret.

Study Area and The Data
 rever basins in Java, and the Jargest ruver basin in West *ava. Ekike other Fiver basins in Indonesia. che area is hecercpeneoss. not oniy in term of bio-physical Gondiciens guth as elevacion, semperature, ratnfall, soll type but aso in serms octio-economic tactors.

In :976. she province of West Java conststed of 3.910 vi:iages of wich twenty percent were in the CRB. The ERB includes Evve districs Garut. Sumedang. Ma;aiengka. Ezecon and Indramayu). The data used in this anaiysis ceme tron 313 ruxal households spread aeross six viliages in each of the inve districes of west Java. In thss paper oniy 169 owner-operators and tenant *armers are anaivzed. Share-croppers are excluded in the analysis.

The data which were collected in 1984, includes informacion on agricultival production: ioed crops. nonEood crops. itvestock and Eishpond: Lavour used both in agricultural and non-agricultural activities: nonagricslcural incere: hossehoid consumption of both its Cwn preduction and market gocds; and land-tenure. The study is a preimmanay anaiysis and concentrates on one crop. rice. as the important foed crop in many parts of rural चava. and one crap-season the dry geason. 1983.

Household Production Theory
The rural household is assumed to maximise the value of
:5s -wisity function equation ts subject to chree
constraines namely: production lequation 21 . cime (equation 31 and income fequation 4).

The housenold utiluty function is:

$$
v=U\left(R, C, M ; a_{i}\right)
$$

subject co three constraints are:

$$
\begin{array}{ll}
Q=Q(L, F ; A, K) & \ldots 2 \\
D=R+F_{I} & \ldots 3 \\
Q N=p(Q-C)-W_{2}\left(L-F_{1}\right)-W_{2} F+0 & \ldots 4
\end{array}
$$

where:
C. $M=$ comodities consumed by members of the family; own/agricultural product. (C) and purchased commodity(M).
$R \quad=$ leisure (time consumed by household members) or non working time.
Q = agricultural output produced by the housahold
L.F = variable inputs:labour(I) and fertilizer(F) used in production.
$\mathrm{K}, \mathrm{A}=\mathrm{fixed}$ inputs: capital(K) and area of land culcivated(A)
p = price of agricultural output
q = price of market commodity
w = price of labour (wages)
$w_{f}=$ price of fercinizer
D = cotal time available for household
$F_{1}=$ family labour work on their farm
$0^{1}=$ ocher income received by che household such as remittances, rent etc.
$a_{i}=$ nousehold characteristics such as family workers $\left\{a_{1}\right)$, dependent $\left(a_{2}\right)$ and age of head of household ${ }^{1}\left(a_{3}\right)$
The chree constraints can be reduced to one constraint by substituting equation 2 and 3 into equations 4. Then the Lagrangian (G) function becomes:

$$
G=U\left(R, C, M ; a_{1}\right)+\Gamma\left(p Q\{L, F ; A, K)-p C-w_{1} L+w_{1}(D-R)-w_{4} F+O-q M\right)
$$

Differentiating equation 5 with respect to R, M, C, L and F and setting each of them equal to zero yields six equations with six unknown variables:

$$
\delta U / \delta R-\Gamma W_{1}=0
$$

$\delta U / \delta C-\Gamma p=0 \quad . .7$
$\delta \mathrm{U} / \delta \mathrm{M}-\Gamma \mathrm{q}=0 \quad \ldots .8$
$\mathrm{p} \delta Q / \delta \mathrm{L}-\mathrm{w}_{1}=0 \quad \ldots .9$
$\mathrm{p} \delta Q / \delta \mathrm{F}-\mathrm{w}_{\mathrm{f}}=0 \quad$... 10
$\mathrm{pQ}(\mathrm{L}, F ; A, K)-p C-W_{1} L+w_{1}(D-R)-W_{12} F+0-q M=0 \quad \ldots 11$
If it is assumed that second order conditions for maximisation hold for equation 5 , then equations 6,7 and 8 are the standard forms of the demand equations for each commodity. Equations 9 and 10 are the standard forms of input demand functions under profit maximizing conditions. Equation 6, 7 and 8, give:

$$
\begin{gather*}
U_{r} / U_{m}=w / q \\
U_{C} / U_{m}=p / q
\end{gather*}
$$

Where $U_{i}=\delta U / \delta i \quad$ (for $i=R, C$ and M)
Rearranging equation 11 gives

$$
p Q(L, F ; A, K)-w L-W_{f} F+w D+O=E=q M+p C+w R \quad \ldots 14
$$

where $E=$ expenditure
The left hand side of equation 14 can be written as

$$
\begin{equation*}
E=\Pi+w D+0 \tag{15}
\end{equation*}
$$

where: $\Pi=p Q(L, F ; A, K)-W L-W_{f} F$
The right hand side of equation 15 is "full income" as introduced by Becker (1965). Full income consists of profit (Π), imputed value of household stock of time (wD), and other income (0). The right-hand side of equation 14 is total expenditure (E) for three
commodities including leisure time (R). The variable E is not constant as assumed in the standard demand theory. This variable becomes a function of profic and total time available for household (D) or as a function of output price, price of inputs, output level and time. These may be formulated as:

$$
E=E(\Pi, D), \quad \text { or } E=E\left(Q, p, w, w_{f}, D\right) \ldots 16
$$

The household demand function for each commodity is

$$
i=i(w, p, q, E) \text { for } i=R, C \text { and } M \quad \ldots 17
$$

where E is allowed to vary.
From the equilibrium position of households, (both in consumption and production sides). changes in household behaviour can be predicted in response to changes in the economic environment or economic variables, using comparative static analysis. The important feature of the household production theory is changes in exogenous variables such as output prices or technology, which can influence the production and consumption side in different ways (Barnum and Squire, 1979). Consumption behaviour is not independent of production behaviour. Changes either in input-output prices or production (technology) will influence the profit which then alters the consumption behaviour. By contrast, changes in commodity preferences and income do not affect household production decisions.
II. Profit Function Model

In this study, Cobb-Douglas and Translog profit functions are estimated. However, only the results for
the best model, as supported by econometric estimates from the data set is presented.

The Cobb Douglas Case
The normalized $C-D$ profit function with m variable inputs and n fixed inputs may be written in \log form as

$$
\begin{array}{r}
\ln \Pi^{*}=\ln a_{0}+\Sigma a_{i} \ln w_{i}^{*}+\Sigma \beta_{k} \ln k_{k} \quad \ldots 18 \\
\text { for } i=1,2 \ldots n \text { and } k=1,2 \ldots, m
\end{array}
$$

where: $\Pi^{*}=\Pi / p, \quad w_{i}^{*}=w_{i} / p$ and K is fixed input.
The input demand function can be derived using Hotelling's lemma:

$$
x_{i}=-\delta \Pi^{*} / \delta w_{i}^{*}
$$

The factor share of the $i^{\text {th }}$ input to total profit is:

$$
\begin{equation*}
\left(w_{i}^{*} x_{i}\right) /\left(n^{*}\right)=-\alpha_{i} \quad \text { for } i=1,2 \ldots n \tag{20}
\end{equation*}
$$

Rewriting equation 20 in \log terms, the input demand function becomes

$$
\begin{gathered}
\ln x_{i}=\ln \left(-\alpha_{i}\right)+\ln \pi^{*}-\ln w_{i}^{*} \quad(\text { for } i=1, \ldots, n) \ldots 21 \\
\text { The output supply function } \quad \text { can also be derived }
\end{gathered}
$$ from the C-D profit function. As we know that

$$
\Pi^{*}=Q_{s}^{*}-\Sigma W_{i}^{*} X_{i}
$$

then the output supply ${ }^{4}$ can be written in log terms:

$$
\ln Q_{s}^{*}=\ln \Pi^{*}+\ln \left(1-\Sigma \alpha_{i}\right)(\text { for } i=1, \ldots, n) R \quad \ldots 2
$$

The Translog Case
The general case of a normalized restricted translog profit function in \log terms for a single output is

$$
\begin{array}{r}
\ln \Pi^{*}=\alpha_{0}+\Sigma \alpha_{i} \ln \omega_{i}^{*}+1 / \Sigma \Sigma \Sigma \tau_{i h} \ln w_{i}^{*} \ln w_{h}^{*}+1 / \Sigma \Sigma \Sigma \phi_{i k} \ln w_{i}^{*} \ln z_{k} \\
+\Sigma \beta_{k} \ln z_{k}+1 / 2 \Sigma \Sigma \Phi_{k j} \ln z_{k} \ln z_{j} \ldots 23
\end{array}
$$

[^1]where:
$\pi^{*}=$ restricted profit (total revenue less total variable * cost) normalized by output price (p)
$w^{*}=$ price of variable input normalized by output price (p)

The input demand function can be derived using
Hoteling's lemma:

$$
\begin{equation*}
x_{i}=-\delta n^{*} / \delta w_{i} \tag{24}
\end{equation*}
$$

Factor share for input $i\left(S_{i}\right)$ becomes

$$
s_{i}=\alpha_{i}+\Sigma \tau_{i h} l n w_{h}^{*}+\Sigma \phi_{i k} l n K_{k} \quad \ldots 25
$$

The input demand function from the Translog profit function, may be written in log terms, it is:

$$
\begin{equation*}
\ln x_{i}=\ln \Pi^{*}-\ln w_{i}^{*}+\ln \left(-\delta \ln \Pi^{*} / l n w_{i}\right) \tag{26}
\end{equation*}
$$

The output supply is

$$
Q_{s}=\Pi^{*}\left(1-\Sigma \delta \ln \Pi^{*} / \delta 1 n \omega_{i}\right)
$$

The output supply function can be expressed in log terms as:

$$
\ln Q_{S}=\ln \Pi^{*}+\ln \left(1-\Sigma \delta \ln \Pi^{*} / \delta l n w_{i}\right)
$$

For estimating purposes, like C-D model, the Traslog profit function also has only two equations (profit and factor share equations) to be estimated, whilst the output supply equation is derived from them.

Estimated Profit Function

Firstly, the translog profit function was estimated. This function becomes the C-D case if all the second coefficients of equation 23 are zero. An F-test was conducted to test the hypothesis that $\tau_{i h}=\phi_{i k}=\Phi_{k j}=0$. The computed F^{*} was $F^{*}=0.523$ while the critical F value was $F_{0.05}(10,290)=1.83$. Therefore it was concluded that the data support the $C-D$ profit function specification.

The normalized $C-D$ profit function estimated in this study is of the form:
$\ln \Pi^{*}=\ln \alpha_{0}+\alpha_{1} \ln w^{*}+\alpha_{f} \ln w_{f}^{*}+\beta_{a} \ln A+\beta_{k} \ln K+e_{1} \quad \ldots 29$ where:
Π is total revenue less variable cost (cost of labour and fertilizer) then normalized by paddy price.
W^{*} * is wages per hour normalized by paddy price. is price per kg of fertilizer (nitrogen and phosphate) normalized by paddy price.
A is area of sawah land cultivated (Ha)
K is value of capital (in Rp). This includes bullock/tractor, seed, pesticide, interest
e_{1} is error terms
Factor shares equation for cwo variable inputs: Labour(L) and Fertilizer(F) are:

$$
\begin{array}{ll}
-w^{*} \cdot L / \Pi^{*}=c_{2}+e_{2} & \ldots .30 \\
-w_{f}^{*} \cdot F / \Pi^{*}=a_{f}+e_{3} & \ldots .31
\end{array}
$$

where:
L is labour used (male and female) both family and hired labour in production (in hours)
F is fertilizer used (nitrogen and phosphate) in kg e_{2}, e_{3} : are error terms

Coefficient α_{1} appears in both the profit function (equation 29) and the factor share for labour equation (equation 30), and α_{f} appears in the profit function (equation 29) and factor share for fertilizer equation (equation 31). In order to get efficient estimator, both equations (29 and 30 or 29 and 31) have to be estimated jointly using Zellner's Method or SURE (seemingly unrelated equation model). SURE was estimated with unrestricted and restricted estimations. For restricted estimation, the profit maximum was tested first for two variable inputs. The conclusion was that both fertilizer and labour were used under profit
maximizing conditions. Secondly, constant return to scale (CRTS) was also tested, and this test lead to the acceptance of the hypothesis that CRTS occurs ($F^{*}=0.952$ < $F_{0.5} 1,311=3.84$). Then the profit maximizing and CRTS conditions, were imposed as restrictions as seen in the last column of Table 1

The output supply function which is derived from C-D profit function (equation 29) is in the form:

$$
\ln Q s=\ln \alpha_{0}+\alpha_{1} \ln (w / p)+\alpha_{f} \ln \left(w_{f} / p\right)
$$

$$
+\beta_{a} \ln A+\beta_{k} \ln K+\ln \left(1-\alpha_{1}-\alpha_{f}\right) \quad \ldots 32
$$ The output supply and input demand elasticities were computed under CRTS and profit maximising conditions. The set of elasticities ${ }^{5}$ computed is shown in Table 2

From Table 2 we can conclude that;
(i) an increase in paddy price will serve to increase paddy output supply, and increase labour and fertilizer use. The most important effect for farm households is that paddy price increases will lead to an increase in profit from rice. If the paddy price rises by 1%, the farm profit will increase by 0.5%.
(ii) increasing wages or fertilizer price will decrease output supply and input demand. Labour demand with respect to wages is highly elastic (1.352), as is the fertilizer demand with respect to fertilizer price (1.11).
(iii) Fixed input level, especially land, has a positive effect on output, as well as on labour demand. if land
area cultivated is increased by 1\%, demand for labour, fertilizer and output supply will increase by 0.9\%.
III. Demand Systems

Neo-classical economics postulates that an individual or household will maximize utility subject to a budget constraint. Using this postulate, the demand function for a commodity can be derived.

Suppose an individual faces the following utility function for a set of commodities (q):

$$
\begin{equation*}
U=U\left(q_{1}, q_{2}, \ldots, q_{n}\right) \tag{33}
\end{equation*}
$$

subject to a budget constraint (E):
$E=p_{1} q_{1}+p_{2} q_{2}+\ldots+p_{n} q_{n} \quad($ for $i=1,2 \ldots, n) \quad \ldots 34$
where p_{i} is price of the $i^{\text {th }}$ commodity.
Using a Lacsangian function, we can derive a utility maximizing equation for each commodity $\left(q_{i}\right)$. Then the Marshallian demand function for the $i^{\text {th }}$ commodity and marginal utility of money (T) can be derived as.:

$$
\begin{aligned}
& q_{i}=q_{i}\left(p_{i}, p_{j}, E\right) \quad \text { for } i \neq j=1,2, \ldots, n \\
& \tau=q_{i}\left(p_{i}, p_{j}, E\right) \\
& \text { Substitution of demand functions } 35 \text { into the direct }
\end{aligned}
$$ utility function 33 or applying the duality concept between prices and quantities in demand theory, we obtain indirect utility function:

$$
U=U\left(p_{i}, E\right) \text { for } i=1,2, \ldots, n
$$

Lau, Lin and Yotopoulos (1978) proposed the indirect utility function as transcendental logarithmic function in terms of variables normalized with expenditure (E) as:

$$
\operatorname{Ln} U^{*}=\alpha_{0}+\Sigma \alpha_{i} \ln p_{i}+1 / 2 \Sigma \Sigma \beta_{i j} \ln p_{i}^{*} \ln ^{*}{ }_{j} \quad \ldots 37
$$

where $p_{i}{ }_{i}=p_{i} / E$ and the function satisfies property symmetry $\left(\beta_{i j}=\beta_{j i}\right)$; Engle aggregation $\left(\Sigma \alpha_{i}=-1\right)$ and homogeneity ($\beta_{i j}=0$).

The commodity extenditure function can be derived using Roy's indentity:

$$
\mathrm{p}^{*}{ }_{i} q_{i}=-\delta \ln U^{*} / \delta \ln \mathrm{p}^{*}{ }_{i}
$$

Equation 38 becomes the LLES (Log Linear Expenditure System) that is:

$$
-p_{i}^{*} q_{i}=\alpha_{i}+\Sigma \beta_{i j} \ln p_{i}
$$

Commodity Demand
The LLES functional form (including household characteristics: a_{1}, a_{2}, a_{3}) of three commodities; (Leisure (R), paddy (C) and non-farm goods, M) are:

$$
\begin{aligned}
& e_{12} \ln a_{2}+e_{13} \ln a_{3} \quad \ldots 40 \\
& -C p^{*}=\alpha_{2}+\beta_{12} \ln w^{*}+\beta_{22} \operatorname{lnp}{ }^{*}+\beta_{23} \operatorname{lnq}{ }^{*}+e_{21}: n a_{1}+ \\
& e_{22} \ln a_{2}+e_{23} \ln a_{3} \quad \ldots 41 \\
& -\mathrm{Mq}^{*}=\alpha_{3}+\beta_{13} \ln w^{*}+\beta_{23} \ln p^{*}+\beta_{33} \operatorname{lnq}{ }^{*}+e_{31} \ln a_{1}+ \\
& e_{32} \ln a_{2}+e_{33} \ln a_{3} \ldots 42
\end{aligned}
$$

which restrictions are:

$$
\begin{array}{ll}
\beta_{11}+\beta_{12}+\beta_{13}=0 ; & \ldots 42 \mathrm{a} \\
\beta_{12}+\beta_{22}+\beta_{23}=0 ; & \ldots 42 \mathrm{~b} \\
\beta_{13}+\beta_{23}+\beta_{33}=0 ; & \ldots 42 \mathrm{c} \\
\alpha_{1}+\alpha_{2}+\alpha_{3}=-1 ; & \ldots 42 \mathrm{~d} \\
e_{11}+e_{21}+e_{31}=0 ; & \ldots .42 \mathrm{e} \\
e_{12}+e_{22}+e_{32}=0 ; & \ldots 42 f \\
e_{13}+e_{23}+e_{33}=0 & \ldots .42 g
\end{array}
$$

where: w*w/E. $p^{*}=\mathrm{p}$ E. and $\mathrm{a}^{*}=\mathrm{a}$ E, and

$$
\begin{aligned}
& \text { E: is toval expendicure } \\
& \text { D: } 2 \mathrm{~s} \text { price of patay } \\
& \text { z: :s price et al: marker gavas. } \\
& \text { 3aven the netercgenty of tarke gecds. it was } \\
& \text { get up in terms of veiue at nen-tarn geeds } \\
& \text { that } 20 \text { (W) } \\
& \text { a.: is number of working tamily members } \\
& a_{2}: \text { is non-working tanily (dependents) } \\
& a_{2}^{2} \text { : } 25 \text { age of household head. }
\end{aligned}
$$

Osing restrictions jequations 42 a to 42 c . one can Enstruet two iLes equations twe choose equations 41 and
42. to se estmazed purvoses. yields:

$$
\begin{aligned}
& \left.-C p^{*}=\alpha_{2}{ }^{+} \beta_{22^{(2 n p}}-2 n w^{*}\right)+\beta_{23^{*}}\left(1 n q^{*}-1 n w^{*}\right)+e_{21} 1 n a_{1}+ \\
& e_{22} \ln a_{2}+e_{23} \text { in } a_{3} \quad \ldots 43
\end{aligned}
$$

$$
\begin{aligned}
& e_{32} \ln a_{2}+e_{33} \ln a_{3} \quad \ldots 44
\end{aligned}
$$

Two equations can be estimated jointiy imposing β_{23} in equation 43 equal to β_{23} in equation 44. If $\beta_{23}=\beta_{23}$, it is consistent with ueility maximization. The LLES function $\left|W^{*} R\right|$ is evaluated at the mean of the independent variabies: $1 \mathrm{nW}=1 n \mathrm{a}_{\mathrm{ij}}=0 \quad(1, j=1,2,3)$. This property is required by the quasi-convexity of the utilley function (Lau. iin and Yotopoulos, 1978). only two out of three LLES were estimated ${ }^{6}$ fequation 43 and 44). whilst equation 40 is derived using the restriction imposed for the LLES equation 42 a to 42 g).

By rearranging the LLES functions the demand functions for the commodities are derived. The

[^2]semmodit's demand functions are written as:
\[

$$
\begin{aligned}
& -e_{12} \ln a_{2}-e_{13} \ln a_{3} 1 \quad \ldots 45
\end{aligned}
$$
\]

$$
\begin{aligned}
& -e_{22} \ln a_{2}-e_{23} \ln a_{3} 1 \quad \ldots .46
\end{aligned}
$$

$$
\begin{aligned}
& -e_{32} \ln a_{2}-e_{33} \ln a_{3} 1 \quad \ldots .47
\end{aligned}
$$

The iabour suppiy is estimated indirectly chrough the demand function cor leisure (R). It is assumed that the total time available for work 14 months period under consideracion for a household is $D=120 a_{1}$ (total time ruitiplied by number of working family members). Theretore the labour supply function (S) is given by

$$
\begin{aligned}
s= & 120 a_{2}-R \\
= & \left.20 a_{2}+E / w\right): a_{2}+3_{1}: n w^{*}+\beta_{12} \operatorname{nn} p^{*}+\beta_{13} \ln q^{*} \\
& +e_{11} \text { ina }_{1}+e_{12} \ln a_{2}+e_{13} \ln a_{3} 1 \quad \ldots 48
\end{aligned}
$$

R is given in equation 451 .
Marketable Surplus (MS) is obtained by subtracting Own rice consumption (C) equation 461 from output supply (Qs) fequation 32 writcen in \log term. the marketable surplus is:
in $N S=\ln \left(t a_{0} \quad i w / p\right)^{a l}\left(\omega_{f} / p\right)^{a f} A^{\beta a} k^{\beta k}\left(1-\alpha_{1}-a_{f}\right)!+$

$$
\begin{array}{r}
\varepsilon_{1}\left(a_{2}+\beta_{2}+n(w / E)+\beta_{22} \ln (p / E)+\beta_{23} \ln (q / E)\right. \\
\left.+e_{21} \operatorname{lna},+e_{22} \operatorname{lna}_{2}+e_{23} \ln a_{3}\right) \tag{49}
\end{array}
$$

Estimates of the LLES

The LiES was estimated using sure. The functions were estimated using data from 169 households as were the production side estimates. The firsc estimation showed that dependent a_{2} and age of head of househoid
(an) in equation 43 was not significant at the 10 \% significance level nor was variable a_{2} in equations 44 . Equations 43 and 44 were re-estimated after dropping those variables which were not significant. The final estimates of the E EES fequation 43 and 44, and equation 40 is derived from them are shown in Table 3 ,

The estimptod elasticicies of consumption, total househoid leritr suppiy. marketable surplus and expendicures ${ }^{7}$ are reporced in able 4 . These elasticity cascuiation were based on the assumption that the expendizure (E) is fixed or that profit is not allowed to vary. This is one of the weaknesses of applying tratitional consumption theory to analyse the behaviour of a noushoid that is both a productive and consumptive anit.

The estimated effects of changes in the value of the independent variables are:

4i an increase in wage will increase the demand for ielsure. The elasticity of labour supply with respect to wages was found co have a negatave sign. This LLaS model may not fit the data properiy or it may be, as Barnum and squire (2979:66 said that labour supply, derived indirectiy $\mathbb{E r o m}$ she leisure demand, is sensitive to cotal time availabie in our case 120 days per season was assumed ${ }^{8}$. This indicates a need to test other sonsump:ion demand models in future work

[^3]I. an increase in wages has a negative effect on the
consumption cf ow-paddy and market goods. This implies
that moth momodismes are substicutes for ielsure.
int an increase in number of working family members has a positrve effect on the consumption of commodity -essure but a negative effect on sice consumption and narket goccis. The nuber of family workers has positive effect on labour supply and marketable surplus as well. (Iv) the expenditure elasticity with respect to each commodiey is one. Increasing expenditure will decrease the labour supply, is well as marketable surplus. If expenditure increases by 1%. the marketable surplus Wizi decrease by 1.2%.
(v) The marketabie surplus of rice will increase if there are increases che number family workers. The marketable surplus will be reduced when wages are increased. Rice price has a positive effect on marketable surplus, it is higly elastics (2.091).

The discussion above assumes that expenditure does not vary. In reality, consumption may vary due to changes in profit which makes up part of household income. The profit in agricultural production may change with changes in technoiogy, and when output and input prices are changed. This will be discussed in more detail

[^4] discussed.
IV. Interaction Between Production and Consumption

As discussed earlier, commodity demand functions (equation 45, 46, and 47) and the labour supply function (equation 48) can bu written in the follc.ing forms:
$i=i\left(W, p, W_{f}, a_{1}, a_{2}, a_{3}, E\right)$ for $i=R, C$, and $M, \quad \ldots 50$
and

$$
\begin{equation*}
s=s\left(w, p, w_{f}, a_{1}, a_{2}, a_{3}, E\right) \tag{51}
\end{equation*}
$$

Similarly the marketable surplus function (equation 49) can be written as:

$$
M S=M S\left(p, w, w_{f}, a_{1}, a_{2}, a_{3}, A, K, E\right)
$$

The full income concept comes from summing: farm profit (equation 15), imputed labour income (total time available ${ }^{9}$ for the period under consideration multiplied by the number of workers in the family and the wage rate in agriculture) and other income (0) such as drawing on saving, remittances etc. Then the expenditure equation (E) may be rewritten as

$$
E=\Pi\left(p, w, w_{f}, A, K\right)+w a_{1} D+0
$$

Changes in ourput price or input prices will influence farm profit. This will affect E, which then changes household consumption, labour supply and marketable surplus.

If there was a change in wages (w), what would be the effect on consumption?. Evaluating this using the
composite function rule yields:

$$
\begin{gathered}
\mathrm{di} / \mathrm{d} w=\delta i / \delta w+\delta 1 / \delta E\left(\delta \pi / \delta w+a_{1} D\right) \quad \ldots 54 \\
\text { for } \quad i=R, C, \text { and } M
\end{gathered}
$$

Equation 54 then can be written in log form as dlni/dlnw= $\delta \operatorname{lni} / \delta \ln w+(\delta \ln / \delta \ln E)(\delta \ln \Pi / \delta 1 n w)(\Pi / E)$

$$
+(\delta \ln i / \delta \ln E) a_{1} D w^{*} \quad \ldots 55
$$

where $w^{*}=w / E$
for $i=R, C$, and M
Equation 55 can alo b be written in terms of elasticities

$$
\eta_{i w}=\varepsilon+(\delta \ln / \delta \ln E)(\delta \ln \Pi / \delta \ln w)(\Pi / E) \quad \ldots .56
$$

tor $i=R, C$, and M
where:

$$
\eta_{i w}=d \operatorname{lni} / d \ln w, \text { and } \varepsilon=\delta \operatorname{lni} / \delta \ln w+(\delta \ln i / \delta \ln E)\left(a_{1} D w^{*}\right)
$$

For η aliows the profit to vary, while ε is traditional elasticity.

Using traditional elasticity, ε, the total effect of changing a commodity price can be divided into two effects ias shown by Slutsky's equation) income effect and substitution effect. The substitution effect is always negative, while the income effect may be positive or negative. For a normal commodity the effect is positive, while it is a negative for inferior goods.

In the household model, the total effect η comes not only from the two effects already mentioned for ε, (income and substitution), but also from the profit effect as follows:
$(\delta \operatorname{lni} / \delta \ln E)(\delta \ln \Pi / \delta \ln W)(\Pi / E) \quad$ for $\quad i=R, C$, and M
Intergration of consumption and production behaviour into the model, there are three important items to be explained as shown by equation 56 : (i) sign and magnitute
of consumption elasticity with respect to E or (סlni/סlnE), for $i=R, C$, and M; (ii) sign and magnitute of profit elasticity with respect to wages (w) or (ס1nП/ס1nw); and (iii) proportion of profit to total expenditure or (Π / E).

Commodity demand elasticity with respect to output price (p), wages (w), number of working family members $\left(a_{1}\right)$ and num $=$ of dependents $\left(a_{2}\right)$ can be calculated. Similarly for labour supply, marketable surplus and expenditure elastigities with respect to output price, wages and houserold characteristics can be calculated using the formulae in Appendix 3. The elasticities in Table 5 were obtaired from formulae given in Appendix 3 using coefficient given in Tables 2 and 4.
V. Concluding Remarks

Estimation of the impacts of a change in the values of exogeneous variables such as output price and wage from agricultural household theory is more accurate compared to either consumption or production prediction alone (Barnum and Squire, 1977:90). Most elasticities determined for the agricuitural household model (Table 5) are higher than those when the household is created as being solely a consumtive unit (Table 4). The elasticities with respect to the price of a market good in Tables 5 and 4 are equal because the price of a market good (q) does not influence farm profit.

If the other elasticities in Tables 4 and 5 are compared it is clear that they are not only different in magnitude but also, some coefficients have different
signs. This is due to the former, farm profit is held constant, while in the latter, the profit is allowed to vary (i.g changing in inputs or output prices). Marketable surplus elasticities with respect to the number of family workers is positive in table 4 but becomes negative in the household model. It is found also that commodity demand elasticities for C and for M with respect to wages are negative in table 4 but in the household model they are positive.

Increased wages raise demand for all commodities, including leisure. This means that leisure is a normal good, and family labour supply has a negative slope. Family labour supply elasticity is clearly negative (-0.36). This result should be taken with caution. As mentioned earlier the supply function is derived indirectly from leisure demand in the LLES model and is very sensitive to the total time assumed to be available to the household. Therefore other demand models such LES or AIDS need to be considered in future research.

If the paddy price increases, the farm profit is increased, so that expenditure on market goods also increases, but paddy consumption is reduced. It appears that a household would respond to a rise in paddy prices by increasing the amount of paddy to be sold to the market. Marketable surplus elasticity with respect to paddy price is elastic (1.08). The marketable surplus elasticity estimated from the household model is lower than that estimated assuming traditional consumption
theory as seen in Table 4. If the paddy price increases by 1\%, the paddy marketable surplus increases by 1.1%.

Further Research
Extension of the model reported in this paper will be developed later to account for labour segregation and multiple own-farm enterprises. A more fully developed model will then be used to examine the effect of fertilizer and crop-pricing policies, agricultural technology and non-farm employment opportunities on the labour allocation and associated income levels of different household classes , farm size, land tenure etc). These findings will provide a basis for measuring the income and equity impacts on rural households of impending changes to the agricultural sector of Indonesia.

Table 1 Estimate of Normalized C-D Profit Function for Paddy Farmers in CRB West Java (DS 1983).

		SURE (Zellner's Method)		
Independent Variables	Parameter	Un-		icted
			$\begin{aligned} & \text { Profit } \\ & \text { Max. } \end{aligned}$	CRTS and Profit Max.
			$\alpha^{1}=\alpha^{2}$	$\begin{aligned} & \beta_{a}+\beta_{k}=1 \\ & \alpha^{1}=\alpha^{2} \end{aligned}$
			$\alpha^{1}=\alpha^{2}$	$\alpha^{1}=\alpha^{2}$

Intercept	$\left(\ln \alpha_{0}\right)$	6.241	6.369	6.257
		(6.757)	(8.137)	(8.142)
In W^{*}		-0.246	-0.351	-0.352
(Wages)	$\left(\alpha_{1}\right)$	(-1.346)	(-1.999)	(-2.006)

$\ln w_{f}{ }^{*}$				
(Ferfilizer				
price)				
	$\left(\alpha_{f}^{1}\right)$	-0.219	-0.126	-0.126
		$-0.519)$	(-4.376)	(-4.383)

$\ln A$				
(Area)	$\left(\beta_{a}\right)$	0.893	0.888	0.884
		(7.959)	(8.487)	(10.885)

In K	$\left(\beta_{k}\right)$	0.111	0.117	0.116
(Capital)		(1.280)	(1.432)	(1.431)

Factor Share:
$\begin{array}{lllll}\text { Labour } & \left(\alpha_{1}^{2}\right) & -0.263 & -0.351 & -0.352 \\ & & (-2.834) & (-1.999) & (-2.006) \\ \text { Ferti- } & \left(\alpha_{f}^{2}\right) & -0.320 & -0.126 & -0.126 \\ \text { lizer } & & (-3.804) & (-4.376) & (-4.383)\end{array}$
note:
i) dependent variable is $\operatorname{Ln} \Pi^{*}$
ii) t-values are in ${ }_{1}$ brackets
iii) supper script: α^{1} and α^{2} refer to profit function and factor share equations, respectively.

Table 2 Output supply, labour demand, fertilizer demand and profit elasticities

Exogeneous Variable	Output Supply (Qs)	Labour (L)	$\underset{(F)}{\text { Fertilizer }}$	Profit (П)
Paddy Price (p)	0.478	1.478	1.478	0.522
Wages (w)	-0.352	-1.352	-0.352	-0.0.352
$\begin{aligned} & \text { Fertilizer } \\ & \text { Price }\left(w_{f}\right) \end{aligned}$	-0.126	-0.126	-1.126	-0.126
Area (A)	0.884	0.884	0.884	0.884
Capital (K)	0.116	0.116	0.116	0.116

```
Table 3 Estimated of LLES
    for CRB households (DS 1983)
```

	Expenditure Share		
Variable	Own Consump tioq (-p C)	Market Good $\left(-q^{*} M\right)$	$\begin{aligned} & \text { Leisure } \\ & \left.(-w R)^{2}\right) \end{aligned}$

1. Constant	-0.3482	-0.5283	-0.1235
$\alpha_{1}, \alpha_{2}, \alpha_{3}$	(-2.366)	(-2.986)	

2. Wages (w)	0.0864	0.1756	-0.2620
$\beta_{11}, \beta_{12} \cdot \beta_{13}$			

3. Paddy
$\begin{array}{llll}\text { price (p) } & -0.0607 & -0.0257 & 0.0364\end{array}$
$\beta_{12}, \beta_{22}, \beta_{23} \quad(-1.607) \quad(-1.382)$
4.Market good
$\begin{array}{llll}\text { price }(q) & -0.0257 & -0.1499 & 0.1756\end{array}$
$\beta_{13} \cdot \beta_{23} \cdot \beta_{33} \quad(-1.382) \quad(-9.037)$
5.Family
$\begin{array}{llll}\text { Worker }\left(a_{1}\right) & 0.1534 & 0.1170 & -0.2704 \\ e_{11}, \mathrm{e}_{21}, \mathrm{E}_{31} & (4.429) & (4.404) & \end{array}$
4. Dependent (a_{2})
$\mathrm{e}_{12} \cdot \mathrm{e}_{22}, \mathrm{e}_{32} \quad 0 \quad 0 \quad 0$
5. Head of house
hold Age (a_{3}) $0 \quad-0.0647 \quad 0.0647$

- $\mathrm{e}_{13} \cdot \mathrm{e}_{23} \cdot \mathrm{e}_{3}$
(-1.854)
a)derived using restrictions equations (equations 42a-42g).
b)figures in the brackets are t-value

	Sx.octexex			sabcur	\%arceteso
Bogntecs				Exain	2xasea
*as:mate	$\begin{gathered} \cos x \cdot x 0 \\ ? \end{gathered}$	Que	wave: 3004	31	39

nyes *	\therefore :20s	-0.248*	-2. 3224	-2. 582	-2.756
Sxase -					
Eme	$=8.98$	-3 289	9. 3486	4 : 20	2.2920
Exame					
Markes					
3ood	$\cdots 8.43$	2.0.3s	-x.7.63	- 22:*	- 1.6913

nernera.	2.:895	- +4.46	-2.22:5	3.73 ± 4	2. 9454
Sepersent	\%	\%	0	*	*
Age of havehoid $\operatorname{rand} a_{3}$	-3.9239	$*$	0.3225	2.2183	2
Epponditure (E)	:	:	:	-2.2239	-2.2374

Table 5 : Elascucity of Comocicy Derand. Eabour Suppiy and Marketable Surplus with repect so selected exogeneaus varsabies E and profte allowed to vary)

Exgeneous variabie	crmodictes			Labour Supply (3)	Narikeable surplus (MS)	Experditure (E)
	Lessure R	Race (C)	Tarke: 3ood (स)			
wiges wis	2.6379	0.2683	0.2840	-0.3698	-2.4266	0.5164
Trice of Race pi	-3.4713	-0.5974	2.2769	0.2096	2.080	0.2283
Frice of Narket sood 9	- 5.4219	0.0738	-2.74.63	0.3211	-0.0913	-
$\begin{aligned} & \text { Ferci:izer } \\ & \text { prae }{ }^{2} \text { e } \end{aligned}$	-3.755:	- -.255	\% 2.2558	0.0224	0.0682	-3.0551
Wcrier a.	2.9599	2.2298	0.4489	0.5800	-2.2e4	0.6704

Fron sumize in Appendix 3. sung coetwetenes in
Toble 2 and 4. Evaiuated ar aritmerte reans
*E capies: a.5n =2.6744: TE Ex.4374

Bibliography

Admlavichaya. K, Y.Knroda, L.J Lau. and P.A Yotopoulos :1984. "The Comparative statics of the Behaviour of Azricuizuras Households in Thaviand". Singapore Eatnomze Peytew. VoL.29:67-96

Ann.C.Y. Singh and L. Squire 19981). "The vodel of an Agz:ت゙utivral Household in a Multi-crop Economy: the case of Korea". Bev. of Economics and Statistics, $63(4)$

Alien, RGD :962\%. Mathematical Analysis for Economists. MacMuxian \& Eo Led: N.Y

Barnum, and S.Squire (19791. An Econometric Application OE Ene Theory of the Farm Households". J. Of Develocment Economics 6:79-102
 Households: theory and evidence, Worid Bank. The John Hepkin Univ. Press: Baltimore and London

Becker. 6.5 : 4651 . "A Theory of the Allccation of Time". Economsc Journal, 299 (75)

Chiang. A :1984). Fundamental Methods of Mathematical Economics. (3rd edition). McGraw-hill Book Company

Chand, R and J.L Kaul (1986). "A Note on the Use of the Cobb Deugias profic Function". AJAE, 68:162-164

Christensen L.R. D.W Jorgenson and L.J Lau (1973). "Transcendental Logarithmic production Frontiers", Rev. of Economics and Statistics, 55:28-45

Deaton.A and J.Muellbaver (1980). Economics and Consumer Behaviour. Cambridge Univ.Press: Cambridge

Hardaker.J.3. T. S MacAulay, M.Soedjono, and C.K. 3 Darkey (1985). "A Model of Padi Farming Household in rentral Java'. BIES 3(21)

Henderson. J.M and R.E Quandt (1971). Micro-Economic Theory: a machematical approach. (2nd ed.). McGraw-Hill Kogakushu. Ltd: Fokyo

Hutabarat. 3 91988). Analisa usahatani Padi di Sulawesi Selatan'. in Kasryno.F et.al fed.). Peribahan Ekonomi Pedesaan, Puslit Agro Ekonomi, Departemen Pertanian. Bogor

Kasryno.F i985:. "Efficiency Analysis of Rice Farming in Java :977-:983'. Jumal Agro Ekonomi. 2 (5)

Intriligator, M.D (1971), Mathematical Optimization and Economic Theory, Prentice-Hall. Inc., Englewood cliffs: N.J

Lau.L.J.W.I Lin and P.A Yotopoulos (1978). "The Linear Logarithmic Expenditure System: an application to Consumption-Leisure Choice". Econometrica 4(46):843868

Lau. L.J and P.A Yotopoulos (1972), "Profit. Supply and Factor Demand Function", AJAE, 54(1):11-18

Marggraf. R (1986), Microeconomic Analysis of Agroeconomic Systems in Developing Councries, (translated by D.A Valencia), Gefordertaus Mitceln des Landes, Baden-Wurttermberg

Pindyck, R.S and D.L Rubinfeld, (1981). Econometric Models and Econcmic Forecasts, (second ed.), McGraw-Hill International Editions

Samuelson, P.A (1983). Foundations of Economic Analysis, (enlarged edition). Harvard Univ.Press

Sidhu,S.S and C.A Baanante (1981). "Estimating Farm-level Input Demand and Wheat Supply in the Indian Punjab using a Translog Profit Function". AJAE:237-246

Suryana, A and B.Rachman (1988) "Analisa Permintaan Sistem ntuk pangan di pedesaan Java Barat", in Kasryno, F et.al (ed.). Perubahan Ekonomi Pedesaan, Puslit Agro Ekonomi, Departemen Pertanian. Bogor

Singh, I, L.Squire, J.Strauss (1986). Agricultural Household Models: Extensions. Applications and Policy, A World Bank Publication: The Johns Hopkins Univ.Press

Silberberg, E (1981), The structure of Economics: A Mathematical Analysis, International Student Editicr., McGraw-Hill International Book Company
sudaryanto. T et.al (1989), Pola Pengeluaran Konsumsi,
Investasi dan Tabungan, Puslit Agro Ekonomi, Departemen Pertanian. Bogor

Theil, H (1975) , Theory and Measurement of Consumer Demand, (vol. 1). North-Holland Publishing Company: Amsterdam

Varian,H. R (1984), Microeconomics Analysis, (2nd
edition). W.W Norcon and Company: New York - London

Yotopoulos, P.A and L.J Lau (1973), "A Test for Relative Economic Efficiency: some further result". AER. 1(63)

Yotopoulos, P.A, L.J Lau and W. Lim (1976). "Microeconomic Output Supply and Factor Demand Functions in the Agriculture of the Province of Taiwan'. AJAE, 58:333-340

Zellner.A (1962), "An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests of Aggregation Bias", J.American Statistics.Ass., 57:348-368

Appendix: 1 Elasticity Formulae for Input Demand Oucput Supply and Profit

1.Elasticity Formulae (see Table 2):
1.1 Input Demand wrt w_{i}, w_{j}, K and p;

$$
\begin{align*}
\delta \ln x_{i} / \delta \ln w_{i}= & {\left[\delta \ln x_{i} / \delta \ln \Pi^{*}\right]\left[\delta \ln \Pi^{*} / \delta \ln w_{i}\right]-1 } \\
& =\left(\alpha_{i}\right)-1 \\
\delta \ln x_{i} / \delta \ln w_{j}= & {\left[\delta \ln x_{i} / \delta \ln \Pi^{*}\right]\left[\delta \ln \Pi^{*} / \delta \ln w_{j}\right] } \\
& =a_{j} \quad \text { for } i \# j=1,2, \ldots n
\end{align*}
$$

$\delta \ln x_{i} / \delta \ln K_{k}=\left[\delta \ln x_{i} / \delta \ln \Pi^{*}\right]\left[\delta \ln \Pi^{*} / \delta \ln K_{k}\right]$

$$
=\beta_{k}
$$

$\delta \ln x_{i} / \delta \ln p=\left[\delta \ln x_{i} / \delta \ln H^{*}\right]\left[\delta \ln \|_{*} / \delta \ln p\right]$

$$
+\delta \ln (w / p) / \delta \ln p
$$

$$
=-\alpha_{i}+1
$$

(where $\delta \ln x_{i} / \delta \ln \Pi^{*}=1$) for $\begin{aligned} k & =A, K \text { and } \\ i & =1, f\end{aligned}$
1.2 Output Supply wrt $\mathrm{p}, \mathrm{w}_{1}$, and K ;
(where $\delta \ln Q^{*}{ }_{s} / \delta \ln \Pi^{*}=1$) for $\begin{aligned} & k=A, K \text { and } \\ & i=1, f\end{aligned}$

$$
\begin{align*}
& \delta \ln Q^{*}{ }_{\mathrm{s}} / \delta \operatorname{lnp}=\left[\delta \ln Q^{*}{ }_{\mathrm{s}} / \delta \ln \Pi^{*}\right]\left[\delta \ln \Pi^{*} / \delta \ln p\right] \\
& =-\Sigma \alpha_{i} \\
& \delta \ln Q^{*}{ }_{s} / \delta l n w_{i}=\left[\delta \ln Q^{*}{ }_{s} / \delta \ln \Pi^{*}\right]\left[\delta \ln \Pi^{*} / \delta l n w_{i}\right] \\
& =a_{i} \\
& \text {.. . } 6 \\
& \delta \ln Q^{*}{ }_{s} / \delta \ln K_{k}=\left[\delta \ln Q^{*}{ }_{s} / \delta \ln \Pi^{*}\right]\left[\delta \ln \Pi^{*} / \delta \ln K_{k}\right] \\
& =\beta_{k} \\
& .7
\end{align*}
$$

1.3 Profit wrt p, w_{i}, and K

$$
\begin{array}{ll}
\delta \ln \Pi / \ln \delta p=1+\Sigma a_{i} & \ldots, 8 \\
\delta \ln \Pi / \ln \delta w_{i}=a_{i} & \ldots, 9 \\
\delta \ln \Pi / \ln \delta K_{k}=\beta_{k} & \ldots, 10
\end{array}
$$

Appendix: 2 Elasticity Formulae for Commodities Demand , tabour Supply and Marketable Surplus

2.Elasticity Formulae (frcim LLES, see Table 4):
2.1 Demand for Leisure wrt w, p,q, a_{1}, a_{2}, a_{3} and E;

$$
\begin{aligned}
\delta \operatorname{lnR} / \delta \operatorname{lnw}=\varepsilon_{r w}=-1+\left(-\beta_{11} / w^{*} \mathrm{R}\right)=-1+\left(-\beta_{11} /-\alpha_{1}\right) & \ldots 11 \\
\delta \operatorname{lnR} / \delta \operatorname{lng}=\varepsilon_{r p}=-\beta_{12} / w^{*} \mathrm{R}=-\beta_{12} /-\alpha_{1} & \ldots 12 \\
\delta \operatorname{lnR} / \delta \operatorname{lnq}=\varepsilon_{r q}=-\beta_{13} / w^{*} \mathrm{R}=-\beta_{13} /-\alpha_{1} & \ldots 13 \\
\delta \operatorname{lnR} / \delta \ln a_{1}=\varepsilon_{r a 11}=-e_{11} / w^{*} \mathrm{R}=-e_{11} /-\alpha_{1} & \ldots 14 \\
\delta \operatorname{lnR} / \delta \operatorname{lna} a_{2}=\varepsilon_{r a 12}=-e_{12} / w^{*} \mathrm{R}=-e_{12} /-\alpha_{1} & \ldots 15 \\
\delta \operatorname{lnR} / \delta \operatorname{lna} a_{3}=\varepsilon_{r a 13}=-e_{13} / w^{*} \mathrm{R}=-e_{13} /-\alpha_{1} & \ldots 16 \\
\delta \operatorname{lnR} / \delta \ln E=\varepsilon_{r e}=1 & \ldots 17
\end{aligned}
$$

2.2 Demand for Commodity C wrt w, p, q, a_{1}, a_{2}, a_{3} and E;

$$
\begin{aligned}
& \delta \operatorname{lnc} / \delta 1 \mathrm{nw}=\varepsilon_{\mathrm{cw}}=-\beta_{12} /-\alpha_{2} \quad \ldots 18 \\
& \delta \operatorname{lnc} / \delta \operatorname{lnp}=\varepsilon_{\mathrm{cp}}=-1+\left(-\beta_{22} /-\alpha_{2}\right) \quad \ldots 19 \\
& \delta \operatorname{lnc} / \delta 1 \mathrm{nq}=\varepsilon_{\mathrm{cq}}=-\beta_{23} /-\alpha_{2} \quad \ldots 20 \\
& \therefore \\
& \delta \operatorname{lnc} / \delta \operatorname{lna}_{1}=\varepsilon_{\text {ca21 }}=-e_{21} /-\alpha_{2} \quad \ldots 21 \\
& \delta \operatorname{lnc} / \delta \operatorname{lna}{ }_{2}=\varepsilon_{\text {ca22 }}=-e_{22} /-a_{2} \quad \ldots 22 \\
& \delta \operatorname{lnc} / \delta \operatorname{lna}_{3}=\varepsilon_{\mathrm{ca} 23}=-e_{23} /-a_{2} \quad \ldots 23 \\
& \delta \operatorname{lnc} / \delta \ln E=\varepsilon_{c e}=1 \quad \ldots 24
\end{aligned}
$$

2.3 Demand for Commodity M wrt w, p, q, a_{1}, a_{2}, a_{3} and E;

$$
\begin{aligned}
& \delta \operatorname{lnM} / \delta \operatorname{lnW}_{1}=\varepsilon_{m w}=-\beta_{13} /-\alpha_{3} \\
& \delta \operatorname{lnM} / \delta \operatorname{lnp}=\varepsilon_{m p}=-\beta_{23} /-\alpha_{3} \\
& \text {... } 26 \\
& \delta \operatorname{lnM} / \delta i n q=\varepsilon_{m q}=-1+\left(-\beta_{33} /-\alpha_{3}\right) \quad \ldots 27 \\
& \delta \operatorname{lnM} / \delta \operatorname{lna} a_{1}=\varepsilon_{\operatorname{ma31}}=-e_{31} /-a_{3} \quad \ldots .28 \\
& \delta \operatorname{lnM} / \delta \operatorname{lna}_{2}=\varepsilon_{\text {ma32 }}=-e_{32} /-a_{3} \quad \ldots .29 \\
& \delta \operatorname{lnM} / \delta \operatorname{lna}_{3}=\varepsilon_{\text {ma33 }}=-e_{33} /-\alpha_{3} \quad \ldots 30 \\
& \delta \operatorname{lnM} / \delta \operatorname{lnE}=\varepsilon_{\text {me }}=1 \quad \ldots 31
\end{aligned}
$$

2.4 Labour Supply (S) wrt w,p,q, a_{1}, a_{2}, a_{3} and $E ;$

$$
\begin{align*}
& \delta \operatorname{lnS} / \delta \ln W=\varepsilon_{S W}=\left[\beta_{11} /\left(120 a_{1}-R\right) W^{*}\right]+\left[R /\left(120 a_{1}-R\right)\right. \\
& =\left(\beta_{11}-\alpha_{1}\right) /\left(120 a_{1} w^{*}+\alpha_{1}\right) \\
& \delta \operatorname{lns} / \delta \operatorname{lnp}=\varepsilon_{s p}=\left(\beta_{12}\right) /\left(120 a_{1} w^{*}+\alpha_{1}\right) \quad \ldots .33 \\
& \delta \operatorname{lns} / \delta \operatorname{lnq}=\varepsilon_{\text {sq }}=\left(\beta_{13}\right) /\left(120 a_{1} w^{*}+\alpha_{1}\right) \quad \ldots .34 \\
& \left.\delta \operatorname{lns} / \delta \ln a_{1}=\varepsilon_{s a 1}=\left[120 a_{1} w^{*}+e_{11}\right] /\left[120 a_{1}-R\right) w^{*}\right] \\
& =\left[\left(120 a_{1} w^{*}+e_{11}\right) /\left(120 a_{1} w^{*}+\alpha_{1}\right)\right] \\
& . .35 \\
& \delta \operatorname{lnS} / \delta \ln a_{2}=\varepsilon_{s a 2}=e_{12} /\left(120 a_{1}-R\right) w^{*} \\
& =e_{12} /\left(120 a_{1} w^{*}+\alpha_{1}\right) \\
& \delta \operatorname{lns} / \delta \operatorname{lna} a_{3}=\varepsilon_{\text {sa }}=e_{13} /\left(120 a_{1}-R\right) w^{*} \\
& =e_{13} /\left(120 a_{1} w^{*}+a_{1}\right) \\
& \delta \ln S / \delta \ln E=\varepsilon_{S e}=-R / S=-w^{*} R /\left(120 a_{1}-R\right) w^{*} \\
& =a_{1} /\left(120 a_{1} w^{*}+a_{1}\right)
\end{align*}
$$

2.5 Marketable Surplus (MS) wrt $w_{1}, a_{1}, a_{2}, a_{3}, E$ and $p ;$

$$
\text { dlnMS/dlnp }=\left[\left[\left(-\alpha_{1}-\alpha_{f}\right) p^{*} Q\right]+\beta_{22}-\alpha_{2}\right] /\left(p^{*} Q+\alpha_{2}\right) \ldots 39
$$

$$
\left.\mathrm{d} \cdot n M S / d \ln W=\left[\alpha_{1}\left(p^{*} Q\right)+\beta_{12}\right]\right) /\left(p^{*} Q+\alpha_{2}\right) \quad \ldots 40
$$

$$
\text { dlnMS/dlnq } \left.=\beta_{23}\right) /\left(p^{*} Q+\alpha_{2}\right) \quad \ldots .41
$$

$$
\left.\mathrm{dlnMS} / \mathrm{dln} W_{f}=\alpha_{f}\left(\mathrm{p}^{*} \mathrm{Q}\right)+\beta_{21}\right) /\left(\mathrm{p}^{*} \mathrm{Q}+\alpha_{2}\right) \quad \ldots 42
$$

$$
d \operatorname{lnMS} / d \ln a_{1}=e_{21} /\left(p^{*} Q+\alpha_{2}\right) \quad \ldots .43
$$

$$
\mathrm{dlnMS} / \mathrm{dln} a_{2}=e_{22} /\left(\mathrm{p}^{\star} \mathrm{Q}+\alpha_{2}\right) \quad \ldots 44
$$

$$
\mathrm{dlnMS} / \mathrm{dln} \mathrm{a}_{3}=e_{23} /\left(\mathrm{p}^{*} \mathrm{Q}+\alpha_{2}\right) \quad \ldots .45
$$

$$
\mathrm{d} \operatorname{lnMS} / \mathrm{dln} E=\alpha_{2} /\left(p^{*} Q+\alpha_{2}\right) \quad \ldots .46
$$

Appendix: 3

Elasticity Formulae for Cormodity Demand, Labour Supply Marketable Surplus and Expenditure (allowed expenditure and profit to vary)

Exogenous Variables	Paddy (p) price	Fertilizer price $\left(w_{f}\right)$	Market Good price (q)	Workers $\left(a_{1}\right)$
1. Cannodity Demand: 1.1 Leisure(R): $\begin{aligned} & \delta \ln R / \delta \ln w+(\delta \ln R / \delta \ln E) \\ & (\delta \ln \Pi / \delta \ln w)(\Pi / E) \\ & +(\delta \ln R / \delta \ln E)\left(a_{1} D W^{\star}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & (\delta \ln R / \delta \ln p)+ \\ & (\delta \ln R / \delta \ln E) \\ & (\delta \ln \Pi / \delta \ln p) \\ & (\Pi / E) \end{aligned}$	$\begin{aligned} & (\delta \ln R / \delta \ln E) \\ & \left(\delta \ln \Pi / \delta \ln \omega_{f}\right) \\ & (\Pi / E) \end{aligned}$	($\delta 1 n R / \delta 1 n q)$	$\begin{aligned} & \delta \ln R / \delta \ln { }_{1}{ }^{+} \\ & \delta \ln R / \delta \ln E^{2} \\ & \left(\mathrm{a}_{1} \mathrm{DW}^{\star}\right) \end{aligned}$
1.2 Rice (C) : $\begin{gathered} \delta \ln C / \delta \ln w+(\delta \ln C / \delta \ln E) \\ (\delta \ln \Pi / \delta \ln W)(\Pi / E) \\ +(\delta \ln C / \delta \ln E)\left(a_{1} D w^{*}\right) \end{gathered}$	$\begin{aligned} & (\delta \ln C / \delta \ln p)+ \\ & (\delta \ln C / \delta \ln E) \\ & (\delta \ln \Pi / \delta \ln p) \\ & (\Pi / E) \end{aligned}$	$\begin{aligned} & (\delta \ln C / \delta \ln E) \\ & \left(\delta \ln \Pi / \delta \ln w_{f}\right) \\ & (\Pi / E) \end{aligned}$	($\delta 1 n \mathrm{C} / \delta 1 \mathrm{l} q$)	$\begin{aligned} & \delta \ln C / \delta \ln a_{1}+ \\ & \delta \ln C / \delta \ln E^{+} \\ & \left(a_{1} W^{*}\right) \end{aligned}$
1.3 Market $\operatorname{Good}(M)$: $\begin{aligned} & \delta \ln M / \delta \ln w+(\delta \ln M / \delta \ln E) \\ & (\delta \ln \Pi / \delta \ln W)(\Pi / E) \\ & +(\delta \ln M / \delta \ln E)\left(a_{1} D W^{*}\right) \end{aligned}$	$\begin{aligned} & (\delta \ln M / \delta \ln p)+ \\ & (\delta \ln M / \delta \ln E) \\ & (\delta \ln \Pi / \delta \ln p) \\ & (\Pi / E) \end{aligned}$	$\begin{aligned} & (\delta \ln M / \delta \ln E) \\ & \left(\delta \ln \Pi / \delta \ln W_{f}\right) \\ & (\Pi / E) \end{aligned}$	($\delta 1 n M / \delta 1 n q$)	$\begin{aligned} & \delta \ln M / \delta \ln a_{1}+ \\ & \delta \ln M / \delta \ln 1^{+} \\ & \left(a_{1} D^{*}\right) \end{aligned}$
$\begin{aligned} & \text { 2. Labour } \text { Supply }(S): \\ &\delta \ln S / \delta \ln w)+(\delta \ln S / \delta \ln E) \\ &(\delta \ln \Pi / \delta \ln w)(\Pi / E) \\ &+(\delta \ln S / \delta \ln E)\left(\mathrm{a}_{1} \mathrm{DW}^{\star}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & (\delta \ln S / \delta \ln p)+ \\ & (\delta \ln S / \delta \ln E) \\ & (\delta \ln \Pi / \delta \ln p) \\ & (\Pi / E) \end{aligned}$	$\begin{aligned} & (\delta \ln S / \delta \ln E) \\ & \left(\delta \ln \Pi / \delta \ln w_{f}\right) \\ & (\Pi / E) \end{aligned}$	($8 \ln \mathrm{~S} / \mathrm{\delta lng}$)	$\begin{array}{\|} \delta \ln S / \delta \ln a_{1}+ \\ \delta \ln s / \delta \ln { }^{+} \\ \left(a_{1} D^{*}\right) \end{array}$
3. Marketable-Surplus (MS) : $\begin{aligned} & \delta \ln M S / \delta \ln W+(\delta \ln M S / \delta \ln E) \\ & (\delta \ln \Pi / \delta \ln W)(\Pi / E) \\ & +(\delta \ln M S / \delta \ln E)\left(a_{1} D W^{*}\right) \end{aligned}$	$\begin{aligned} & (\delta \ln M S / \delta \ln p+ \\ & (\delta \ln M S / \delta \ln E) \\ & (\ln \Pi / \delta \ln) \\ & (\Pi / E) \end{aligned}$	$\begin{aligned} & (\delta \ln M S / \delta \ln E) \\ & \left(\delta \ln \Pi / \delta \ln _{f}\right) \\ & (\Pi / E) \end{aligned}$	($\delta 1 n M S / \delta 1 n q$)	$\left\lvert\, \begin{aligned} & \ln M S / \delta \ln a_{1}+ \\ & \delta \ln M S / \ln ^{*} \\ & \left(\mathrm{a}_{1} \mathrm{w}^{\star}\right) \end{aligned}\right.$
$\begin{aligned} & \text { 4. Expenditure }(E): \\ & (\delta \ln \Pi / \delta l n W)(\Pi / E)+ \\ & \left(a_{1} D w^{*}\right) \end{aligned}$	$\begin{array}{r} \delta \ln \Pi / \delta \operatorname{lnp} \\ (\Pi / E) \end{array}$	$\underset{(\Pi / E)}{\left(\delta \ln \Pi / \delta \ln W_{f}\right)}$	-	$\mathrm{a}_{1} \mathrm{D} \mathrm{w}^{*}$

[^0]: 3 pure consumers man that they purchase akmost all Gemedities frem the market. while pure producers mean that they buy all inputs and sell aimost all output to the market.

[^1]: 4 This equation is derived after estimating profit and factor share equations (equation 18 and 20).

[^2]: 6 This method was discussed by Theil (1975: 185). Three of expendicure equations are scochastically independent.

[^3]: 7 For the Eormulae used to determine elasticities for commattes (R. C, and M): household labour supply; and marketabie surplus: see Appendix: 2.

[^4]: 8 The arbicrariness is mainly due to specification of the average length of workdays. The LLES model computes only total time available for working family members. it doesn't include leisure come from dependents. It means that time consumed by dependent doesn't constribute to family welfare (Barnum and Squire, 1979:65).

