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Abstract 

In this paper, we develop measures of technical progress and scale 

effect by using directional derivatives and vector algebra. Our 

approach is distinguishableirom earlier ones in that (i) tech

nical progress is measurable and separatable from scale effect 

irrespective of 1 roperties of technical progress in the long-run or 

properties of returns to scale; (ii) the apprcach does not require 

specification of any production or transformation function, thus 

preclude all the usual problems associated with postulation and 

estimation of production models; and (iii) technical progress is 

assumed to be related to inputs, including R&D., wluch is more 

appropriate than treating it as an explicit function of time. 

1 Paper prepared for the 35th Annual Conference of the Australian Agricultural Beo. 
nomics Society, February 11-14, 1991, University of New England, Armidale, NSW 2351. 
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Isolating and Measuring 'TechJiicalPto~e$sand 
Scale Effect: An Alt.ernative Approach 

1 Introduction 

Technical progress has been a theme ()f ma.ny important stlldies,notably 
including Hitks (1965), Solow (1957, 1958~ 1961, 1962, 1963), Stigler (1961), 

Kendrick and Sato (1963), Samuelson (1965), Beckmann and Sato (1969), 
Sato and Beckmann (1968), Sato (1970, 1980, 1981), Sa.toand Nono(1983), 
Stevenson (1980), Koppand Smith (1985) and Fare, Grosskopf and Kokke

lenberg (1989). An earlier survey was provided by Kennedy and ThirlwaU 

(1972). Initial approach to measuring technical pre>gressby productivity 

indexes was discarded since they incorporate no ca.usal explanation oh the 

movement of factor productivity. Also, too manysource!lof error frequently 

creep into the measurement of movements in total factor pro<1uctivity(Jor .. 

genson and Griliches 1967). Tinbergen (1942) was the nrst explicitly toes .. 

timate technical progress using aggrega.te production runctioutnethod and 

Solow's study (1957) is recognised as the foundatior ofaggregateproduc .. 

tion function approach to measuring technical progress. The well-known 

Solow-Stigler controversy centered on the issue of consideration of scale ef
fect, particularly on the existence of and the possibility of quantification of 

returns to scale effect under technical progress. This controversy Was not 

resolved until Sato (1980), who proved that any technical progress can be 

separated from and measured together with scale effect, if the production 

function used is non-holothetic under a given type of technology. Sato's 

method rests heavily on the specification and/or estimation of production 

functions and transformation functions, the latter are used to transform 

actual inputs into what is called effective inputs. These functions must 

involve time as an independent varia.ble in an attempt to account for teen
nical progress. By so doing, technical progress is assumed to be a smooth 

and continuous function of time, which is difficult to justify theoretically 
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or em.pirically, let alone theproblems~socia.ted withesta.blishingthe tl't1~ 

transforma.tion andproductionCunctions. 

The objective of the current pa.per is todev.e1op analterna.tiveapproadt 

to separating technical progressand$c~e effect by "utilising the iecln:ll<tUe 
of directional derivative and veetoralgehra. We also .dif(el'entiatelong~run 

and sllort-runneutrality under technical progress iJl Nl~ttempt to explain 
the contradict empirical results published earlier. The derived ,meaautesof 
technical and scalt: effects are function-form independent .and aJ'eopeJ'ational 

irrespective of properties of returns tos~e and of teChnology progres$ ,in 
the long run. The measures are easy to compute provided that two or more 

observations on inputs and output are available. 

The basic principle of our a.pproach is illustrated .in section 2 uaing a 

two-factor production case, where the concepts of long-fUll and short-run 

neutrality are suggested. We derive the measures in section 3, assuming a. 

producer is aimed at maximising output. The influence of Changes 'in input 

prices on factor ratios is considered in section 4, where we :showthatt with 

some modifications, the measures developed in section 3 are applicable for 

profit-maximising producers. Finally, sectionS concludes the paper. 

2 Isolation of Technical Process and Scale .Effect: 

Principle and Illustration 

It has been accepted that expansion in production, oftenreprescnted by 

upright shifts of an iso luant, are basically attributable to two sources: (a) 

increases in the use of some or aU inputs, and (b) technology advances 

(process innovation, improvement in management and quality of inputs, 

etc.). The first source may yield scale effect and the second source produces 

tech.nical effect. 

If we let 'Ilk ienote a k-dimensional spa.ce which contains all posRible 

combinations of inputs, where k is the number of production factors, then 

a vector X = (XI," ',Xk) from the origin in 'Ric can be used to represent a 

particular input-combination. Clearly, an input-combina.tion, as a vector, is 
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composed of two parts: its magnitude and its direction. 1ntbisp~per" ~the 

m8t;nitude will be represented by the norm .0fX,denotoo by S = ·VrJ;;:l%l 
and '\~he direction will be represented by ~. setordirectionalcosinestdenoted 

by !ki = z;f.S, i = 1" •• , k. S, to certain extend, .indicatestheaizeofinputs, 

while the direction specifies theinpnt ratios. 

As a. rational producer, optimal input ratios .are alwa.ysused unIesscl .. 

thernon-uniform (or non-neutral) technical progress 18 in.troduced otinput 

prices change, which causes marginal rate of substitution betweenanyinputa 

unequal to their price ratios. The impact of pricechangesonfactoJ: Tatios 

is not discussed until section 4. We now can make thefollowingstrongt yet 

reasonable, assumption: 

Assumption 1: Non-uniform technical progress and changes in input 

prices .are the only factors which can cause variations among 

input ratios. 

For expository purpose only, we consider .& simple two-factor prbduction 

process as shown in Figure 1. The curves in the figure represent isoquants 

(physical output or profit) and Xl? z2represent inputs. 

[Figure 1 here] 

Now, suppose a production was initially at the point Po on isoquant 10 
and subsequently expanded to Pl on isoquant 11. Assuming input price 

ratios remain the same during the process (the case of price ratio cllanges 

will be dealt with in section 4), the expansion must have occurred under 

non-uniform technical progress. If there was no such technological advance, 

by assumption 1, the expansion would ha.ve been along the line OPo and 

reaches the point p. for any given increment in inputs, where OP. = OPl
As shown in the diagram, p. is on the isoqua.nt I.. It can be seen that (i) 
increase in output from Po to p. is due to changes in inputs, which may 

yIeld scale effect, and subsequently (ii) increase in output from p. to PI is 

attributable to technology advance. Our aim is to quantify the scale effect 

and technical progress when production with k .. factors (k ~ 2) is expanded. 
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Two comments .areinorder: (iJ ,thesequ~ce 'Q£deteruUning ;scalee! .. 
fectandtechnical. effect can be chQSeIiaa desireq;(ii). ,the two .. factQtca.se, 
discussed so far t can be easllY$eneralise(;ltptbeJl1or~ l.'ealisticmwti.;fa.ctor 

case, as shown in thenextBection,thoughadiagrammaticall"epr~enta.tion 
becomes impr(1.Ctical. 

If teclmical. progress is neutral betw~ntwo ,s\tctes$ive'time.points,QUf 

approach would fail to distinguish sca1e.effectfrol;lltechnica.1l>fQgt~S un .. 
less constant returns to scale are pr~assumed.CQnstant t.etu,rns ·t()s~eis 

difficult to justify on economic grounds (Stigler 19(1). CO:Q.ve;rJ)elYneutral 
technology, if existing at all, israre,at least in the shol't .. run.'l'heenlPlrleal 
evidenceo! neutral technology proVided by Solow (1957) and SaIter (1966) 
needs two qualifications. First,they only consideredtw~factor .production 
processes. Second; they only looked at long .. runeffectof technical pfC>gre$S 

on input ratios. While two factors ma.y change by the same proportion 'in 
the long-run. It is difficult to imagine atec1mology whichcanaltet'margip.al 
products of many inputs by the same proportion and ina ve~ E,;hort time, 

say between two adjacent years. In general~ when a. new teChnology is intro

duced, not all production factor can bech~ged immediately due to inEttitu~ 
tional limitations, availability of the production factors involved, au,d time 
or financial constraints. Fbr example, a uniform technology demands cap

ital expenditure on equi.pment and suitably qualified labour to increase In 
the same proportion. While capital can be organised promptly to pUl"chase 

the equipment, suitably qualified labourer ma.y be difficUlt to acquire in the 
short-run. We have not mentioned the requirement on the quantity and 

quality of other factors. Another example is the case of technology progress 

in agriculture. It is virtually impossible for any technology to be uniform in 

terms of land-capital-labour ratios. 

3 Measures of Technical and Scale Effect 

In this section, we will formally derive the measures of technical progress 
and scale effect for the case that there are more than two inputs. 
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3.1 Notations and Definitions 

Let el, .. • ,ek be the bases of the input space,. 'Ilk, than X =2:Ll~ie., ~d 
Ef=1 (t;e;is a unit vector with 'adi~tion :thesameas that of X. AssuIDing 
Z is any vector in 'Ilk, then the projection ofZ,tothedirection ofaunit 
vector can be expressed as the inner product ofZand ,the unttvedor. 

Now, define a continuouslydifi'erentiableproducti(m: function, 1'= I(X), 
onnk , then 

(a) the directIonal derivative Qf I(X) at .'.<& ,point X along 'a direction I 
can be denoted by df/dl, where 

(1) df _ Ii I(X +PZ) -/(X) 
dl - p!1' I/3ZI . , 

I is tJte direction of Z and, fJ is a real ntunber. 
(b) the gradient of I(X) ata point X is a vector, V I, where 

(2) V I = (81.'. ,'.' t 8J) 
8~1 8Zk 

(c) provided tha.t V I exits, the directional derivatives and gradient de
fined earlier have the following properties: 
Properties 

(i) ~ = ~~F, where I ls the directionofZ; 

(il) a.t a point X, n, the direction of V I, is the normal direction of the 
isoquant which passes through X; 

(iii) Iv II = ma.xd~l, where IV Ills the norm of V I 

3.2 The Technical Effect 

Analogs to the two-factor production case, as shown in Figure 1, ""fe 
assume the initial output is at point Po, the corresponding input vector 10) 

Xo = (ZOlt· ",%Ok) with norm So = Jr:J=l zgi- Mter changes in inputs, 
the new output is at point Pt, the corresponding input vector laXt = 
(%11," "xu) with norm 81 = vrJ=l zi., The incremental vector is AX = 
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Xl - XQ• The to,tal mcr~JIlent inontpllt is d~notedby AY~ 1) ~ 1(", whe~e 
Yi = !(XI) and Yo = I(Xo). Itahouldbe nQted;th",t i~hedirettion ,of,*" 
must be iixedas from Poto,Pl. We ,dEmote 'thi&;ditecti()n~yl. :On.~'lls 
given, the ending point or vectQrXt:tD.ust ;beQn;1heJjIiepas~g ~th.t'Qllgh 
point Po with direction l. 

lfthere is no teduUcalprQgres8,th.ei~putwillbt¢r,e~eial()l1sth.e WtectJOJ1 
of Xo fromXo (Po) to X, (P.), where :tie· lnctement~ v~ct()t :is' pX(1, 'M.d 
P > 0 is a. real number such :that(l + p)$o;:: 81. TheQutpl1t~a.tf. is 

Ys = /«1 + p)Xo). It.is clear, as demonstrated iin.atw<rf~tot:caset that 
the change frorn P. to' PI is due to techm~,progess.Inot4~r words, the 
movement from Po to PI can be sepata.tedmto tVlO st~ps.The fltst 'step 
is the movement from Po to P.bythe a.ntQuntpIXol.fu the directJon 'of 
vector Xo. The secon,d step is thexnovement {romP. to Ptlly the aIUount 
IAXtl. The magnitudes of input .. combina.tion at PI and P.areequal, but 
the directions of the input vectors are different. Thus, the technicale1feet .is 
reflected in the vector AX" while the scale~ffect is reflected In the vecto!; 
pXo. 

Definition 1: Let Y = f(X) be a. continuously differentiable production 
function defined on 1?}~, the ra.teof technical progressalo~g the direc
tion I, t" at Xo is defined by the'foUowing limitation: 

1'1t· ,,.-! y.. 
t= fun ' 
1 Pt-1b ~IA;"""X-t";';"l 

where AX: = AX - pXo and AX is the increment vector a.t xoatong 
direction I. 

The calculation of tl is given in Theorem 1 below. 

Theorem 1: If the production function possesses up to second Qrder par
tial derivatives on its domain, the rate of technical eff.ect can be cal
culated according to 

(3) tl = U d!(Xo) _ v d!(Xo) 
dl dlo 
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where 10 is the direction ofXo,uandf)aregiv~nby 

Jr:J=;l :e~i 
U = -r=:=========!?===== vrJ;::l z~ -·<E1=lDri:tOi)2 

Ef-tQ'ZOi 11 = . - .....••. 
vrJ=;l a-g. -(E7=t Q i ZQf)2 

where ai t i = 1, •.• , karethe dil'ectioIlaI cosines Qf direction I. 

Proof: By definition 

l't - y. 
IAXtl 

(Yl - Yo) .... (1':. - Yo) = I~Xtl 
Yl - Yo IAXI Y. - Yo IpXol 

= IAXI· fAXtl IpXol IAXt' 
Clearly, when PI -+ Po, tAxI -+ 0, p -+ 0 and IAX,I -+ O. Therefore 

Yi - Yo d/(Xo) 
IAXI ~----;u-

and 
Y. - Yod/(Xo} 
~------..--IpXoldlo 

The remaining is to show that 

and 

We know 

AX, = AX-pXo 
k k 

= IAXfLQiei - EpxOie; 
i=1 i;::1 

k 

= E(aiIAXI- PXOdei 
_=1 
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thus 

(4) 

On the other hand we have 

Xl = Xo+AX 
k 

= E(~Oi + t)ilAXDei 
i=l 

X. = Xo+pXO 
k 

= E(l+p)a:Oiei 
i=1 

However t it must be true that 

IXt! = IX,I 

i.e. 
h k 

E(~Oi + cci1AXj)2 = 1:(ZOi + pXOi)2 
i=1 i=1 

From the a.bove equation we can obtaIn 

h h k 
IAXI:= (1-: CCi$0t}2 + (2p + p2) E X~i - E a'XOi 

;=1 i=1 ;=1 

= e{2 + p)E1=1 zg, + O(p2) 
2 E1=1 CCiZOi 

so 
(5) IAXI = (2+p)Ef=t2:5i +O(p) 

p 2 ~=1 ai:tOi. 

As PI -+ Po, P -t 0, by (4) and (5) 

lim IAXI = lim 1 
Pl-fb IAXel p-tO VrJ=l (0:. - ~)2 

JEt;::l Zg. = JEt=1 2:6. - (Ef=l aiz od2 
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:::: 

vrJ=l:r;gi - (E1=1 Cti:I;Oi) 
2 

End of Proof. 

Definition 2: Given a continously diff~rentiable pro.duction function, Y :::,: 
I(X), the technical effect, T E, is defined as 

(6) TE - lim tzl.6.X,1 
- P, ..... Po /(Xo + dX) -/(Xo) 

The numerator of T E is the increase in output due to technical progress 

and the denominator is the overall increase in Qutput. Therefore, TE mea
sures the percentage contribution to output growth by technical progress. 

The value of T E can be obtained according to Theorem 2 given below. 

Theorem 2: Let Y = !(X) be a twice continously differentiable produc-
tion function, then 

tJ 
TE:::: ud!(Xo)/dl 

(7) 

All the notations have their earlier definitions. 

Proof: By the definition of T E, we have 

TE 

(8) 

End of Proof. 

r t, (lAX,I/IAXD 
:::: PJ~PO (!(Xo 1- AX) - f(Xo» /lAXl 

t, 
= 'UdJ(Xo}/dl 
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3.3 The Scale Effect 

Deflnitioll 3: Let ¥= !(X) bea continuously dift'erentjable )?l'oduc::tiC>Jl 
function, the rate of $ciUeeffect :corr:esllonding .to a (hange in blput~ 
from Xo tc) X. = (1 + P )Xo is defined asr t where 

r = lim 1«1 + p}Xo) -(1+ p)!(Xo) 
p .... O plKaI 

and p is determined such that (1 +p)IXol =·IXt!. 

In the above definition, !«l+p)Xo) is the output .atthe point (l+p)Xo t 

which is on the ray from the origin oi thecoor.dinate .system and passing 
through the point Po- Since constant returns ·to scale illlpIiest}tat output 
increases at the rate p as all inputs increase at the same rate, thenumeratoJ;' 
in the above equation is the net scale effect caused by the increment In tne 
magnitude of input-combination a.Jld the denominator is the net increment 
in the magnitude of input .. combination. It isobvioustha.t if r > 0, increasing 
returns to scale prevails. Conversely, r < 0 indicates deoeasing returns to 
scale. When r = 0, we have the case of constant returns to scale. 

Theorsm 3: If the production function, Y = I(X), posfiessesfil'at order 
partial derivatives, the rate of scale effect, r, at pointXQ (:an be ex-
pressed as 

(9) 
df(Xo) Yo 

r = --;u;;- - J'\:"'~ %2, 
~.::::l· O. 

where Xo = (ZOl"",XOk), 10 is the direction of Xo and Yo = !(Xo). 

Proof: 

r = lim [J(Xa + pXo) - !(Xu) _ !(Xo)] 
p .... O plXoJIXoJ 
df(Xo} !(Xo) 

= --;u;;- - IXol 
dfOCo) Yo 

= --;u;;- - Vr:J::::t Z~i 
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End of Proof. 

Definition 4: Given a. continously differ~J1tia.ble PJ'odtlction function) Y ::: 
I(X), the scale effect, SE, is define as 

(10) SE - li . rJpXol 
- ~!J:,o f(Xo + AX) --/(Xo) 

The numerator of S E is the increase in output due to chaIlge inJ;etl1l'ns 
to scale and the denominator is the t,,;:!'1 increase in output. Therefore, 
S E measures the percentage contribution :0 output growth by changes in 
returns to scale. The scale effect can be COl .jJuted .according to thefoUowing 
theorem: 

Theorem 4: Let Y = I(X) be a twice continou51y differentiable produc
tion function, then 

(11) 

where all the symbols have their earlier definitions. 

Proof. 

BE 

(12) 

End of Proof. 

T1'P%1 = lim oo:-::;;";::-!"'..::-A~-::-::;~ 
PI -Po I(Xo+AX}-J(Xo) 

IAX\ 
= r lim IXol 

d/(Xo)/dl PI-PO jAXl/p 
r ""k a'··· = £ .. ti=l •• O. 

Sod/(Xo)/Jl 

3.4 Calculation of Directional Derivatives 

To compute the scale effect and technical effect or their rates, df(Xo}/dl 
and df(Xo)/dlo have to be evaluated. To be able to do so, we make the 
following assumption: 
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Assumption 2; The direction of producti4nexpa1lsion, 1, .isequivalent 

to the direction of the gradient of the production func.tion. 

With the property (ill) and aasnmption 2 given a.bove, we have 

(13) ~~~) = IVII =. t (lJl(X))2 
i=1 Ox, 

(14) 
d/(Xo) AY 
---;u =IAXI 

where All' = Yl - Yo and IAXI = Vi:,'t:l(Zli - Zoi)2. The 8uDscriptsOand 
1 represent the neighbouring observations. Simllal'ly, given assumption 2 
and the property (1) above, we can obtain 

(15) 
d/(Xo) Xo AY k 
dl = V J(Xo) tx I ~ IAXI ~ a1i~O' 

o 0 t=1 

where 

:to; 
(}Oi = -;====== Jr:J=l :r~i 

The rational underlying assumption 2 lies in that if resources are limited 

and a producer aims at output max!misation, he has to continuously aq5ust 
their direction of production expansion towards the direction which max

imises the increasing rate of output. This direction is equal to the direction 

of the gradient of his production function. 

4 Consideration of Changes in Inpu't Prices 

Cha.nges in some inp'lt prices may force a producer to alter resource alloca.

tion, thus lead to variations among input ratios. The result of input price 

change is a movement of an input vector along a given isoquant (cha.nges 
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in cost .function only change itstang~ntpoint,not Qutpu,tteve1). Although 
input prices and technology progress may ehangesimultaneously, from. .~ 
methodological point of view, we can isolatetheirclI'ect8sequentlal1y.Th~ 
following aims at re.movingthe .. etrect of changes in prl~~orlnputson. factor 
ratios, thus making the use of the measuresdeve!oped in section 3 applicable 
bere. 

To show our approachdiagrammaticany, a .sintplliied tw~faetor Pl'Q-o 
duction process is depicted in Figure 2. Thisflgure is verysitniIar 10 lig .. 
ure 1 except that we first allow the initialproduetionxnove from Po to 
P6 corresponding to input price changes, and then expand f:tcun 1'& to PI 
corresponding to input increases and/or tecb.:u1cal progress •. 1r there is no 
technical progress, the expansion under new price ratios would be along 
the line OP6 and reaches P" The ill;put vector at Po ca.n he. denoted 'by 
X~= (Z~l'·· ·,X~l).In a two-factor case, Po is where the slope of 10 'at Po 
is equal to the ratio of new prices of the two .inputs. The Pain. .a.muIti
dimensional space can be located in the same way.. It is clear that once 
the point Po is determined, weca.n simply substitute X~forXoand then 
compute r and tz according to the procedures .deveIope:d 'msection 3. The 
task in this section is thus to detenninethe movement from Po to po. 

[Figure 2 here] 

--+ 
4.1 Determination of the direction of PbPl 

Let the price of %i be Pit maximisation of profit yields 

(16) 8J
8
(X) = Pi without constraints; 
%j 

( ) IJJ(X)/8Zi Pi .. b • 
11 lJ!(X)/8zj = Pi WIt constramts 

for i,j = 1" ··,k. In either case, the j-th directional cosine of the normal 
direction at P6, aj,can be obtained as follows: 

a
'
. :::; 8f(X~)/8%i 
, I v/(xt} I 
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(18) 

4.2 Determination or 1'6 
Gen.erally $peaking, price change' is a ,gradual 'prQce$s1 '$0 'is' 'thept()~8Qf 
inpntadjustment.ConsequeAtly, it s~ms ,rea.sonableto ~pPrQxhnate the 
isoquant, 10, by a hyperplane that passes through Po ,and jsp~a1lelt()the 
tangent· hyperplane at p~~ The precision ·of Cl.pproxhnationcanbennpl'()ve(i 

if the isoquant is approXimated by a .quadra.tic or higher order cUrV'edsllrl'ate. 
--+ 

Under assumption 2, the direction of ~Pl is equivalent to the ,direction ....... 
of 10 at P~. Therefore, the intersection between PtPland thebyperplM& 

can be used to approximate the point Po. The coordinates of the intersectiQn 

must satisfy the following twoequation8~ 

k 
(19) E aax"; - xo.) = 0 

,=1 

(20) X"1 - ,xu = zg2 - %12 = ... _ xgk - Xlk 
Q~ o~ - Qk 

where xg., i = 1"", k are coordinates of the intersection. Solving (19) and 

(20) simultaneously gives 

k I I 

( ) 
II I ,,' ajQ, • 

21 Zo; = a. "",,(aixoi + ,X11 - Xli) - (-;%u - Xli), 1= 1, ... ,k. 
j=1 01 at 

Obviously, xg = (xgl' ••• t xgk) can be used to approximate x~ or Xo in 
the calculation of BE and TE. 

5 Concluding Remarks 

To our best knowledge, Sato is the only one who successfully separated 

t Jchnical progress from scale effect (Sato and Nono 1983). We have, in 
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this paper, developed an alternative approach to sepatatingand ,measuring 
scale effect and technicaiprogress. The measur~s derlvedrequire littl(! as~ 
Bumptions on the property of returns to scale and onprodu,ction .ftmcti()ns; 
Apart from that, our method has the .advantageotbeing.opera~iOllalas long 
as they are two or more lnput .. outputobsetva.tion8.Themeasqtes~e also 
more accurate than earlier ones as we use ditectionalderivative$rath¢f·thM 
ratios of increments in the definitions of the measures. It is, boweverl lUi

clear to us which assumption is more 'restrictive: Sato'o non-:holotheticor 
our short-run non-uniform technical progress. 
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