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CYNAMIC DECISIONS UNDER RISK:
Applications of o Stochastic Control in Agriculture

In agricultural cconomics, most studies ol Jynamic deckions under rick ave beca empirical
with less camphasis on theory. In fizance, resource conaomics sad gencral ecosomics, however, Ito
stochastic control is popular for theoretical work. Optimal decisions can be characicrised using the
powerful 1to stochustic calculus. This paper describes the assumptions and metbods of Iio control,
consiructs & dynamic model of agricultural decisions wader risk and illustrates with four camples,
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DYNAMIC DECISIONS UNDER RISK:
Applications of o Stoechastic Control In Agriculiure

The art of modating is the artof sinking a bargain. Sometimes tractability must be 3t the expense of
realism. Researchers in finnzoe, natural respurce economics and geacral cconomics have struck a
favoradle bargain by accepling the assumptions and gaining the analytice! power of Tto stochastic control.
Appendix 1 contains 3 synopels of this litcrature. The purposcs of this article arc to 1) distill the-eradite
Hiterature oa 1o control into a more useful form and 2) adapt Ito coatrol 102 dynamic theoty of
agricnliural decistons under risk.

in agriculiural economics, most studics of dyrsmic decisions under risk have been empirical (sce
Appeadix 1). Tto stochastic control i a tool for constructing the theory to complement these emplrical
results. Anazalogy might be made to optimal comtrol without risk. Applications ave solved in discrete
time by mathematical programming or dysamic programming bui the theory is usually developed in
continvous time using optimal control. With risk, applications must be solved in discrete time by dyamic
programming but the theory will almoat zhways be casier to develop in continuous time using lto control.
A woze general but less tractable approach to theory intogrates divectly over transition deasity functions
and differentiates the intcgrals 2o find optimality coaditions (Txylor; Blume etal). ito coatrol simplifics
the stochastic strussure of the mode) and fiads optimelity conditions using a stechastic caloulvs. Ttallove
expected utility to be maximized over tisse subject 10 multiple and correlated risks. Lo control s popular
in finance, general cconomics and naturzl resource ecoromics becsuse Hitle cconomic reatism & sacrificed
{or a large gain in analytical power.

In this article the assumptions behind Ito stochastic processes are explained and stochastic calculus and
optimat control methods are presented. Then 2 model is Seveloped which adapts lto coatrol to the
investment, marketing, production and houschold copsumption decisions of a risk-sverie fzrmer. No
single model can cover the many topics within the subject of agricultural decisions under risk. But most
models will have the basic struciuse desived and illustrated here, Other sesearchers can builid onthis
structure, adapt it 1o their own models and derive theoretical results which complemsient thelr emplricol
results,

Ho Stochastic Processes

State variables, sometimes called quasi-fized factors, distinguish a dynamic model from @ staticone, Suie
varisbles cannot adjust insiantancously, s can variable factors, but they do change, uslike fixed facton.
Wealth is a state variable common to all fasmers. It changes over time with the retention of carnings from
nct income. Oiher state varisbles may include inveniorics of machinery and livestock, stocks of solt
moisture and soil fertility, water tables, minerals or prices.

A farmer makes decisions at the beginning of cach discrete time interval, Adecision is risky ifa sune
variable changes unexpectedly once the decision is made. Thus the change in the siate variable is
described by a stochastic difference cquation.

8, - St = {(1.Sc00)r-1).

S is a state variable; o is a vector of control variables; £ is a vector stochastic process.of dimensions nx1; ¢
and = are current and future times; and v+t is the leagth of cach thme interval, Three assumptions convert
the difference cquation into an lto differestial equation.

Assumption 1: Markov Property. The current state summarizes all relevant information. The probabllity
of makiag 2 transition conditioncd upon past and present states of the system of past and present
stochastic events equals the probability of making a transition conditioned upon just the current state.
The past and the future arc statistically independent,



2 Continuous Time. The difference equation is approximated by a differential equation in
continvous time,

Assurnption 3: Ropid Events. Stochastic events oocur "rapldly®. For example, weather and prices can be
difficull to predict from one growing season to the next.t

These three assumptions have several implications. The Markov property and continuous time together
imply that the approximating differential equation is linear in the stochastic process (Horsthemke and
Lefever, p. 97; Asnold, Chpt 9).

S, -Sy= [§(LS1a) + o (LSic)éi[r-t] + ofr-1).

The expected change in the state per unit of time is §. The standard deviation, o, is a vector function of
dirmonsion Dan. It can be a function of the contro? srd state vasiables or it can be keteroscedastic asa
function of time. Special cases include Kalman filtering, and multiplicative and additive risks (Mangel, p.
33; Arnold, p. 2G5; Fleming and Rishel, p. 135; Kendrick, Chpts, Sand6). The orderfunction, o{r-1), 52
remainder which goes 1o zero faster than time interval v-t approeches dt in the Hmit of continuous time.

Continzous time is a simple assumption in a deterministic model, By the fundameats) theorem of
calculus, a difference equation converges in the Hiuit 1o a unique diffierentlal equation. There is only one
calculus for deterministic equations. But the limit of a stochastic diffesence equation Is not unique, Ifthe
stochastic difference equation is evaluated at the midpoint of esch time interval it converges toa
Stratonovich differentizl equation (Wong snd Zakai). 1fit is cvalusted at the beginning of czch time
interval, it converges to an ito differentiat equation (Maruyama), Two different stochastic calculi result
from the two approximations (Sethi and Lehoczky; Horsthemke and Lefever, p. 101; Schuss, p. 93). The
Stratorovich calculus has the same rules as ordinary calenlus (Stratonovich). Unfortunately the Markev
property is destroyed. Thestate of the system at the beginnisg of & time interval does rot eummarize all
the informaticn necessasy for approximating a1 the midpolnt. The lto calculus has different rules of
integrstion and differentiation, but it preserves the Markov property by approximating at the beginning of
each time {nterval (lto, 1944, 15513, 1951b).

The stochastic prooesses must be identically sad independently diswibuted at cach pointin time. If
stochastic prosesses were not independent but autocorrelsted, past events would contain information not
summarized by the current state and the Markov property wouki be violated, For rapid events, the fimt
two moments become sufficient statistics (Feller, p. 335; Amold, pp. 39 and 156; Maillaris aad Brock, p.
99; Horsthembke and Lefever, p. 72). The first, second and higher moments of the changs in the siate
varizble are

E{8,-5; | Symsg} = 5(1,S,e0)[r-1] + o(r-t);
M E{S,8] | S=s} = a(tSuc)ao’(LSuen)]r-1] + olr-t);

E{{S,-Si*"® | St=s1} = o(r-1).
@1 is the contemporancous correlation matrix and oQdo” is the covariance; a is 2 positive parameter and
expectetions are conditioned on a known current stock, s;. As v-1 approaches dt in the limit, the order
terrs vatish, the first moment becomes the drift term, §dt, the second moment becomes the diffusion
term, c0o'dt, and higher moments go to zero, regardless of the undeslying probability distribution,

Finally, the ordinary stochastic process, £, must be replaced by white nolse, ¢ (Horsthemke and Lefever,
p- 59). The ordinary stochastic process has a finite variance which prevails over each discrete time
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interval. As time is divided into shorter and shorter intervals in the passage to continuous time, this flnite
variance would be parcelled out and the variance in each short interval would go to zero, For the
differential equation to remain stochastic, the variance must increase to infinity as time becomes
continuous. An infinite variance, an expected value of zero and no autocorrelation is a description of
white noise?.

E{ei} = 0

Q/{r-1] goes towas r-1 goes to dy;
E{ete’,) =
Ofor rwt.

To see how white noise replaces an ordinary stochastic process in the passage to continuous time,
consider a special kind of state variable, Z, which has a drift of zero, a standard deviation of unity and a
normally distributed stochastic process.

Z, - Z = Eyfr-1] + o(7-1).

By equation (1), the first moment is o(r-t) and the sccond moment is Qfr-1] + o{r-1). Thus, £&' must
equal G/ [r-t] and the change in Z converges in distribution to white noise as time becomes continuous.

() dZ= edt.

Zis called Brownian motion or a Weiner process, Iis differential over time is normatly-distributed white
noise.

Finally, an Ito differential equation is defined by taking the limit of the difference equation for state
variable S as r-t becomes dt and ordinary stochastic process, £, becomes white noise, ¢, then feplacing
white noise over time by the differential of the Weiner processs,

3) 45 = § (4,Spe)dt + o (1,5,¢)dZ

The Ito differential equation retains the essential character of the original difference equation. Timeis
asymmetric. Decisions are made at the beginning of each infinitely-short time interval based on
information summarized by the current state. The state variable is not differentiable with respect to time
in the ordinary sense. It evolves stochastically and is differentiable only by stochastic calculus,

Ito Stochastic Calculus and Control

Like ordinary calculus, Ito stochastic calculus includes integration and differentiation. Integration is
useful (Arnold, Chpts 7 and 8) but differentiation is cssential. Let variable X be a function of both time
and the stochastic state variable, or X = f(t,S), and take the Taylor expansion.

Xy - X = ffr-t] + £5[S,-Si] + fulr-]2 + 2is[r-1][S,-S}] + fss[S, -SJ?]
+ O([r-11®) + O([S,-S:J).

—

thjtc nolse can have different probability distributions including normal and Poisson {Gel'fand and Vilenkin), Normal
disfpré“qu)‘m result in Weiner processes and Poisson distributions result in Poisson processes and model rapid and rare events,
respectively,

3Rare events could be included bynddinl the term gdP where o is a standard devistion and dP is the differeatial of a Poisson process
(Merton, 1971; Malliaris and Brock, p. 121; Mangel, p-22).




fi, fs, fix, fi5 and fss are partial derivatives and the terms O([*]3) are order functions which converge to
n00zer0 constants.

ho’s lemma (Ito, 1951a, 1951b) simplifies the Taylor expansion. Like differentiation by oxdinary calculus,
only first-order terms must be reizined in the passage to continucus time. Terms with {r-t}2and [r-)[S,-
$:) are of second ordes and vanish in the limit. However, the second moment, {S,.-5¢J?, is actually of first

order in -t according to equation (1). The limit of the Taylor expansion is the stochastic differential
equation for X which, with the aid of equation (3), can be written in cither of two forms.

dX = fidt + {5dS + YlssdS?
= [fe + Is6(1,5,) + Ylssa(1,S,6)00'(1,S,c)]dt + fso(1.S,)Z

Three simple rules convert the second moment of the state variable, 452, into the diffusion term, ofo'du

0

5) di2=0; didZ=0; dZdZ = qdt.

When differential equation (3) is squarcd, all terms with 412 go to zero, including dtdZ which equais edt?,
Although dZdZ’ equals e ¢'dt?, it is not zero because e ¢* equals /dt,

The trademark of an Ito derivative is the diffusion for § inserted into the drift for X. For example, ifX =
£(1,S) were concave, variance in S would be expected to-decreate X, This trademerk results from the
Markov property in which expectations are formed at the beginning of cach small time interval, Examples
of Ito differentiation can be found ia Kamien and Schwartz (Chpt 21) and Mallizris and Brock (pp. 89 and
220). Appendix 2 contains the differentiation formula for when 8 is 2 vector of state equations.

Like deterministic optimal control, Ito control meximizes an objective function subject to differential
equations for the state variables. The objective function of a farmer who wishes to maximize his expected
wtility is

© IS0 = MaxE( J-: UGSt + €PTV(ST) | So=sah.

Maximization is subject 10 the stochastic evolution of the state variable in equation (3), The farmer’s
control and state variables are ¢ and §; his direct utility functions are U and V; his indirect utility after
optimization is J; his rate of time preference is p; and his planning horizon is T. In a typical model, the
farmer would maximize the expected utility of current consumption and terminal wealth but many oiher
control and state variables are possible.

Either dynamic progmmming or a stochastic maximum principls can optimize equation (6) (Maltiavis and
Brock, pp. 108, 112 and 118), Dynamic programming is more common and optimality cosditions ase
derived from the Ito version of the Hamilton-Jacobi-Beliman (HIB) equation.

(M O=d+ Max{ePU(Se) + Jsb(L50) + Wssa(tSe (1S}

&y, Jg and Jgs are partial derivatives and the HIB equation is  partial differentist equationintend S It
has end condition J(T.S1) = ¢ #TV(S1). The expression in brackets to be maximized is a dynemic
certainty equivalent denominated in wtils. Its first termvis current direct utility; its second termis the
dynamic cost ¢ an expected change in the state; and its third terny Is the dynzmic risk premium,

Because the HIB equation is derived by Ito differentiation it contains the covarisnce of the state variable
in its risk premium. This gives Jto control all the power of mean-variance analysis without the restrictive
assumptions. The only assumptions required are rapid uncertainty and the Markov property in.
continuous time. “The first two moments become sulficient statistics and the mility functions can be of any

T ammrdiiscndn 1 uscnsnt Enss ol wiwdone s 1ot roam.
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form, allowing ail types of risk preferences. The sccond partial derivative, Jgs, is 2ero or negasive fora
risk-ncutral o a risk-averse farmer and changes endogenously with the devel of the staie,

Control variables, ¢, are chosea by differentiating the HIB equation.

8)  0=e P+ Jgbc + Jssofo's

U is marginal direct utility, . is the partini derivative of the expected change and ofio’ s one-half the
partial derivative of the covariance where o'c is an nx1 vector of partial derivatives of the standard
deviation vector. To make his decision, a farmer compares discounted marginal utility to the marginal
dynamic costs of an expected change in the state and a marginal risk premium,

Another optimality condition describes the shadow price, or costate, Js. Jusi as the state varigble changes
stochastically over time. so docs the rostate, Its differential equation is presented in Appendix 2,

# Model for Agriculture

A farmer faces many risks from production, from prices and from investments. No single model can
include them all. But every model must consider vae farmer’s bottom line, risky income which makes the
sccumulation of wealth stochastic. A risk-averse farmer may wish to maximize his expected utility subject
1o his stochastic change in wealth.

9  J(Wo)= !;#ll%xi‘:( 0 €”PH(g)dt + ¢PTV(Wr) | Wo=wo);
subject to:

(10)  dW=[5.W + );(8: - Sw)piAi - )",psgx(A,C) + x - pgqjdt + @pmmmz; . );Pﬁi(&*;)dzi +dn.

U and V are dircct utility of consumption and terminal wealth; J is indirect wtility of wealth; qis
consumption at price pq; ¢ {s a vector of production decisions 10 be defined ir: later examples; p is the
farmer’s raie of time preference; W is wealth which can be invested off-farm at the risk-fice rate 5w Ay s
the inventory of an agricultural asset valued at price p; and expected to receive premium §j-5w above the
risk-free rate; g; is the physical rate of degradation of an inventory; x is the revenuc from production
above variable costs, or gross margin; o; and s; are standard deviations of returns 10 assets and of physical
degradation; dz;, and dZ; arc Weincr processes; and dr is the stochastic change in the gross margin.

The stochastic change in wealth, equation (10), is derived in Appendix 3. It is a general equation which
must be specialized for a particular topic in risk. Investment in financial assets will treat the term (51
§w)PiA, as real capital gains. Investment in depreciating assets such as machinery may treat this same
term as fixed costs. Negative §; is a rate of depreciation and § is the rate of interest on investment, The
term piAjoidy is risk from capital gains or depreciation. Investment in degradable zssets, such as soil
which crodes and livestock which dies, will treat the term pig; as a user-cost or quasi-fixed cost. The
amount of the asset used, g;, will cost pjto replace. Degradatios is risky because of the term pisidZ;, Most
importantly, however, gross margin, %, and its stochastic change, dx, must be specified. Gross margin
could include many combinations of stochastic yiclds and prices. A few combinations are illustrated in the
following examples.

Example 1: Farmland Investment
The capitalization approach to farmland valuation has been investigated by many authors including Burt,

Alston, and Featherstone and Baker. Using Ito control, this approach can be generalized to include risk
and risk preferences.



Assume the farmer’s only asset is land, L, valued at price p o and expecied to appreciate at rate § g,
Assume the land does not degrade physically. Also assume the gross margin is nonstochastic and couals
the gross margin per hectare times the number of hectares of land,

= = (pyY(x) - px)L.

Y is yield per hectare as a function of variable input x; py and py are prices for yield and the variable in put.
With these assumptions, the chapge in wealth, equation (10), becomes

dW = [SwW + (5 - bw)pyle + (pyY - pX)L - pauldt + pylogdzy.
Optimal farmland investment will be derived from the Hamilton-Jacobi-Beliman (HIB) equation (7).
The state variable denoted by S in the HIB equation correspands to wealth. The control vector, ¢,

comtains the variable input and hectares of land. The drift term, §dt, is the first momeant, E{dW}, and the
diffusion term, oflo'dt, equals the sccond moment, E{dW?),

64Ut = [SwW + (8 9 - Su)pgL + (pyY - px)L - poqldy;
oflo'dt = §2d12 + 26pslo pdidzg + (pylog)idzy?
= (pglog)dt

According to the rules in (5), dz? is a first-order term equal to time increment dt. But di12 and didz g are
second-order terms which vanish in the limit of continuous time.

From eyuation (8), the optimality condition for land equals Jw times the derivative of drift plus Jww
times one-half the derivative of diffusion.

0=Jwl(5- 6wpg + pyY - pax] + Iwwl{pgo 5)%
This can be solved for the demand for farmland.

(11)  L={pyY-pix-(6w- 5 2)psl/ {-Iww/ Iwl(pgo )%

The numerator is the gross margin per hectare minus the opportunity cost of investment afier expected
capital gains. The denominator {. the variance of land prices weighted by the farmer’s coefficient of
absolute risk aversion, -Jww /Jw. A risk-averse farmer has negative Jwnw and invests in farmland if the
gross margin exceeds the expected opportunity cost. The greater his risk aversion the lower a farmer's
demand for land,

Further insight comes from solving for the price of farmland.

P2 = [pyY - pax- Li-Jwwr 1 dwi(pgo )%/ (Bw- 6 3)

To calculate the maximum price he would be willing to bid, a risk-neutral farmer divides the gross margin
by the real rate of interest after expected capital gains. An aspiring farmer who doesn’t yet own farmiand
has no risk exposure. He may be risk averse but would initially bid as though he were risk ncutral. As he
accumulates farimland his risk exposure increases and he lowers his bid. If the gross margin were risky he
would be even more conservative.

fio Stochastic Control for Agriculturs



This stochastic price equation implies that farmers who are very averse to risk might be willing to
purchase some land but farmers who are less averse will purchase more. In addition to economies-of-
scale, degrees of risk aversion may influence farm size.

Example 2: Forward Selling

Many authors have investigated forward selling through forward contracts or futures markets. Kahl, Eond
et al,, Thompson and Bond, and Robison and Barry (Chpt 10) used mean-variance analysis to determine
the optimal proportion of yields to hedge. Using Stein’s theorem, Grant extended the results to an
expected utility model with bivariate, normally distributed risks. Using Ito contyol, the results can be
extended even further to a dynamic expected utility model with multiple sources of correlated risks.

Assume the farmer has a fixed land area which does not appreciate in value. All his financial investments
are risk-free. The gross margin, however, is now stochastic and has a term for hedging income.

n = pyY(x) - px- (pr- polF.

The farmer hedges quantity F by either a forward or futures contract and receives contyzct price P, With
a forward contract he must deliver at harvest time or, equivalently, sell all his yield and purchase eilough
at future price py to make the promised delivery. With a futures contract, he purchases an offsetting
contract before the original contract matures. Future price, pr, equals spot price, Py, for a forward
contract. The future price should converge 10 the spot price for a futures contraci but may be subjecttoa
different stochastic influcnce leading to basis risk. Because of spot and futures price risks, the gross
margin has an Ito derivative as defined by equatior, (A4) in Appendix 2.

dr = dpyY - dp(F.
In the finance literature, it is typical to assume price expectations that are log-normal. In other words, a
farmer expects pric:s to be nonnegative and their percentage change to be normally distributed.

dpy/py = [8y + oyey]dt = §ydt + aydzy;

dpype = [81 + ores]dt = Sdt + odzy,
Expected rates of change, §yand §¢are forecast with errors oyeyand oger, where the o's are standard
deviations and the ¢’s are normally distributed white noise. By equation (2), edt is the change in a Welner
process, dz. The Weiner processes for the spoi and futures prices may be highly correlated.

After substituting in the gross margin, its Ito derivative and price expectations, the change in wealth,
equation (10), becomes

4W = [§wW + py(1 + 8y)Y - pxx - (Pr(1 + 61) - po)F - Pqqldt + pyYoydzy -piFagdze.

As in the previous ex2mple, the drift term, 5dt, is the expected change in wealth. In this example,
however, there are two sources of risk and the diffusion term, ofic'dt, is the product of matrices.

oQa'dt = [pyYoy; -pFo} [dZy] {dzy; dzg] [ pyYUy]
dz -prFor

= [pyYay; -piFay] [ 1 wyf] [p,.Yay ] dt.
wyt 1 | {-piFor



Using the rules in {5), the product of Weiner increments, dzdzy, equals wydt wheve wyr is the correlation
coefficient.

Optimality condition (8) is applied by differentiating drift with respeci to F and muitiplying by Jw. To
this is added the derivative of o' premultiplicd by Jwwot

0 = -Jwlpr(1 + 61) - pe] + IwwlF(pron)? - Ypypiayoran].
The demand for fatures is found by solving for F.,

(12)  F = Yipyoyay) / proc + [pe- pr(l + 60}/ [-ww / Iwl(prog?

The first term on the right-hand side i the demand for futures as a hedge. The second term is speculative
demand. Suppose the futures contract is for a completely different commodity than the one produccd and
the spot and futures prices are uncorrelated. A risk-averse farmer may still speculate if the contract price
exceeds the expected futures price. The more risk-averse a farmer the less will be his speculative demand.
Positively correlated spot and futures prices increase the demand for futures as a hedge. Prices may never
be perfectly correlated because of basis risk and the farmer will hedge only a portion of his yield, A
forward contract, however, is a special case in which spot and futures prices are identical. Price risk is
eliminated. The farmer hedges all his yield and uses contrect price pe to calculate the marginal valuc
product in making his production decisions. If yields were stochastic, the decisions of a risk-averse farmer
would be more complex and he might not hedge all of his yield.

Example 3: Production from Nutrient Stocks
Typically, studies of production under risk consider only variatle inputs. This is true for studics of
fertilizer applications, a5 an example (Rosegrant and Roumasset; SriRamaratnam et al.). Most nutrients,
however, are quasi-fixed stocks which carryover from one year to the next (Lanzer and Paris). The rate of
carryover is stochastic, depending upon rainfall. Yields are a stochastic function of thess nutricnt stocks
and other variables beyond she farmer's control such as soil moisture, temperature and pest attacks, Thus
the gross margin §s stochastic because of yield.

7 = pyY(NX) - pax;

dn = pAY.
Yield has many stochastic influcnces and evolves according to a complex differential equation. But the
drift and deviation terms of this cquation can be summarized as functions of nutrient stocks, N,

dY = §y(N)dt 4 oy(N)dZy.

The change in yields is linear in the stochastic process. This imparts the same desirable properties
postulated by Just and Pope (1978, 1979) for stochastic yiclds in a static model.

The assumptions about nutricnt degradation, gross margins and yield transform the change in wealth,
cquation (10), into

AW = [6wW + (8n - Sw)PaN - Pag(N) + py(Y(NX) + §v(N)) - pxx - Paglct
+ paNeadzn - PasndZN + pyoy(N)IZy.

Iio Stochastic Control for Agriculmure
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The drift term now contains investment and degradation costs for nutrients. Expectations must be fosmed
about the price of autrients, the degradation of nutricats and about yield. Dcgradation and yicld both
depend on the weather and may be highly correlated in the diffusion term.

aflo'dt = [paNay; -pasn; pyey(N)J 1 0 O poNen  ]dt
0 1 uNy||-pasn
0 wuny 1] pyov(N)
The derivatives of drift and diffuzion are substituted into equation (8) to find the optimality condition for
nutrients which is then rearranged.

(13)  py(dY/3N + 36v/aN) = po(Sw + 3g/aN - §5)

+ N[-Jww /Jw](Paca)? + [-Jww 1 Iw][(Pyo¥)? - PapysNoywny](3ov/aN) / oy.

The farmer compares the expected marginal-value product on the left-hand side to the marginal
investment cost and marginal risk premiums on the :ight-hand side. The marginal invesiment cost
depends on an effective rate of return on invesimen:. This rate cquals the interest rase plus the marginal
rate of degradation minus the expected rate of change in the nutrient price. An easily leached nutrient
such as nitrogen ic almost a variable input because the marginal rate of degradation is nearlyone. A
slow’y eached nutrient is almost a fixed cost because the marginal rate of degradation is nearly zero. If he
expenr ., its price to increase, the farmer will apply more nutrient to carry into the future.

A risk-neutral farmer sets the marginal risk premiums to zero but his decisions may appear 10 be risk
averse (Just). Stochastic nutrients modify the expected marginal value product through the term §v.
With no risk, the farmer would expect the marginal value product to be pydY/aN. But with risky nutrients
the expected marginal value product may increase if 35 v/aN is positive, The farmer would demand more.
A risk-averse farmer will behave the same as a risk-neutral farmer if fertilizer prices are certain and the
nutrient neither increases nor decreases yield risk. He will demand less than a risk-neutral farmer if the
nutrient price is risky and he will demand more if the nutrient decreases yield risk with (daylaN)iay
ncgative. Nutrient availability and yields may have a negative covariance in the marginal risk premium.
Unexpected rainfall may cause rapid degradation and lower yiclds. Costs would be unexpectedly high and
returns unexpectedly low, increasing the variance of Lucome and the incentive of z risk-averse farmer to
apply extra nutrients.

Example 4: Household Demand

In Example 1, the farmer chose whether to invest his wealth at a risk-free rate or buy farmland. But there
1s a third choice, consume rather than i west. The farmer equates the discounted marginal utility of
consumption with the marginal utilisy of wealth multiplied by thz price of the consumption goed.

¢~Pt3U/aq = Jwpq.

Using cquation (A9) from Appendix 2, it can be shown that the farmer expects the marginal utility of
wealth to decline at the risk-{ree rate of interest or, in other words, 1o be constant in real terms. Suppose
the farmer’s marginal utility of wealth is constant and his rate of time preference equals the rate of
interest. Then, perhaps, demand could be estimated as if it were static.

A more rigourous but less flexible approach would estimade a closed-form demand tquation. A closed-
form cquation can be integrated analytically to find indirect wtility. Merton (1971) proved that a closcd-
form is linear if and only if the direct utility function belongs to the hyperbolic absolute risk aversion
(HARA) class of functions. This class includes maay popular utility functions such as the Stone-Geary
function.

Tirm Comnmdenvetn % octwold o Bostusilo na
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U@Q) = 8- =

To find closed-form demand, first U is differcntiated and substituted into the optimality condition. Then
the optimality is solved for q.

q = [pge”'h fap]t/ D+ 4.

Next, q and the demand for land, L, from Equation (11) are substituted into the H3B equation which is
simplified.

0= 1y + (1-a)Be P pee’Iw / af]®/ (1) - [J2y / Jww|m? + Iw{swW - pgrl.

The coefficient m is the gross margin per hectare of land above iaterest on investment, standardized for
risk.

m = [pyY - X - (Sw- 8 9)pgl/Pgoy.

The HIB equation is a partial differential equation in wealth and time. Assuming a zero utility of
terminal wealth, Merton (1973b) integrated to find indirect utiliiy.

W) = e P (1-a)(1-e7HTH/(-X) D)W/ p, - (18w ) sw)®.

Rate ris the farmer’s rate of time preference above a risk-adjusted interest rate.

r=p -affw + ¥ml/(l-a)}

Finally indirect utility, J, is differentiated with respect to wealth and substituted into the optimality
condition for q to get a dynamic lincar-expenditure equation.

(14)  p=r1W+ pqy(m'ssﬂ*))/sw]/{(l-a)(l-e"ﬂ*)/(w)); + pq.

This dynamic demand equation differs from its static counterparts in having wealth as an argument
instead of income and depending explicitly on the farmer’s time horizon, rate of vime preference, rate of
wterest and exposure to risk. Because demand is a closed-form solution, moveraents in commodity
prives or reductions in risk translate exactly into the change in tility. There is no nced to calculate
chanes in consumer’s surplus as a proxy. Finally, more general utility functions including utility of
terminal wealth, more sources of risk and multiple commodities are possible in a dynamic lincar-
expenditure system.

Conclusions

In agricultural economics, most studies of dynamic decisions under risk are empirical. Fewer studics are
theoretical, perhaps because the models are difficult 10 analyze. Ito stochastic control is an ideal ool for
theorctical analysis. The crucial assumptions are the Markov property and continuous time. The Markov
property is natural for economic models because decisions are made at the beginning of cach time
interval. The limit of continuous time is no moce restrictive than in deterministic models. With these and
an added assumption of rapid stochastic events, the first and second moments of a stochastic process
become sufficient statistics. Ito control has the power of mean-variance analysis without objectionable
assumptions about probability distributions or utility functions.

Jo Stochastic Control for Agriculure
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A moded for agriculteral decisions under risk was derived aad proposed &5 a busic model. Then the model
wus adapied fov four topics: 3 farmer’s inveitraent in tisky sssets, markotlng with risky prices, production
froms stock inputs that degrade stockastically aad dymamic household demand, A fow resulfis from the
Ulerature were streagtheacd and mew results were obtained. ‘The capitalization approsch 1o Tarmland
va'uation was geacralisod 1o inctude risk and risk proferences. Meanwvariapoe snd variance

& componition rosults for optimal hedging decisions ware strengihencd by the Jess restrictive ssswmptions
o' frocosrol. New results for the optimal camryover of risky sutrieats werg derived. And adymamic
lincay expenditure system under risk was prosented. These topica were chosen 10 demosstae the
mectods of Ho caloutus and Jto control.

Further topics might include corrclated prices and yickds, optiom sty shareront vertus Cabozent
teases, crop insurance, il erosion, salinization, mackincry repale aad replicemient, vestock replaccment
and brecding, weod and pest control, commaodity progrems, bulfer stocks, Intcesations! tade under Tk,
flexible demand systems, and swochastic dynamic duslity.
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Appendix 1: Synopsis of tha Literature

ho stochastic processes are the foundation of most modern mathematics Hterature on sjochastic contral,
Mathematics texts are usually inaccessible to cconomists. Exceptions are Arnokd, Horsthemke and
Lefever, Fieming and Rishel, Schuss, Karlin and Taylor and Feller (1968, 1971). In the cconomics
literature, Ito processes were first used to study finance. Famous examples are Black and Scholes option
pricing formula and Merton's (1971, 1973a) porifolio rules smd capital-asset pricing model. Merton
(1975) was among the first 1o use lto control in the study of growth theory under risk und was followed by
othess, includii., Chang. Pindyck (1980, 1981, 1984), in particular, introduced Ito control inte the natural
resouroes lit- :atare. Pindyck (1982) also introduced Ito control into the adjusiment cost lterature and
was followed by Abel and by Stefanou, Review articles by Smith (1976, 1984) and Malliaris give an
overview of Ito control in finance. Anderson and Sutinen review the literature for marine cconomics.
Chow reviews the literature for finance and natural resources. The book by Malliaris and Brock is an in-
depth survey of stochastic control in finance and general cconomics. The book by Mangel contains
original work in natural resources. And the book by Merton (1990) summarizes the work of pioncers in
finance.

In agricultural economics, dynamic decisions under risk have been studicd by various methods. Burtetal,
Taylor and Burt, Zacharias and Grube and McGuckin et al. cither solved stochastic dynamic
programming problems in discrete time or 2pproximated the solutions. Karp and Pope solved a stochastic
dynamic programming problem by lincar programming, Taylor and Talpaz applicd certainty-equivalence
rules. Karp as well as Dixon and Howitt solved lincar-quadratic-gaussian control proXlems, So-called
dual or adaptive control in which estimates of the model are updated as decisions are made was
introduced into the agricultural economics literature by Rausser and applicd by Taylorand Chavas-and by
Zavaleta et al.. Antic and Hatchett estimated a sequential decision process. And the book by Kernedy
applics dynamic programming to agricultural and natural resource cconomics.

Appendix 2: Vector Differentiation and Control

To differentiation and control with a vector of statc variables are no different in interpretation but much
more detailed.
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Vector Differentiation. Let the dimensions of S be mx1, § be mx1, o bt mxnand dZ be nx1. Thevector
formula corresponding to equation (4) differentiates the scalar X with respect 1o the vecior §, where X =
f(1,8).

m an m
dX = fidt + ), 508+ %4 f5i5;dSidS
N E:x ?21 A
(A4)
1 mf 2) s 5 ol mf (VA
+ )+ Na;ldt + .
={f ?Z‘lsz( i Ex ?;_ fsisi(o00")i) Elsﬁv i
S; is the ith element of the S vector and f5; and fs;s) are first and second pariial derivatives of f with respect
1o elements of the S vector. The notation (5 denotes the it element of the § vecior; (oho")jdenotes
the ijth element of the mxm covariance matrix; and (odZ}); denotes the ith element of the mx1 stochastic
vector.
Vector Control. The Hamilton-Jacobi-Bellman equation for a vector of state variables corresponds to
equation (7).
m m m
(A7) O=Ji+ Max{c U+ Jsi(e + %Fl ?: Jsisi(ofo)yh.
= ] g0

Jsi and Jg;sj are partial derivatives of J with respect to elements of the S vector.

Optimality conditions when there is a vector of state variables are not widcly available in the Hiterature.
The proof is tedious but it can be shown that the optimality condition for the controls is

L] m m m
(A8) O=e MU+ ?: ;’Si(sc)i + ?: ’[F fs&s;(oﬂ)jx; §Zl-‘5i$j(ﬂﬂ)jn](ﬂ'c)l-
U is the partial derivative of utility with respect to control, ¢, and (5¢); is the partial derivative of the ith
clement of §, The term in square brackets is a 1xn vector written out explicitly. The notations (of);; and
(oN)jn denote the j15 and the jnth elements of the mxn ¢ matrix. (o'c); is the partial derivative of the itb
column of the nxm matrix, o'
The marginal utility of a state is the shadow price or costate variable. Costates can be imporiant in

analyzing a theory, particularly when there is a vector of states and, hence, & vector of costate variables, It
can be shown that the Ito differential equation for costate dJsg, corresponding to state Sy, k = 1,..m, s

m m m m m

(A9)  dlsc=-[e™V'Us + F tha(ﬁsu)n + ; l{ ) {sss,'(aﬂ)n; ;; ;lSis,‘(aﬂ)jnl(a‘Sk)i]dl + ‘Z l-’Sksu(ﬂdl)i»
- £ ’w = -

Usk, 65k and osi are derivatives with respect 1o Sg.

Seuting m equal to one in equations (A7), (AB) and (A9) gives the scalar case discussed in equations (7)
and (8).

Appendix 3: Stochastic Wealth
A farmer will have inventories of risky assets, A, valued at prices, pj, and, perhaps, a risk-frec bond, B,

valued at pw. Liabilities are negative assets. A farmer's wealth is the value of assets and liabilitics
summed.

W= ;Pii\l + puB.

Wealth is stochastic because assets and prices are. Decisions are made at time t and the outoomes are
revealed at time t+dt. Ito differentiate wealth using equation (Ad) in Appendix 2.
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dW = JdpiA; + dpuB + ;[pi + dpiJdA; + [pw + dpw]dB.
]
The first two terms are capital gains on beginning inventories. The last two terms are additions to
inventorics valued at ending prices. At the beginning of each time period, the farmer forms expectations

about ending prices. It is typical in the finance literature to assume price expectations are log-normally
distributed.

dpifpi = [61 + oici]dt = Sidt + oidz;

dpw/pw = Gudt.
§ denotes an expected rate of appreciation or depreciation, o is the standard deviation of the forecast, ¢ is
normaily distributed white noise and dz is a Weiner process. Price expectations may be correlated across

risky assets. Given these expectations, the farmer chooses a porifolio. Once the Aj's are known, B is
determined by the wealth constraint.

B=[W- ;PiAi]/PW'
In addition to appreciating or depreciating in value, inventories may be acquired or be degraded.

dA; = [a; - gi(AC) - si(Ac)ei]dt = [a - gi(AC)]dt - 5i{A,0)AZs.

Acquisitions are a;. The rate of degradation, g, is predicted with error s;e;, where s is 2 standard deviation,
¢ is white noise and dZ is a Weiner process. Stochastic degradation may be correlated across inventories
but assume there is no correlation with prices. By definition, acquisitions of risky assets and purchases of
risk-free bonds must be financed from production income above variable costs, called gross margin, x,
after consumption expenditures, pqg, have been subtracted. The portion, w, of wealth accumulated from
the gross margin above consumption expenditures is a stochastic integral over time.

w(t,x) = j‘o (% - pqq)ds.

Tto differentiate this contribution to wealth using equation (4) and equate the result to the value of risky
asset acquisitions plus risk-free bond purchases.

)}[p; + dpijaidt + [pw + dpw]dB = ndt + dx - pyqdt.

Finally, substitute price expectations, the wealth constraint for risk-free bonds, inventory expectations and
the financing of assets and bonds into the change in wealth.

aW = [5yW + );(6; - Sw)piA; - );pig;(A,C) +x-poqjdi + gpiAiaidzi - gzpis;(A,c}dZ‘ +dx.
This is Equation (10). Maximizing expecied utility subject to this single equation is equivalent to

maximizing expected utility subject to multiple equations for wealth, asscts and prices. Ina model with
multiple equations, the asset and price equations are as given previously and the wealth equation would
be

AW = [§u[W - ;p;ﬁq) . );pm + % - pgqldt + dw.
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Verifying that the two models give the same answer requires paticnce, vector control techniques from
Appendix 2 &nd the identities, Ja = Jw[8W/A)] = Jwpiand Iy = Jw[aW/api] = JwA;





