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Since the mid-seveuties, ¥ major ares of econssetric research has been
the development of procedures to test the specificution of espiricsl models.
Thiz article deals with testing non-nested {or separate) models. Two models
s of the pther, obtained by
parameter restrictions. This, the Cobb-Douglam production function is nested
uithin the constant elasticily of substitution (CES) production functiom.

If, on the other hand, one model cannot be exprasved s & speclal cose of the
other by parameter restrictions, the acdeéls are 'non-nested’. Applled .

are sald to ba ‘nested’ wvhen obe 1% % speclal cas

economics glves rise to many instences in which ron-nested midals are belng
examined as adequate descriptions of data. The following four siasples
should suffice to zhow this

(1) Models say differ in functionel Torm. Uften the competing
furctional forms will He non-nested, Tor exusple the variable
elasticity of subgtitulisn (VES) and CES production functions,

{311} Soxetlmes models mey differ In the definitions of explanatory
varisbles. For exasple, supply resporse models say vse different
definitions of expected price [see, for exasple, Shideed and
White (198911, Again, in soney desand studles, different
definitions of interest rate may be used.

{131} Sometimes different theories {eg. about the consumption function})
are being tested. At the end of thiz paper, an espirical exasple
is given of testing the Absolute and Relative Income hypotheses.

{1v)} Linear and log-linear formulations are sometimes cospared.
Testing between Cobb-Douglas functlons with additive @nd
sultiplicative errors is an exasple.
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This article is in no sense a review cf specificatlion testing
techniques. Several excellent and comprehensive such reviews already exist.
For general specification testing reference is mads o Pagan and Hall {1583)
and HacKinnon (1991). The ares of non-nested testing nas been reviewed by
HacKinnon (1983) and McAleer (1987), with the latter article being the source
of much of the material covered here. Rather, an attespt Is belng made to
bring some of the basic results to a particular audience -~ applled workers
who have neither the .saining nor inciination to keep abreast of theorstical
econometric developments. It is however agsused that readers have a falrly
thorough grounding in regression anslysis.

It is hoped that readers who are unfasiliar with the techniques of
testing non-nested medels will realize how casy they are to apply through
artificial regressions. At the same time, the aim is to present sufficient
theory to avoid the trap of merely presenting ‘cookbook’ recipes.

The plan of the paper is as follows. Sectlon 2 gives some general
preliminaries; Section 3 shows how the Cox principle can be utilized by
constructing certain artificlal regressions; Section 4 considers another
approach -~ that of artificial nesting; Section § dezls with a test of linear
and log-linear models; Section 6 gives an espirical example: and Section 7 1s

a conclusion.

2. Prellyinaries

{a) TJeating venoaus Diccnimination

Testing nested hypotheses (for example, constant returns to scale in a
Cebb~-Douglas production function) forms a fundamental part of any elesentary
econometrics course and has been standard practice among applled workers for

decades. However, at least until recently, the approach to non-nested models
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has been different, with the exphasis on discrimination rather than testing.
Thus, the best model 1s chogen on sone criterion of performance (or sample
explanation), such as Rz. ﬁzg AIC, etc., together with an ad hoc perusal of
signs.

There are two fundamental differences between testing and the latter
approach. First, when the best model is sought, one model will slways be
chosen. In the testing framework, all models muy be (and often are) rejected
as being inadequate. Second, as MacXinnon (1983) polnts out, mon-nested
tests are tests n the usual sense, and probabllities of incorrect rejection
of a null are assigned. No such prcbabilitles exisi in the discrimination

approach.

(b} Pnedicting the Penfonmance aof a Madel
Le’. us suppose that the true data generating process (DGP) of 2 random
variable y is known. It stands to reason that in such (unrealistic) cases,
we should be able to predict the performance of any model at all which is
postulated to describe the behaviour of y. In order to fix ideas, let us
ass.ae the DGP 1s known to be
v = X8y * U s,(ug) = o2,
with the paraseters ﬁo and #g known. A model of the forsm
y = X,B) + uy, E(u?) = of
is postulated, where the paramsters §, and ;o% are not known and have to be
estimated. We will take 3% to be a measure of the performance of the model,
It is now quite easy to show, on the basis of the DGP, that

2 2 TP ¥ :
Eley) = oy + AoXp(1-P, X B, (2.1)
where

A .
?1 = X;‘(x’xl} x5 . (2.2}
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Ve note in passing, that E(s7) is a function of the parasters fy, of of the
DGP.

This= ability to predict the performance of a model on the basis of the
DGP of the dependent variable ig the key concept in testing non-nested
models, and was first utilized by Cox (1962). In essence 1t is used as
follows: A null hypothesis, Hy, is postulated to be the DGP.  Another
hypothesis, H,, is advanced and its performance is predicted on the basis of
the null hypothesis. 1If the gctual performance oo is close to its predicted
performance, then this serves as confirmation of Hy. On the other hand, 1f
the actual performance is nowhere near what had been predicted, then the null
hypothesis HQ will be rejected. It is crucial to reallze that rejecting !ia
rakes absolutely no implications about the adequacy of KJ"‘

This approach of cosparing actual results with thoze expected under a
null is familiar to anyone who has done an elementary statistics course in
the form of xa tests for contingency tables, There is however a crucial
difference. In the contingency table example, the null and alternative are
Jointly exhaustive - one must be true, Thus, rejection of the null implies
acceptance of the alternative. In the case of non-nested models however

there are, in principle, an infinite nusber of alternative hypotheges.

(c} YJeating Principles
Yere an excellent discussion by MacKinnon {1991) is closely followed.

Let us consider a very simple model for y, viz.

Hot ¥y = Bp * ByXy + 1y,
which is being tested by the addition of a varlable %y Hany common tests
are of thls form; for example, the RESET test, tests for autocorrelation and
tests for omitted varlables.

Suppose that the DGP s



vy = B3 * BIx, + & v u, .

If a regression
Ve ® 'ﬁﬂ M "B‘lxt * ﬂﬁ-“* Yt

is carried out, then for large samples

(1) the standard error of ; L H

T,
where éuz] % is the slope coefficient cbtained when the residuals from w on x

are regressed on the residuals from z on x. Thus, ;'t 0 whenever w and 2
(purged of the effect of x) are correlated. It follows that in such cases,
t(r), the t-statistic of . will be significa: ¢ when the sample is large,”
even if ¥ = 0! Thus, a significant t(;?) tells us something is wrong with H,,
but does not tell us the augwented model is true. Any choice of z, provided
it is correlated with the true variable w once the effect of x 1is removed,
will give rise to a significant t(;),

As we will see, the most convenient way of testing non-nested models is
to use the device of adding a varlable and examining its assoclated t
statistic. From the above analysis, rejection of a model A says nothing

about another model B, even ?hen‘thg added ygriable ,i’f derived t‘;‘q‘n nede! :’8.;

This leads to a vital feature of testing non-nésted models. Suppose that
initially Hy is model A. Following the test, model B becomes H, and the
testing process is repeated. It is clear that four outcomes are possible:
(1) Both models are rejecied as inadequate;
{11) Model A is ‘sccepted’, while model B is rejected;
(i11) Model B is ‘accepted’, while model A is rejected;
(iv) both models are ‘accepted’. |

It is only with the last outcome that digerimination criteria should b2 used



to choose the best model.

A crucial question in any specification testing nontcxt is the power of
the procedure - that s, the abllity of the test to detect inadequacies in
the model which 18 belng tested. Following Davidson anl MacKinnon (1985),

let us suppose that the DGP 1’1

y = X8, + nY 2&6{} *uy E(q”g)v - -wg
and HQ is given by
BO; y = XBO * -
Clearly, Hy 1s inadequate, as the variables included in W have been
incorrectly omitted.
Davidson and MacKinnon (1985) have shown that if H, is tested by adding
r varlables to glve
Hi" y = Xﬂo#Z‘( *“'0,’
then the power of the test of y = 0 to detect inadequacies in Hy iz directly

related to a scalar h of the form

..z' R N v 2 !
h =g, {aawu PQ,WBDIR]R {2.3)

with R arising from the regression of W3, on 2, once the effect of X has
been removed. Davidson and MacKinnon draw three inferences from (2.3}, as

follows:

! The factor n"'? multiplying W3, is for technical reasons which need not
conhcern us here,



(L) If ag is large, the power of tests will be low, regardless of the

choice of 2. This reflects the obvious fact that if y has a very
substantial component of noise, then it will be difficult to

marshall enough evidence to reject an incorrect H.,;

(11) The second factor 33H' (I-P,)W8,/n reflects the difference between
H, and the ‘truth’, that is, the DGP. If the omitted ternm,
n 172 W5, 1s important relative to XB,, then this factor will be
large and the inadequacy in Ha should be plcked up.

(111) R®

1s the only factor involving the alternative hypothesis. If,
having purged the effect of X, waﬁ and 2 are strongly correlated,
then h will %2 large and a test of y=0 will be powerful in
detecting ! nadequacies in Ho. This result implles a trade-off in
designing a powerful test of ao. It is, of course, always
possible to increase Ra by simply adding more variablas to 2. An
F~test of ¥ = 0 has degrees of freedom r and s, where r is the
number of variables in Z and s depends on sample size, It is
well-known that the power of an F-test 1s maximized when r is
small and 8 is large. Thus, adding varlables to 2 incraases

power by increasing Ra, but decreases power by increasing r.

it follows that in designing a powerful test, the column dimension of 2
should be as small as possible, commensurate with the ideal of being as close
ta the truth as possible. One of the major reasons for testing H, agalnst a
non-nested alternative as opposed to using, say, the RESET test, ls that if
the alteranative also is based un economic theory, there 1s a good chance that
the augmenting variable(s), 2, will be highly correlated with any omitted
varizbles in HQ, |



3. 'l_‘hc Cox Principle and Artificlal Regressionsz

In the previous section we defined the Cox principle as a method of
validating a model (uo} by comparing the actual parformance of another model
(H,) with the predictien, based on H,, of this performance. Sox (1962)
applied this principle to the logarithm of the 1ikelihood .atio obtained from

Hy and H .Thus 1if Lg(;o) is the maximum value of the likelihood of a sample
of y v(alucs when Hy is postulated, and L, (&1) is analogously defined for H,,
then 210. the logarithm of the llkelihood ratio 1is given by

tm = log Lu(“o’ ~ log L.‘(a!) . 3.1)

Cox praposed that H, be evaluated by finding the significance of a statistic

Tﬁ given by

Ty = 4o o~ E {610)”&0 . (3.2)

In the above, Ea means the expectation assuming Hﬁ to be the DGP. We have
already noted in (2.1) that such an expectation will be a function of the
parameters of the DGP - here ay As these parameters would in practice never
be known, they are replaced by consistent estimates &0,

If TO is ‘close to zero', then the likelihood ratio is clese to what 1t
would be expected to be if Ho were true. On the other hand, a ‘large’
positive or negative value of T, would indicate discrepancy between actual
and expected 1ikelihood ratics, and hence the valldity of H, should be

2 The mathematlical treatment in this section 1s intended for readers who are
familiar with regression theory and are interested in the progression from
the principle to the final test, given al the end of the gection,

B T R L T T T




9

doubted. Cox also derived an expression for V(T,), the variance of T, and

showed that for large samples, and under ﬂb.

172
No = Ty [virg)] - weo.. (3.9)

"

Pusaran (1974) was the first to apply Cox's results to econometrics and

showed that for 1linear non-nested hypotheses
H: y=¥8.+u u, ~ N(O 021)
o 0 0’ 0 Yo
2
Hl- Y = XBI + u‘l ) ul ~ N(Ot 0’1:)

Ty and V, are given by

2
To =3 log[*zo} (3,4)
o7 .
and
2
Vo(Ty) = -.-a- Ly*PgP, (1-Py)P Pov] (3.5)
10
where
Py = X, (X)X (1= 0,1) (2.6)
and
o2 =62 + n l(p oK) (1-P ) (PX) (3.7)
10 = %0

It is instructive to note that each of the quantities in T, and V, can be
obtained by appropriate regressions, as follows:

(1) crg and a~2 are routinely obtained by regressing y on XO and y on Kl.

respectively;
v (11) «;fo requires evaluation of (PyX)’(I-P,}(P X). This 1s the error
sum of squares when the prediction of y from Hy (P X = 3’}03 is

regressed on Xl; and
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(111} The expression y'PQPlu-vPD‘)FIEQy required to svaluste QQ“Q} is the
error sum of squares obtained whep the predictions from the

regression (11) are regressed on X,.

Thus, evaluation of N, requires four regressions: (a) y on XQ:
(b) ¥ on X, (c) the predictlons of (a) on #yi and (d) the predictions from
(c) on X,. Appropriate outputs from these regressions must then be combined
according to (3.4), (3.7) and (3.5). This is a very cumbgrsome procedure,
particularly if many models are being tested.

Fisher and McAleer (1981) replaced Tb by an expression which is

equivalent when H, is true and the sample large.

1f Ho is trye, then at least for large samples, a% " ;%a, Thus, we can

urite
n ;i i ;%0
T = B togft ¢ oY
10

and (;? - ;%0)/§$° will be small relative to 1. Applying a Taylor's

expangion,

L2 32
o ~ o
110 ] , (3.8)

2 -2

n
T ™ Ty = { p
10

where TLO stands for a ‘linearized version’ of T,. The variance of TL, is
the same, in large samples, as that of To. Thus,
~ N(0,1) . (3.9)

NL, = TLG/[V(TQ)

From (3.5),

]1/2

ﬂz ‘2
w2 - &

ML, = % - e

’ D 2"
o[y PPy (1 ,?Q)Plegg!‘

Two points emerge from (3.10). The first is that it 1s clear from the

numerator that NL, ie assessing the significance of 3% relative to 310 -
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another form of the Cox principle.
The second feature of {3.10) is more technlcal. Let us suppese a

regression is performed of y on & gingle variable v,
y=vy +u.,

The t statistlc of ? is given by

“ Eytvt ¢
P yv
R v A

c[zvfl

elvrv) 72

If now we consider a regression ’
y = Xaﬁ& + vy +u,

the above result is modified to become

- y'(I~P0)v
tly) = =
w(v‘(I-Po)vl

75 (3.11)

where PD is given by (3.6). Comparing the denominators of (3.10) and (3.11)

we see that 1f we define
v = P1P0y , (3.12)

then NLO has the same derominator as a t-statistic. Also, as NLO has a
standard normal distribution in large samples, it seems very likely that NL.,
or an approximation to it, may in fact be a t-statistic from an artificlal
regression.
~2 ~2
In fact, expressing 01 and %0 35

~2 -1f..,

2 =n [y (I-Pl)y]
6% = n "ty (1-P )y + y'P_(1-P, )Py

10 0 o 1°°0

suome algebralec manipulation on the nume: ‘or of (3.10) together with a

further app oximation which has no effe.t when the sample 1s large, yields a
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statistic known as NA, which approximately equals NL, and 1s given by

g = w5

£3.13)

When we cowpare (3.13) with {3.11) 1% is apparent that NA, = ~t(y) when

the ‘artificlal regreszion’
¥ Xt vy u (3.14)

is perforped, and v is given by (3.12). Testing v, against AH,& is thus
equivalent (o teuting y = 0 in {3,14] by & standard t-tegt. The sctusl
structure of the varlable v should be mpde explicit. %y - xuxxaxoa‘“‘xg,v »
%oB = Yo Which 18 the OLS prediction of y obteined from Hy Thus v = Py

Applying the sose argusent sgain we can write
v ;fm {3.18}

uhere ;’m means the prediction of ;fﬂ by the regreszors of Hy. ¥e now have a
much esore convenlent variant of the Cox principle. Tuo regressions are
required te construct v = ;'m“ Then the artificlal regression {(3.14) ylelds
a sisple test of ¥ = 0. An advantage of this procedure over direct
caleulation of Ny a5 given by 13.4), (3.7} and {3.5) 1u that only three
regressions are needed instesd of four. However, much more significant from
a computational point of view s that the regresgion progras automatically
calculates the relevant t-statistic cnabling the cusbersome computations
involved In finding Nﬁ to be avolded.

We are now in a position to set out & simple. practical method for
testing between two nof-nested hypotheses. It 1s known as the JA-test,

(1) Regress y on X,, chtalulng v

{11) Begrese y, on X, obtaining ¥ .;
e} 1 o
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(131) Regrevs y on X; and ¥, , performirg & t-iext on the coefficlent of
If this coefficlent is significant, Hy is rejected. M, and H; are now
reversed and the procedure repeated. As mentloned sarller, four resulls on
ﬁﬂ and Ht are possible.

A wery significo  difference between the JA-test and the RESEY test of
mode! misspscification can now be appreclated. In the JA~test, 3be
zsugsenting variable ;m incorporates Inforsaticn from the alternstive
hypotbests H, - 1t has been cbtained by regressing ¥, on the regressors of
B,. The RESET test, on the other hand, only uses some {Inction ¥, ko augsent
Hy

The possibility of obtalning a powerful test Ix now appsrent In terss of

the earller discussion. First, as the model is augsented by the ginzle
variable ym,, =1 -~ a5 wastl as 1t can be. Second, if Hy o refliscty
alternative gcononic theory, there is the possibility (perhaps probabllity 7)
that the R of (2.3) will be large.

Finally, 1t should be noted that If the hypoiheses are nor~linear,
exactly the same procedure is valld, except that pon~)inesr regression sust
be used.

4. The Artificial Kesting Approach
Conslider again the two linsar hypotheses

Hy y= xﬁpﬁ * Ny 1‘:{%3 = #z‘

Hy: y=XB, ¢u K!ui} - v?
where for wase of exposition, we assume X, and X, are linsarly independent.
An obwious vay to test these hypotheses 15 to artificlally nest thes within a
cosposite wodel H, glven by




HBg y=KB,¢XB ¢u. (4.1)

Then B, = 0 implies Hy, and B, = 0 lspliey .. Toase tests can be carried
out by standard F-tests. A problaw, Movever, relates to the power of such
tests. If elther X, or X, {or toth) have ¥ ‘arge nusber of colums, then
from our earlier discussion, the degraes of freedom in the numerator of the
F-statistic are large, and power iz consequently diminished. Furthermore, if
the columns of X, and i, are highly collinesr, as often happens,
multicollinearity would further reduce power. It is therefore quite likely
that tesis based on ﬂc would rejsct nelther ﬁ‘a nor i,il.

The model H, above illustrates just one of an infinlte nuaber of vays
thut two hypotheses could be artificially nested In a compozite model.
Davidson and HacKinnon (1981) considered two non~linear hypotheses

Haz y= rtxa. ﬂﬂ} + Uy
Hy: y= BX,. By) ¢ u
and suggested nesting them in the model
He oy = (-a)f(X;,B,) + «zix1.ﬁl} +u. {4.2)

If & =0, then Hy is confirmed. while « = 1 Implies @,. In principle then H,
could be tested by testing a = U. Unfortunately the parameter « in (4.2) is
unidentified. Davidson and MacKinnon suggested that a simple solution would
be to replace gﬂ(i,ﬁ‘) by its predicted value under Hl‘ Thug, the cosposite
sodel becownes

H&: y = {l-a.)f{xo.ﬂol + agtxyﬂl) +u. (4.3)
A test of ¢ = O is known as the J-tesi, and is 3 routine t-test. Using the
notation of the last section

l{;: y = i"(xo.ﬁei syetu,

showing the similarity and the difference butween the J- and JA-tests. Both
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tests use an artificial regression, obtained by augsmenting the null
hypothesis by a gingle varlable. Both tests are ‘one degree of freedon’
tests and hence llkely to be wmore powerful than the direct composite approach
{4.1). The difference lles in the augrenting varizble. For the J-test, it
is ;:1. Thus, the J-test only requires two regreesions. An advantage of the
JA-test 13 that when the hypotheses are linear and the disturbances normal
the test is gxact. That is, even for small samples 1t .- 1 produce tests of
correct size. The J-test on the other hand is not exact, .nd in small
samples tends to reject a true Hy too often. This disadvantage of the J-test
iz counterbalanced by Monte Carlo evidence which suggesis that 1t is ususlly
a more powerful procedure than the JA-test.

We note that another test, known as the P-test, is also based on the
composite model (4 7)) Details can be found In Davidson and MacKinnon
{1981). Godfrey and Pesaran (1983) have derived procedurss for correcting
the size of the J-test. However, at the moment there are no simple
procedures whicn sombine the size characteristics of the Ji-test and the
power of tke J-test. Reasonable a2dvice is to always calculate both J- and

JA-tests.

An interesting synthesis of the Cox and artific\zl nesting approsches
was given by Dastoor (1983). In thisz article Dastoor applied a variant of
the Cox principle to non-nested linear models. Wherass Cox concentrated on
the likelihood ratio, Dastoor derived a test based on the actual ‘paraneters
of interest’. Considering (in our notation) the two linear hypotheses

. e . 2, . 2
ao. V“XQBQ*UO E(unltrgl
. =X R o Y m wl

Dastoor proposed a test of the random vecter
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where §m is the expectation of ‘51 when HQ is true. This is .t Cox's
principle applied to the B paracoters. He showed that the significance of 7
can be assessed by testing 8 = ) in the composite model

Hc: y = xoan + i‘xa +u,
vhere 5'(1 consists of those coluans of X, which are linearly independent of
Xy Thus the i-~test of the compogite model discussed earlier can also be
interpreted as a variant of the Cox principle. Furthermore, Dsstoor showed
that the J- and JA-test statistics can be written in the form Q";!o and V;Q
where a‘ and b’ are particular row vectors. This demonstrated that these
tests also can be viewed as tests about the psrameters of interest. 4As n’%a
and b’;;a are scalars, tests on their significance will clearly be ‘one degree
of freedom' tests in contrast to the composite model approach which hes as

sany degrees of freedom as X has coluamns,

5. Testing Linear and lLog-Linear Regression Modsls

Before we discuss a general method, dus to Bera and McAleer (1989), of
carrying out such tests, we will return to the artificial nesting procedure.
He recall that to test

ﬂoz y= I{XO'QD) + Bo

a1= y= ﬂ{xx.ﬂl) * “1
Davidson and MacKinnon (1981) proposed the composite model

ch y= N-ﬂlﬂxo»ﬁol * ulxi,ﬁi) + 0. (5.1)
and a test of Ro is equivalent to testing « = 0 in Hc.

We now rewrite (5.1) as

o u-«){wcxo.pﬁ)) . u(y - a(xz,a})] cu. (5.2)

: . Es o = . (SRR KN
I AP e i F o g Y SR B S
e R LT AL e
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M 1 . L] .
As y-f and y-g wre u, and u,, respectively, this formulation is equivalent to
nesting the disturbances. If we now divide (5.2) by i~a, we obtaln
y = f{XgBy) + Buy + v, £5.3)
where

8= -g/{1-a) .

Thus, testing « = 0 is equivalent to testing @ = 0 in (5.3). As Yy 1
unobservable, we replace it by an observable proxy. The J-test is obtalned
by replacing uy by

ux =y - 3“&»311 (5.4)
On the other hand, the JA-test is obtalned by replacing uy by

uOl =¥y " 30‘1’5;) A ‘ (5.5)
where Ex" is obtained by regressing 5}0 on g(X,,B,].

Once this alternative approach to the construction of J~ and JA-tests

has been apprgeiated. it h: vmry easy to conszruct thege tests for linear and

log-linear models. Consider
HO: logy = f{xgﬁg) * Uy
le y= 8(&31) ty .

By following the above nesting procedure, we obtain from (5.3) that the

J-test of HO\ js a test of _6*0 in the artificial regression

logy = f(xo,ﬁo%r 6“1 v, {5.6)
Similarly, the JA-test is obtained from the artificlal regression

log y = £(Xy,Bg) + 6uyy + v . | ‘ "(15.7)‘

Construction of the variable Gmgnec,ds some care. First, log y 1s g'engSe,d
on £(X,8,) to give predictions log y. Then exp(lo,sﬁ:y) L yo is regressed on

g(X,B,). The variable :?0,1 is the residual from this regression.
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If we now reverse Hy and H, =o that

By: log v = £(XnB,) + yy s

then the relevant artificial regression 1s
y = gli,B) v eug + v,

where ‘65 is an appropriate proxy for ug, For the J-test
U3 = uy ® log y - £(X,,84)

To construct ﬁa for the JA-test, as usual two steps are required. Firsi, y
1s regressed on g(X;.8,), the regressand of Ny, yielding predictions ’;
Second «1cgf,§) 1s regressed on f{xo,p(,}, and 4% 1z the residual vector from
this second regression. Bera and McAleer clte Monte Carlo evidence which
suggests that this testing procedure has better performance than other
commonly uged tests,

The approach outlined above can be easlly adapted to any situation In
which the dependent variable of one hypothesis 1s a monotonic function of the
dependent variable of the other hypothesls.

6, Espirical Exagple

In a study of the consusption function, Guise (1989) used Australlan
data for the years 1947-48 to 1982-83 to quantify some well-known consumption
theories. We use his results for two of these theorles, namely, the
Keynesian Absolute Income Hypothesis (AIH) and Duesenberry's Relative Income
Hypothesis (RIH), to illustrate the techniques which have been discussed.
This example is essentially reproduced from Doran {(1989).

Guise's regression results (with standard errors in parentheses) were as

follows:




Et = .005 + ossyt - 1.0?It H
(.09} (.02) (.34)
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= 0.983; D.W. = 2,18
where Ct = private consumption expenditure,
Yt = household disposable income,
I, = (PP _,)/P,_, 13 2 measure of inflation and P, 1s a price

deflator.

RIH

~

G = -.030 + .9ov2t + 222

3 1 " B

{.08) (.01) (.09) (.20)
% = 0.994; D.W. = 1.98
where ct and It are as above.

In specifying this relationsh!,., Guise defined the following additional
variables

Y: = highest income prior to year ¢;

th = (Yt'Y§7 when Y, > Y®, zero otherwise;
2, = (Yt-Y{) when Y, < Y§, zero otherwise;
YZt = Yz + ZZt'

The important thing to notice about both medels is that they perform
very well on the usual checks; R“’s are high, Durbin-Watson statistics are
close to 2, slops coefficlents are highly significant with ‘correct’ signs
and the marginal propensities to consume are estimated at 0.%0 and 0.88.

The two models are non-nested and we now apply the J, JA and F tests as

follows:
{1) HNull Hypothesis is AIH

J-test: regress C on Yé. 2, and I to obtaln predictions Eaz
regress Con ¥, Iand C; the relevant statistic is the t
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ratlo of the coefflicient of Eﬂ

JA-test: regress C on Y and I to obtaln predictions CA;
regress 61\ on Y,, Z1 and I to tbtain predictions ‘&AR"’
regress Con Y, 1 and EAR‘ the t ratio of the coefficient

of &m is the relevant statistic.

F-test: regress Con Y, I, Yz. '.'e.'1 and examine the joint

significance of the coefficlents of YZ and 2,.

(11) Null Hypothesis is RIH

J-test: regress C on Y and I to obtain predictions &A‘
regress C on Yz. 21. 1 and 'éA‘ test the significance of
the coefficient of EA
JA-test: regress C on YZ’ 21 and I to obtaln G
regress CR on Y and 1 t- obtain CRA‘
regress U on Yz. ?.51. I and CRA and examine the

slgnificance of the coefficlent of ERA

F-test: regress C on Y.?.' 21. I and Y; examine significance of the
coefflclent of V.,

The results of these tests are shown in Table 1,

TABLE 1
 Test
B, = - ,‘JA | .
ATH 6.22%% 0.59 19.54%¢
RIH -0,87 -0.87 0.76

*% significant at the 1 per cent level.




On the basis of the J- and F~tests, the Abeolute Income Hypothesls model is
inadequate, and should be rejected. On the other hapd, the tests do not

indicate inadequacy in the Relative Income Hypothesis. One final note. If

the alternative hypothesis contains only one variable which 1s not also in
the null hypothesis then the J-, JA- and F~-tests are all equlvalent. This is
the case when RIH is the null. Hence J = JA » =0.87 and F = 0,76 = (*Dya7)2

7.  Concluding Remarks

An attempt has been made to present some of the main results in testing
non-nected models in o falrly non-technical way. The essentlal message 1s
twofold. First. when non-nested models are being compared, the traditional
discrimination teconiques (eg., comparing Rg*s) should be accompanied by
appropriate hypothesis Lests. Second, and very significant from the point of
view of an appllied researcher, such tests are easy to apply and can be
constructzd with all standard regression packages.

The purpose of this article is not to break new ground., but to make a
small contribution in translating well-establighed econometric theory into

applied economic practice.
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