
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


"Extreme-Value" Methods Simplified 	 • 
By Ralph R. Botts 

New methods have been devised for fitting skewed statistical distributions that conform to 
a double exponential model. Such distributions characterize a large class of phenomena 
of interest to agricultural economists. Distributions of data involving rainfall, tempera-
ture, crop yields, crop-hail losses, and others follow this pattern,. The new technique, 
under the name of the theory of extreme values, makes use of graphics and is much less 
complex and time-consuming than older methods. But most of the available literature is 
highly mathematical and not easily understood. This paper presents a nonmathematical 
explanation for the working agricultural economist. 

THE THEORY of the statistical distribution of 
extreme values was developed by E. J. Gumbel.1  
Several others had previously explored the prob-
lem.2  It is particularly appropriate for measur-
ing flood probabilities. For example, a gage 
height or mean streamflow is available for each 
day. The highest such reading for the year is 
an extreme value. So over a period of, say, 36 
years, there are 36 such extreme values. Stated 
another way, the theory applies to a distribution 
of independent observations, each of which is an 
extreme value.3  The control curves (discussed 
later) are helpful in determining whether or not 
the theory applies to a particular case. 

Such distributions of extreme values tend to be 
skewed, with the mode or most common value at 
the left of the mean or average. Probably for 
that reason, the theory has been applied also to 
distributions such as those involving rainfall, crop 
yields, and costs of crop-hail insurance loss, even 
though the figure for a particular year is a single 

1  GUMBEL, E. J. STATISTICAL THEORY OF EXTREME VALUES 
AND SOME PRACTICAL APPLICATIONS. National Bureau of 
Standards, Applied Mathematical Series 33, 1954. For 
sale by Superintendent of Documents, 40 cents. Also 
PROBABILITY TABLES FOR THE ANALYSIS OF EXTREME-VALUE 
DATA. National Bureau of Standards, Applied Mathe-
matical Series 22, 1953. For sale by Superintendent of 
Documents, 25 cents. 

For example, DE FINETTI, FISHER., AND TIPPETT. See 

bibliographies in publications listed in footnote 1. 
A chief difficulty in applying the theory has been a 

lack of independence of data. For tests of randomness 
in time series, see F. G. FOSTER AND A. STUART. DISTRIBU-
TION-FREE TESTS IN TIME SERIES BASED ON THE BREAKING 
OF RECORDS. Jour. Roy. Staffs. Soc. Series B, Vol. 16, No. 
1 (1954). Pp. 1-22. 

observation or an average, and not an extreme 
value.4  

Most statistical theory applies to normal distri-
butions. Heretofore, it has been necessary to fit 
Pearsonian curves (particularly type III) to small 
samples in order to derive the probabilities asso-
ciated with skewed distributions. The fitting 
procedure is complex and time-consuming and is 
not generally understood by economists. But ex-
treme-value methods present a much simpler tool 
for economists, and they will do well to investi-
gate it. 

The purpose of this article is not to review the 4111 
mathematics involved in the theory of extreme-
value distributions; but rather to present this rela-
tively new tool in such a way that it can be applied 
by those not versed in mathematics. Only a few 
symbols are used, and no formulas are derived. 
For illustrative purposes, the method is applied to 
a distribution of annual "loss costs" of a mutual 
crop-hail insurance company. Then the neces-
sary steps are summarized and the column head-
ings for a spread sheet are given, so that the calcu-
lations may be standardized for mass processing 
of data by clerks. 

Application of the method is simplified im-
mensely by the use of double exponential paper 
(figs. 1 and 2). On this paper, the vertical scale 
(y) is evenly spaced. It is used for the observed 
values. The horizontal scale is used as the proba-
bility (m/n +1) scale. It never reaches zero on 
the left nor 1 on the right. Unfortunately, the 

4  BRAKENSIEK, D. L., AND ZING43, A. W. APPLICATION OF 
THE EXTREME-VALUE STATISTICAL DISTRIBUTION TO ANNUAL.  
PRECIPITATION AND CROP YIELDS. ARS 41-13, in coopera-
tion with 5 State experiment stations. 
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probability paper is not for sale.5  Until it is 
aiglaced on the market, each person interested in 
IIIMpplying the method will have to construct his 

own paper (a time-consuming job) or obtain it 
from others. 

As an example of application of the method, 
suppose the cash cost of producing wheat in a 
Great Plains county is $10 per acre. Using a sup- 
port price of, say, $2 per bushel, the cash cost rep-
resents 5 bushels of wheat. In arid regions, crop 
yields tend to be skewed, and not normally dis-
tributed, over time. Applying extreme-value 
methods to a distribution of appropriate annual 
yields, one could determine the probability associ-
ated with getting a yield equal to or less than cash 
costs. He might do this for both continuously 
cropped and fallowed wheat, from which proba-
bility comparisons would be possible. The 
method therefore has application in the fields of 
risk reduction and crop-insurance ratemaking. 

Or, to take another example, suppose you want 
to evaluate the chances of having annual rainfall 
of less than 15 inches (or any minimum level 
deemed necessary for wheat production) at 2 
weather stations. From station records, you 
could get rainfall data, by years, for each station, 

iii
repare probability charts, and read the respective 
robabilities from them. 
The method has special value in the field of 

crop-hail and windstorm insurance. Using this 
method, the probabilities associated with various 
loss levels can be ascertained. But in this field of 
work, one is usually interested in the other end of 
the distribution—the higher values of y (loss 
costs) and their associated values of m/n +1 
(probabilities of occurrence). 

In the example used, there is an 8-percent, or 1 
in 12, chance of having an annual loss cost (aggre-
gate annual losses divided by insurance) that ex-
ceeds twice the company's average loss cost (of 
56.2 cents per $100). And there is a 3.3 percent, 
or 1 in 30, chance that annual losses will exceed 
250 percent of average. If the company's safety 
fund or reserve also amounts to 21/2  years of aver-
age losses, it may want to get aggregate-excess 

"The author has obtained a limited supply from the 
Weather Bureau and from the Climatology Unit, Environ-
mental Protection Section, Research and Development 
Branch, Military Planning Division, Office of Quarter-
master General, U. S. Army. 

429802--57-3  

reinsurance, which goes into effect at $1.40 per 
$100-250 percent of 56.2 cents. 

From its own experience, the company can 
therefore evaluate the chances of having a year of 
unusually high losses. And, taking the size of its 
safety fund into consideration, it can arrive at a 
decision, with respect to the reinsurance protec-
tion it needs, that is better than it could otherwise 
reach. 

The basic data for the example used here are 
shown in table 1. The annual loss costs (losses 
paid divided by insurance in force) of a crop-hail 
mutual insurance company are arrayed from low-
est to highest, and are ranked in that order. Then, 
in column 4, the rank for each year is divided by 
37, or (n+1) years. 

TABLE 1.—Calculations necessary for plotting data 
on extreme-value probability paper, based on 
experience of mutual crop-hail insurance com-
pany, 1920-55 1  

Year 

(1) 

Annual 
loss cost 2  

Y 

(2) 

Rank 
m 

(3) 

m 
Z 3  

(5) 

n+1 

(4) 

Cents 
1926 	  8 1 0. 027 —1. 28424 
1938 	  20 2 . 054 
1932 	  23 3 . 081 
1942 	  26 4 . 108 
1927 	  27 5 . 135 
1933 	  27 6 . 162 

1941 	  28 7 . 189 —. 51043 
1931 	  29 8 . 216 
1949 	  31 9 . 243 
1923 	  33 10 . 270 
1935 	  37 11 :297 
1929 	  39 12 . 324 

1951 	  40 13 . 351 —. 04590 
1954 	  40 14 . 378 +. 02751 
1924 	  40 15 . 405 
1936 	  44 16 . 432 
1945 	  46 17 . 459 
1955 	  55 18 . 486 

1930 	  55 19 . 514 . 40717 
1925 	  56 20 . 541 
1939 	  57 21 . 568 
1920 	  58 22 . 595 
1948 	  58 23 . 622 
1943 	  61 24 . 649 

1922 	  67 25 . 676 .93761 
1952 	  67 26 . 703 
L928 	  68 27 . 730 
L921 	  69 28 . 757 
1950 	  74 29 . 784 
1940 	  75 30 . 811 

See footnotes at end of table. 
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TABLE 1.-Calculations necessary for plotting 
data on extreme-value probability paper, based 
on experience of mutual crop-hail insurance 
company, 1920-55 1-Continued 

Year 

(1) 

Annual 
loss 

cost 2  
Y 

(2) 

Rank 
m 

(3) 

m Z3  

(5) 

n + 1 

(4) 

Cents 
1946 	  78 31 0. 838 1. 73309 
1947 	  84 32 . 865 
1944 	  93 33 . 892 
1934 	  100 34 . 919 
1937 	  128 35 . 946 
1953 	  182 36 . 973 

Total 	 2, 023 	  	19. 47600 
Average 	 56. 2 	 . 5410 
Standard 

deviation 	 33. 2 	  	4  1. 1313 

1  A few values of Z for selected values of m/n+ 1 are 
given in column 5 merely to show that the average and 
standard deviation of the figures in this column depend 
only on sample size. For a given sample size (36 in ex-
ample), the average and standard deviation of the reduced 
(Z) values always remain the same. The value of these 
constants for various sample sizes is given in table 2. 

2  Aggregate loss payments divided by amount of in-
surance in force. 

3  Z= ln[-ln(min +1)] . . . where In stands for nat-
ural logarithm. 

4  Square root of [sum of squared deviations from aver-
age (0.5410) divided by 36 (not 35)]. 

The average and standard deviation of the 
Z-values (see table 1, footnote 3) for a sample con-
sisting of 36 years are shown in table 2. Column 
5 of table 1 shows how these values were derived 
for n=36. The average of 0.5410 and the stand-
ard deviation of 1.1313, which appear at the bot-
tom of column 5 of table 1, therefore could have 
been obtained from table 2 opposite n=36. 

The next step is to determine the slope of a 
regression line through the data and the mode of 
the distribution. 

Slope of regression line= 33.2/1.1313= 29.35 
(See standard deviations shown in table 1.) 

Mode = 56.2 - 29.35 ( 0.5410) = 56.2 - 15.9 = 40.3 
(See averages shown in table 1.) 

Therefore 
y =point on regression line=mode+ (slope X Z) 
and in our problem 
(1) . . y=40.3+29.35Z 

Three points on the regression line are calcu-
lated in table 3, and the coordinates of these points 
are shown in the first and last columns. 

These 3 values or paired observations are then 
plotted on the extreme-value probability papilla 
(fig. 1). They are joined to form a straight lineW 
Next, the observed values of y and m/n + 1 (Cols. 2 
and 4 of table 1) are plotted on the probability 
paper. The 3 coordinates used to fit the line ap-
pear as X's while the other coordinates appear as 
dots on the chart. The latter fall rather close to 
the line, indicating that the theory applies. 

The calculations necessary to fit control curves 
are shown in table 4. 

The vertical distances shown in col. (3) are 
marked off above and below the respective points 
on the regression line that are shown in col. (1). 
Then the points above the line are joined to form 
the upper boundary or control curve. The points 
below the regression line are likewise joined to 
form the lower boundary. Two-thirds of the dots 
or observations (col. 2 vs. col. 4 in table 1) should 
fall within the control curves in order for the 
theory to apply. 

Summary of Steps 

1. Construct a table like table 1. Only columns 
2, 3, and 4 are necessary. 

a. Compute the simple average and the 
standard deviation of your figures in column 2. 

In the example, the simple average is 56.. 
cents and the standard deviation is 33.2 
cents. 

2. From table 2, find the theoretical average and 
standard deviation of the "reduced" (Z) values 
for a sample of the size you have. 

In the example, n=36. For a sample of 
that size, the corresponding average and 
standard deviation of the Z values (see 
column 5, table 1) are, respectively, 0.5410 
and 1.1313. 

3. Compute the slope of your regression line by 
dividing the actual by the theoretical standard 
deviation. 

In the example, the slope is 33.2 ± 1.1313 
or 29.35. 

4. Multiply the theoretical average (step 2) by 
the slope (step 3). Then subtract this product 
from the sample average. The result is the mode 
of your sample. 

In the example, the mode is 40.3 as 
0.5410 x 29.35=15.9 and 56.2 -15.9,-40.3 

5. Express your regression line as a straight-
line equation which has the mode as a constant 
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T4>.~LE 1.~Jalculation8 nece8sary for plotting
l' 	 t!';ta on ewtreme-'IJalue probability paper, based 

on ewperience of mutual crop-hail in8uranae 
company, 1920-55 1-Continued 

Annual 
Year loss Rank m Z3 

cost 2 m n+1 
y 

(1) (2) (3) (4) (5) 

Cent81946 _____________ 
 
1947 _____________ 78 31 0.838 1.73309


84 321944 _____________ 	 .865 
931934 _____________ 33 .892 

1937 _____________ 100 34 .919 
1953_____________ 128 35 .946 

182 36 .973 
TotaL _____ 2,023 ------ -------- 19.47600Average __________ 56.2 

---~-- -------- .5410
Standard 
 

deviation~ ______ 
 33.2 ------ -------- 4 1. 1313 

1 A few values of Z for selected values or m/n+1 are 
given in column. 5 merely to show that the average and 
standard deviation of the figures in this column depend 
only on sample size. For a given sample size (36 in ex­
ample), the average and standard deviation of the reduced 
(Z) values always remain the same. The value of these 
constants for various sample sizes is given in table 2. 

2 Aggregate loss payments divided by amount of in­
surance in force. 

a Z=-lrll-1n(m/n+1)] ... where In stands for nat­
ural logarithm. 

4 Square root of [sum of squared deviations from aver­
age (0.5410) divided by 36 (not 35)]. 

The average and standard deviation of the 
Z-values (see table 1, footnote 3) for a sample con./ 
sisting of 36 years are shown in table 2. Column 
5 of table 1 shows how these values were derived 
for n=36. The average of 0.5410 and the stand­
ard deviation of 1.1313, which appear at the bot­
tom of column 5 of table 1, therefore could have 
been obtained from table 2 opposite n=36. 

The next step is to determine the slope of a 
regression line through the data and the mode of 
the distribution. 

Slope of regression line=33.2/1.1313=29.35 
(See standard deviations shown in table 1.) 

Mode=56.2-29.35 (0.5410) =56.2-15.9=40.3 
(See averages shown in table 1.) 

Therefore 
y=point on regression line=mode+ (slope X Z) 
and in our problem 
(1) •• y=40.3+29.35Z 

Three points on the regression line are calcu~ 
lated in table 3, and the coordinates of these points 
are shown in the first and last columns. 

, These 3 values or paired observations are then 
 
plotted on the extreme-value probability paper 
 
(fig. 1). They are joined to form a straight line. 
 
Next, the observed values of y and min+ 1 (Cols. 2 
 
and 4 of table 1) are plotted on the probability 
 
paper. The 3 coordinates used to fit the line ap­
 
pear as X's while the other coordinates appear as 
 
dots on the chart. The latter ~an rather close to 
 
the line, indicating that the theory applies. 
 

The calculations necessary to fit control curves 
 
are shown in table 4. 
 

The vertical distances shown in col. (3) are 
 
marked off above and below the respective points 
 
on the regression line that are shown in col. (1). 
 
Then the points above the line are joined to form 
 
the upper boundary or control curve. The points 
 
below the' regression line are likewise joined to 
 
form the lower boundary. Two-thirds of the dots 
 
or observations (col. 2 vs. col. 4 in table 1) should 
 
fall within the control curves in order for the 
 
theory to apply. 
 

Summary of Steps 

1. Construct a table like table 1. Only columns 
 
2, 3, and 4 are necessary. 
 

a. Compute the simple average and the 
standard deviation of your figures in column 2. 

In the example, the simple average is 56.2 
cents and the standard deviation is 33.2 
cents. 

2. From table 2, find the theoretical average and 
 
standard deviation of the "reduced" (Z) values 
 
for a sample of the size you have. 
 

In the example, n=36. For a sample of 
that size, the corresponding average and 
standard deviation of the Z values (see 
column 5, table 1) are, respectively, 0.5410 
and 1.1313. 

3. Compute the slope of your regression line by 
dividing the actual by the theoretical standard 
deviation. 

In the example, the slope is 33.2-d.1313 
or 29.35. 

4. Multiply the theoretical average (step 2) by 
the slope (step 3). Then subtract this product 
from the sample average. The result is the mode 

Iof your sample. f; 
In the example, the mode is 40.3 as I' 

I]0.5410 X 29.35= 15.9 and 56.2 -15.9=40.3 H 
5. Express your regression line as a straight­ i,

Iiline equation which has the mode as a constant 1-11', 
i)
1; 
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TABLE 2.-Averages and standard deviations of reduced (Z) values, by sample sizel 

IIP Sample size Average Standard 
deviation 

Sample size Average Standard 
deviation 

Sample size Average Standard 
deviation 

15 	  0. 5128 1. 0206 40 	  0. 5436 1. 1413 65 	  . 5535 1. 1803 
16 	  . 5153 1. 0301 41 	  5442 1. 1436 66 	  . 5538 1. 1814 
17 	  . 5174 1. 0384 42 	  5448 1. 1458 67 	  . 5540 1. 1824 
18 	 . 5196 1. 0471 43 	  5453 1. 1480 68 	  . 5543 1. 1834 
19 	 5217 1. 0558 44 	  5458 1. 1499 69 	  . 5545 1. 1844 

45 	  . 5463 1. 1519 
20 	  5236 1. 0628 46 	  5468 1. 1538 70 	  . 5548 1. 1854 
21 	  . 5252 1. 0696 47 	  5473 1. 1557 71 	  . 5550 1. 1863 
22 	  5268 1. 0754 48 	  5477 1. 1574 72 	  . 5552 1. 1873 
23 	  5283 1. 0811 49 	  5481 1. 1590 73 	  . 5555 1. 1881 
24 	  . 5296 1. 0864 74 	  . 5557 1. 1890 
25 	  . 5309 1. 0915 50 	  5485 1. 1607 75 	  . 5559 1. 1898 
26 	  . 5320 1. 0961 51 	  5489 1. 1623 76 	  . 5561 1. 1906 
27 	  . 5332 1. 1004 52 	  5493 1. 1638 77 	  . 5565 1. 1915 
28 	  . 5343 1. 1047 53 	  5497 1. 1658 78 	  . 5565 1. 1923 
29 	  . 5353 1. 1086 54 	  5501 1. 1667 79 	  . 5567 1. 1930 

55 	  . 5504 1. 1681 
30 	  . 5362 1. 1124 56 	  5508 1. 1696 80 	  . 5569 1. 1938 
31 	  . 5371 1. 1159 57 	  5511 1. 1708 90 	  . 5586 1. 2007 
32 	  . 5380 1. 1193 58 	  5515 1. 1721 100 	 . 5600 1. 20649 
33 	  . 5388 1. 1226 59 	  5518 1. 1734 150 	 . 5646 1. 22534 
34 	  . 5396 1. 1255 200 	 . 5672 1. 23598 
35 	  . 5403 1. 1285 60 	  5521 1. 1747 Infinity 	 . 5772 1. 28255 
36 	  . 5410 1, 1313 61 	  . 5524 1. 1759 
37 	  . 5418 1, 1339 62 	  . 5527 1. 1770 
38 	  . 5424 1. 1363 63 	  . 5530 1. 1782 
39 	  . 5430 1. 1388 64 	  . 5533 1. 1793 

1  Furnished by Environmental Protection Section, Research and Development Branch, Office of Quartermaster Gen-
eral, U. S. Army (except values for samples of size 16-19). 

• TABLE 3.-Determination of 3 points on 
regression line 

Let m/n+ 1 equal 1  Then Z 
equals 1  

And y 
equals 2  

0.20 	  -0. 47588 26. 3 
.50 	  +. 36651 51. 1 
.95 	  +2. 97020 127. 5 

1  These same values of m/n+1 and Z can be used for 
all problems, thus eliminating the necessity for computing 
or looking up values of Z corresponding to various values 
of m/n+ 1. Z is defined in footnote 3 of table 1. 

2  By substitution in formula (1) above. 

and Z as the variable (with a coefficient equal to 
the slope of the line). 

In the example . . . y -40.3 + 29.35Z. 
6. Determine 3 points on the regression line. 

By always using m/n+ 1 as 0.20, 0.50, and 0.95, 
respectively, the corresponding values of Z shown 
in column 2 of table 3 can be used for any example. 

a. Fit these values of Z into your equation and 
solve for corresponding values of y. (See 
table 3.) Of course, the equation for each 
problem will include a different mode and 
slope; but the 3 values of Z need not change. 

TABU', 4.-Computation of control curves 

When m/n+ 1 equals 1  

(1) 

Constant 
for 
m 

Vertical dis-
tance from 
point on 

line to con-
trol curve 

(4.892 X col-
umn 2)2  

(3) 

n+1 
equals I 

(2) 

0.15 	  1.255 6. 1 
.30 	  1.268 6. 2 
.50 	  1.443 7. 1 
.70 	  1.835 9. 0 
.80 	  2.241 11. 0 
.85 	  2.585 12. 6 

Point on line corresponding to: 
Second-highest dot on chart_ 	 3  22. 3 
Highest dot on chart 	 4 33.5 

1  These values do not need to change from problem to 
problem. 
OM 2  (1-i-square root of n) X slope of regression line. In the 
illustrative problem, n=36 years, so the square of n=6. 
The slope of the regression line is 29.35. One-sixth of 
29.35=4.892. 

3  0.7594X slope of regression line. For illustrative prob-
lem, 0.7594 X 29.35=22.3 The figure 0.7594 does not 
change from problem to problem. 

4  1.1407X slope of regression line. For illustrative prob-
lem, 1.1407 X 29.35=33.5. The figure 1.1407 does not 
change from problem to problem. • 93 



Square root of n 	  
1=(28) 	  
(13) X (29) 	  
(30) X 1.255 	  
(30) X 1.268 	  
(30) X 1.443 	  
(30) X 1.835 	  
(30) X 2.241 	  
(30) X 2.585 	  
0.7594X (13) 	  
1.407 X (13) 	  

Square root of (2) 	  
Reciprocal of (28) 	  

Vertical distances for min + 1=0.15 	  
Vertical distances for min + 1 = 0.30 	  
Vertical distances for min + 1= 0.50 	  
Vertical distances for min + 1=0.70 	  
Vertical distances for m/n +1=0.80 	  
Vertical distances for min + 1= 0.85 	  
Vertical distances for second-highest dot 	 
Vertical distances for highest dot 	  

6 
0. 166667 
4. 892 
6. 1 
6. 2 
7. 1 
9. 0 

11. 0 
12. 6 
22. 3 
33. 5 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

TABLE 6.-Spread sheet for extreme-value calculations' 	• Example Explanation Column heading Column 
number 

Identification 	  
n 	  
Sum 	  
Average 	  
Sum of squared items 	  
Sum squared 	  
Correction 	  
Sum of squares 	  
Variance 	  
Standard deviation 	  
Theoretical average 	  
Theoretical standard deviation 	 
Slope 	  
(11) X (13) 	  
Mode 	  

Number of years 	  
From data sheet (table 1) 	  
(3) (2) 	  
From data sheet (table 1) 	  
Square of (3) 	  
(6)÷- (2) 	  
(5) - (7) 	  
(8)-:- (figure in column 2 minus 1) 	  
Square root of (9) 	  
From table 2 	  
From table 2 	  
(10) ÷ (22) 	  

(4) - (14) 	  

Crop-hail mutual 
36 

2, 023 
56. 2 

152, 189 
4, 092, 529 

113, 681 
38, 508 
1, 100. 23 

33. 2 
0. 5410 
1. 1313 

29. 35 
15. 9 
40. 3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

First point on regression line 

    

16 
17 
18 
19 

m/n+ 1 	  

Slope X Z 	  
y 	  

It can always be 0.20 	  
If m/n+ 1 is 0.20, Z does not change 	  
(13) X (17) 	  
(15) + (18) 	  

0. 20 
--O. 47588 

-14.0 
26. 3 

    

    

Second point on regression line 

m/n+ 1 	  

Slope X Z 	  
y 	  

Third point on regression line  

It can always be 0.50 	  
If m/n+ 1 is 0.50, Z does not change 	  
(13) X (21) 	  
(15) + (22) 	  

0. 50 
0. 36651 

10. 8 
51. 1 

• 

20 
21 
22 
23 

    

    

24 
25 
26 
27 

m/n+ 1 	  

Slope X Z 	  
y 	  

It can always be 0.95 	  
If m/n+ 1 is 0.95, Z does not change 	  
(13) X (25) 	  
(15) + (26) 	  

0. 95 
2. 97020 

87. 2 
127. 5 

    

    

Control curves 

1  In addition to a spread sheet, for mass production of data, a separate data sheet (like table 1) is needed for each 

set of annual data. 

In the example, 
nl 	 Calculations 

n + 1 	Mode 	slope 	Z 

0.20 	 40.3 + (29.35 X - .47588) 	 26.3 
.50 	 40.3+ (29.35 X + .36651) 	 51.1 
.95 	 40.3+ (29.35 X 2.97020) 	 127.5 

7. Plot the 3 coordinates (of m/n +1 versus y) 
on extreme-value probability paper. 

a. Find the value for mmn + 1 on horizontal 
scale and, from this point, go up to a point 

94 • 



opposite y on vertical scale, where an x or dot 
is placed. Locate 3 such coordinate points. 

In the example, 

Horizontal scale 	 
n+ 1: 

0.20 	  26. 
.50 	  51.1 
.95 	  127.5 

8. Join these 3 points in a straight line. If 
they do not fall in a straight line, an error has 
occurred. 

9. Now plot your data from table 1 (columns 2 
and 4) on the probability paper. The dots should 
fall quite closely about the line in order for the 
extreme-value theory to apply. 

In the example ( from table 1), 
Vertical 

scale 
Horizontal scale 	 (Col. 2): n+ 1 	 (coi. 4) 

	

0.027 	8 

	

.054 	  20 

	

.081 	23 

	

etc. 	  etc. 

If control curves are desired, 
10. Compute vertical distances (above and be-

low) from points on the regression line, as ex-
plained in table 4. 

11. Join these points to form control curves. 
(See fig. 1. ) 

•
a. If two-thirds of the dots fall within the 
control curves, the theory applies. 

In the example, 30 of 36 dots, or 83 percent, 
fall within the control curves. 

TABLE 5.—Probabilities that may be read from 
regression line in figure 1 

Annual loss cost (y) Cumulative 

occurrence 

probability of 
m 

n + 1 

Cost per $100 
of insurance 

Percentage 
of average 1  

Equal to or 
less than y 

More than y 

Cents 
40.3 	 
56.2 	 
112.4 	 
140.5 	 
168.6 	 

Percent 
72 

100 
200 
250 
300 

Percent 
37 
57 
92 

96. 7 
98. 7 

Percent 
63 
43 
8 

3. 3 
1. 3 

1  Average loss cost 56.2 cents per $100 of insurance. 

Interpretation of Data 

The annual loss costs in the example are dis-
tributed fairly well about the regression line.6  
More than two-thirds of the dots fall within the 
control curves. The probabilities in table 5 may 
be read from the regression line in fig. 1: 

An extra sheet of the probability paper is in-
cluded (as fig. 2) in this article for use by those 
who wish to experiment with the method. 

The column headings for a spread sheet, and 
their explanation, including the data for the ex-
ample used here, are shown in table 6. 

° Equation : y=40.3+29.35Z. 

• 
Vertical 

scale 
V 

• 95 
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