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Estimation of Marginal Risks with Seemingly Unrelated Regression
and Panel Data®

G. H. Wan, W.E. Griffiths and J. R. Andeszon!

In this paper, seemingly un elated regressions (SUR} which consist
of production functicus with cormposed errors for section end time
and heteroscedastic disturbances are proposed. These functions ave
distinguished from others in that they allow the risks (indicated by
variances) of outputs change in any direction in response to input
changes. The SUR are then applied in the analysis of cross-section

time-series data for rice, wheat and maize production in Chine.

1 Introduction

It is reasonable % propose that changes in some inputs, e.g., in- 2stment in im-
proving environmental conditions, are inversely or negatively reiated to changes
in risks of crop outputs. However, & positive relationship may exist between
other inputs, e.g., areas sown with modern cultivars ( Anderson, Findlay and
Wan 1989), and outpu . zriabilities of agricultural crops. Just and Pope (1978)
showed that these relationships cannot be correctly taken into account by the
commonly-used functions, no matter whether the function is of additive error or
multiplicative error and no matter whether the function is linesr or nonlinear.
For example, the widely-used Cobb-Douglas, transcendental and CES functions,
restrict the marginal product and marginal variance to be of the same sign, nor-

mally positive. Other restrictions of these functions are detaifed by Just and

Pope (1978).
* A contributed paper prepared for the 33rd Annual Conferrence of the Australisn Agricul-
tursl B ies Society, Lincoln College, Canterbury, New Zesland, February 7 - 9, 1989
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To relax these restrictions, madels with heteroscedastic disturbances such zs
(1) to {3) nre proposed:

Y = f(X)+h(X)e, (1)
Y = f(X)+h(X.e), »
Y = f(X,e), (3)

where ¥ and X are dependent and independent variables, respectively, ¢ is
usually a vector of random disturbance, and &, f represent functional fozms.
Since equations (2) and (3) are rather too general to discuss insightfully their
estimation, Just aad Pope (1978) focus on equation (1) and suggest a tour-step
procedure for estimating (1), where both f and % are assumed to b= log-linear
in parameters. Using the Cobb-Douglas function. as f and h, Grifiths and
Anderson (1982) considered an ersor componer ¢ version of equation (1) and
developed corresponding estimation techniques.

This paper presents an extension of the rnodel considered by Griffiths and
Anderson (1982) into seemingly unrelated regressions (SUR). The SUR specifi-
cation is made in section 2, followsd by discussion on an econometric estimation
procedure in section 3. Some empirical results based on Chinese data nre pro-
vided in section 4 to illustrate the possible saperiority of the extended model
over more conventional ones. The paper is concluded with a summary in section

5.

2 The model

If there are N cross-sectional entities over T tims periods, a set of M nonlinear

stochastic equations of the form

K K
Y = Tm U X:;;" 4 €y © U X5 (4)
k=1 k=1

can be established, where m = 1,2,---, M, Y, is the NT x 1 vector of obser-

vations on the dependent variable, €, is 2 NT x 1 disturbance vector, Xpx is



the NT x 1 vector of observationson the k-th explanatory variable of the m-th
equation and as,Js are parameters o be estimated, The symbols, o and [],
denote componant multiplication of matrices.

Assume i= 1,2,+--, N andt = 1,2,---, T, let

hmie = fI Xt (s)
H, = ‘z;;g(hmh Bm3s ++*y BT ) (6)
H = diag(Hy, Ha, -+, Hu), (7
&m = Zpttn + Z\Am + Ve, (®
where
Z, = Iy Qer, (9
Zy=ex®Ir, (10)

and ® denotes the Kronecker operation; In, Iy denote N x N and 7' % T unit

matrices, ex,er are N x 1 and T x 1 vectors of ones. The model can then be

written as
K
Ym = ¥m UXg;* + U, (11)
=1
Ve = Hp(Zubm + 22Am + V), {12)

where the i-th element of the vector iy = [Hmi)Mm2s e+ Bmay]’ and the t-th
element of the vector Am = [Amis Am2:-* s Amr)' represent the error components
specific to the i-th entity and ¢-%\ period in the m-th equation, respectively; the
NT x 1 vector 14y = [Vn1y ¥mar -+ s Vm NT)' cOntains the error component which

is random over time and space for the m-th equation. Further, define

Y; uy it

. Y2 uz 2
Y= o= Cler=)
Yar ‘\ uUps T™M



and

K X K \
X, = diag (H xfe T xde Uxf‘tib) ,
k=1 =1 k=L

the SUR models can be written as
Y=Xr+u (13)

Following Avery (1977) and Baltagi (1980), the three components of z (1.e.,
#, X and v) are, as seems reasonable, assumed to be stochastically independent

from each other and
E(]lm‘) o= E(Amg) = E(V,m'g) =0.
Under these assumptions, it can be shown that

Eloms i) =0pm =7,

=0 i#j (14
E(Ams Mis) =oamt t=3,
=0 t#s (15)

E(Vmit”bc) =0y tx=jl&ti=s,

=0 ifjortys, (16)
or in matrix notation,
Hm Tumiln 0 0
El dm |mXivi)=| 0  osmlr 0 o (17
Ve 0 0 OymtINT

where i, j are entity subscripts, m, ! equation subscripts and ¢, s time subscipts.
formandl=1,2,---, M.
By defining

€= . ' (18)



the covariance matrix for (13) can be expressed zs

¢ = E(u)=HE(e)H
= HOH, (19)
where
Q. he -
R N (20)

ﬂan an e Qmog

The typical element of § denoted by 0,y has the form

O E(emer)

= Oumid + Oamt B + dymilne, (21)

il

where A = Ixy @ epep and B = exely ® Ip. Let

_ 4 B  Iyr
INT = enrTeyr, (23)

then equation (21) can be alternatively put as (Baltagi 1980)

= Inz A _Inr
Qm = o3mt NT + 0imt (T NT
B 7
+ Oami ('S,‘ - —]‘Vq%) “+ Cumi@, (24)
wher
Ormt = Oymt + TOumis (25)
Tzt = Oumt + Noam, (26)
Osml = @umt + Noamt + Toumiy {27)

and @y, are the distinct characteristic roots of €y of multiplicit 1, N -1,
T-1and | V--1){1'~1), respectively. These eigenvalues of {2,,;; car pe computed

according to Verlove (1971), if neces,~ty.



After obtaining the values of Timts Oamts Oami 20d @y by equations (25)
to (27) for m, 1 = 1,2,-+- . M, Baltagi {1980) shows that

Q2 = ﬂl@l@i‘ﬂ‘@f'& .{L”I)

NT \T ~ NT
+ & a(ﬁ-iﬂ)a—n ®Q (28)

*Y\N T NT v

where

h = I“*&mt}; (291
2 = leal (39)
i, = [owm (31)
Q = {owm, (32)

all of dimension M x M. As shown later, this axpression will be useful for
computing ™1,

Under the above model specification, B¢ represent production elasticities
and as “risk elasticities” or risk effects of inputs, where risk is defined as the
variance of Y. Since aa can be of any sign, the proposed SUR are distinguished
from more conventional ones in that they allow risks of cutput to change in any
direction in rezponse to input changes. Also, the three error components in the
model are all heteroscedastic in the sense that variances of Hin Zufims HmZrAm
and Hy.vm depend on the input levels. This implies that the magnitude of both
entity and tim. Fects wdl be influenced by the measured input levels, which

mzy be more reslistic than otherwise.

3 The multi-stage estimation procedure

Given the covariance matrix of (13) in (19), it can be scen that to estimate v =
(7111’23 M t?”)’ &ﬂd Ja = (ﬂlaﬁ:t A lﬁMr‘ thte 3:1; = {ﬁmhﬁm}u M :ﬁmﬂ')'v

the cbjective function to be minimise is

¢ = u'dlu



”l;g—lnﬂ‘ Hml o
&0 e, (33)

]

il
e

where & = u'H2,

However, H cannot be computed without the estimates of o = {ay a2, e}y
which. in turn, requires the estimation of %, To proceed in this direction, the
first step is to minimise

M N T K 2
doz 335 (si-ra [ 2221) (38
m=ztizsl ixl k

and obtain ¥ and . Since cross-equation error is not c~weilered here, the
estimation can be undertaken for each m separately. Jne to the existence of
heteroscedasticity and cross-equation ertor, the estimez .es will be asymptoticelly
inefficient. But they are generally consistent. Therefore, the estimated resid-
6l Bt = Fomst = Fon 15 Xﬁ‘ﬂ‘t will converge in distribotion to uym, under
appropriate assumptions.

The second step is to estimate a. To daso, rewrite equation (12) in a slightly

different form as

Ut = Bt (ms + Ame + Vimar) - (35)
Squaring the above equation and taking logarithms yields
K
Inud, = In(fm + Ame + Vomat)® +2 Z A 10 X - (36)
k=l
Let
amo = E [In(Bmi + Ame + Venat] s (37)
s = In “?m‘t ~ Efln “ﬁm}» (38)
then
K
E{ln ug,,,) = Qmo+ 2 Z Gk 10 Xenkaes {39)
k=)
Emn = In{bo + Ame + an)a = Gmp- {40)



Thus

In{ftms + At + Umiz)? = @mo + Emit 41
and equation {36) reduces to
‘ E
In iy = amo +2 E Ami 10 Xenget +Eonies {42}
k=l

Combining the set of M equations,
= Xa+£ {43)

is obtained, where & = (@1, 03, -, 03} O = {Om0r 2¥myse 0 20mg ) € =
(61,620 - Exewvr ) X = disg(Xy, Xav- -+  Xat), Xen it 8 NT x (K +1) matrix
with 1.0s in the first column and InXpmi in the other columns. ¥ is defined
similarly to X with ¥iy = {lned,,,Ins2,, - nud np).

When ., is replaced by its consistent estimator &, equstion {42) can be
used or ustimation of am. However, properties of §mi have to be investigated
1z order to discover the properties of the estimates and fo employ an appropriste
estimation technique.

If fmse Ame And L4y 8re assumed to be normally distributed, the random
varinbles defined us

Gmas = (e 4 Ame © Pt} 5 O {44)
Qe = {Bpct Ay e} o, {45}
where
T = VCamm * Camm * Comm

J—
= vTmum

become standsard normal variables with zero mesrs and unit variance. Moresver,
g2, m= 1,2, ., M are each x® random varinbles with one degree of frecdom.

Tuking the logartla: of the square of equation {44} produces

la ?-:am = Inf{ptm + Ay + um..;}’ - in c;,{,

#

Qg + Emee - I 05,- (46}



where the second equality is obtained by use of equation {41). This variable is
thus distributed as the logarithm of a x? distribution with onedegree of freedorr.
Since both aws and Ine3, are constant and Emee is defined by equation (38), it
can be shown {Harvey 1976) that

Var(laghy) = VarEme) = 49348, (47}
Ellngh,) = -12704
= Omo~Inod. {48)

According to equations {38) and {47), £ hrs zero mean and 8 constant
variance. Therefore, o, can be estimuted by applying OLS to equation {42) for
m=1,2,---, A sepurastely and this produces no hizs or inconsistency. But, it
does resnlt in inefficiency since the Al sets of equations are velnted and esch of
thera has & compusite exror siructure similar to that of (17} as shown below.

When i = j andfor £ = 8, Gmy 304 gzy, will be corzelated. This implies that
Ing?,, and Ing?, will be also correlsied when 1 = y andfor ¢ = 5. [t can be

shewn that

E }E‘lnq?““ !ﬂﬂ?,’g = E’({mt&gi) “* 1«37643, {49’
it
E(€mitbtys) = Ellngd,, Ingd,] - 1.2704. (59)
Since
Elgmu s} = E’f,‘-f.‘:'. 1)
= G" £ ¢ kS {53)
Elgeaseiys) = g':f;. tz=a
= 8, i# 3, {52)

§

E{gmt @152} '“f::‘;, t=s & 1=y
af, tEsors@ {53}




Where Tos = Tumd + Ohmt + Tpents Lhe Tollowing car: be derived {Griffiths and
Anderson 1982, Johnson and Kotz 1073}

éyml = F {fmn&n}

oy ;0 gyl
- Fami \ ls (5'3
T = (,trws} Bk + §) o
é,),m = E {smt’l&}lﬁ
= { Tamt )” hr($)
= 55
;‘2 (crmar KT+ §) o
fai = B eubu
o h
- Tnt ) RIP(Y) ,
- k=l (Umﬂi) B3L{h + %, 0
& . Spmt — Eaeat {57)

0 WetdsoreF )

Thus, oy 28n be viewed as having an error cntnponents structure similar to
that of ¢ and (421 can be estimated by fthe technique known as lesst squares
with dummy vanables (LSDV) (Maddals 19715 I #,. A}, 2nd o, aze used to

denote vectors containing these componenis, then

B SymtIn 0 0
Efl an ') = 0 Samilr 0 . (58)
Vi & 6 Semlnr

Becasse the system of equations tepresented by (43) is of composite er-
ror structuze, o can be more efficiently estimated by modifying the procedure
and formuiae in Baltags (1980} This eventually produces gencralised least

squares{GLS) estimates of a, nameiy &, where

L wi f y-1 i“h JNT‘)' ¢ . ‘m( A; (;ii .‘:.‘”’..{)) Y
& = X (.4, m(T g )X Yide g wr))ft

p -3
+ X'(Ag @L’f—)x«'x'(« @Q)x]

NT
(sl (e (3D

19




+ X (A;‘ ""’“‘)&wx' (a;t @Q)y] (59)
‘The As in the above expression are similar to {2y defined by (25} to (32)
with os replaced by #s. The As can be estimated afier caleulating 85 according
to {54) to (57}, However, such & calculation requires the estimation of the os,
&s is discussed in {68) to {72). Alternatively, one can obtain the best unbiased
estimates of As directly (Baltagi 1980} by

Fy 1 ¢ ,
Ay = m‘i Q, (60)
i = cﬁ ”ﬂc (61)
v w-x) T NT

’ - y] Inr

fa = (T~1)€ [}V NT]C (62)
As = Ay+A4s-A,. (63)

where { = ({1.$a:-+{ar) is the NT x M matrix of residuals, which can be
obtained in two ways: (a) applying OLS to equation (42) for each m separately
and calculating the corresponding residuals; or {b) performing LSDV on (42) for
each m separately and computing the corresponding residuals (Amemiya 1971).
1t is noted that both sets of residuals can be used to replace ¢ for estimating the
As and the resnlting o« has the same asymptotic efficiency in each case. However,
As estimated from the LSDV residuals are asymptotically more efficient than
those from OLS residuals (Prucha 1984). Thus, LSDV is used in this study to
obtain {.
Referring to both Baltagi {(1980) and Prucha (1984), it can be shown that

R =[] =5 (B A,
o= b = 5 (B-44).
A= [Bem].

Once & is obtained, {n, can be estimated as

K
ému =in ﬁ:‘“ - &mO -2 Z 6mk In tht- (64)

[E-3)

11



It is now possible to find efficient estimates of 8, which correct for het-
eroscedasticity, error components. and correlation across equations, This is the
task of the third step.

According to equations (46) and (48),

@, = &mo+&me—1In a3

Eomie — 1.2704,

n

i.e.,
Gt = yexp(fma - 1.2704). (65)

It can be shown that

Ouml + Tamt + Curmu
OOl

i

E ( st ?m}

Fml
Tm 0y
= Pml (66)

where om; = Fumi + Famt + Tymt 80nd Py is the correlation coefficient between

€ and ¢, which can be estimated by
N T

. 1 -
Pt = 33 Gmiedne. (67)
1=l ¢=1
From equation (48},
& = exp(Gme + 1.2704). (68)
These give
Fmi = PmiOmr. (69)

Now, ¢pmits ¢ami and o, can be estimated by
NT-1oT
PO 2 Z Z Z Ry Uy (70)
14 bt - ~ )
# NT(T - ‘) sl s=1 t=ad hrmt hlu
o TNSL N e
. “ ]
Taml = T o p— (71)
ml NT(N ~ 1) § Z:l Jg; et hiye

Fymt = Opi — a’pml ~ &aml (72)

12




where

X
M“ = H -A*,ﬁ?:tv (23)
k=l

If these computations are being made with a view towards using (54) to
{57}, then the estimate for & would be from OLS or LSDV, rather than
GLS, because (54} to (57) ate required hefore GLS estimation is employed.
Substituting Fymts Fumiy and Fane into equations (25) to (27) enzbles the
computation of £} via {28} to (32), According to equation ( 19),

é = B, {14)

where H can be obtained through equations (5} to (7) with A replaced by
imir- Thus, to obtain efficient estimates of 8, represented by &, it is a matter

of minimising
¥ = ity
= wWRMIT Ay
= ufi~l4, {(75)

whete it = H='u.

For the purpose of programming, it is necessary to find a transformstion
of the error term, say pit, such that &'p'pk = /ft~'4. When 1 is of small
dimension, one of the methods is to find ¢ and A such that p = A~1¢. where
c is an orthogonal matrix consisting of the characteristic vectors of £ and A
is a diagonal matrix consisting of eigenvalues of 2. However, {2 is of order of
{MNT x MNT), which could well be exceeding dimension 200. In this case,
solving Q for ¢ and A requires solving a polynomial equation of degree of over
200. This is s difficult task and unreliable results may incur. To tackle this
problem, a two step procedure is developed: (a) decomposing £ according to
the suggestion of Baltagi (1980), which gives

. Aol oo ST ol A Iyt
Q- = ﬂ31®'§€r§-*ﬂ,‘®(§~‘£~f)

3



+ O7'e (-g- - %“—i,’i) +0'eQ, (76)
where £y, 013, fly and @, cau be caleulated according to equations (25) to (27)
and {298) to (32) with os replaced by their estimated counterparts. It is noted
that these matrices only have dimensions of Af .« M. (b} let Q7' = P(P{ and

defining
67 = RF (1

for i = 1,2,3,4. Further defining

= A_Iyr ,
o= e 2T 7
= Iar
Dz - NT ] (80)
D, = Q. (81)

Then, since the D;s are all idempotent and DD, = i for i # j, equation (76)
can be written 2s

»

n—-!

4
Y (RP.®D.D)

szl

(f: £e D*) (}i'_,P.’ ® D.) . (82)

4334 =)

fl

Therefore, an equivalent operation of minimising ¥ 15 to minimise &%, where
& = (t?,’@l).)&. {83)
ezt

To summarise, the estimation of seemingly unrelated regression models,
which carry risk implications and inenrporate composite errom, normally takes
the following steps:

(1) Find 8 and 7 by using nonlinear least squares either to minimise u},%m
form = 1,2,---, M, respectively, 2r to minimise u’u; denote the corzresponding
residuals by &.

14



(2) Obtain & by applying the GLS technique on the SUR models with erroz
components, Whexe In @2, is regressed linearly on the InXomiies; denote the
corresponding residuals by £.

(3) Use £ to estimate ¢ via (65) and then pm1; Omm via {67), (68). This
enables the estimation of oyqt wia (69).

(4) Use Gy and & to find Bimit from (73} and subsequently GumteGam: and
&, from (70) to (72). Meanwhile, H can be estimated via (6) and (7).

(5) Construct {1, {1, il3 and §, by replacing s in (25) to (27) and (32) by
their estimated counterparts computed in step (4).

(6) Find & of {3, for i = 1,2,3,4 and then obtain - from (76).

(7) Use H from step (4) and f1-1 from step {6} tc find ¥ and fi by employing

nonlinear least squares to minimise wHG T

4 Empirical application

Chinese survey data for 28 regions {i.e., entities) for a 4-year period from 1980
to 1983 ore utilised to estimate the disturbance-related production functions,
as proposed in preceding sections. The data, covering three crops (rice, wheat
and maise), comprise output (jin), sown-area (mu), organic fertiliser {yuan),
chemicsd fertilizer {yuan), machinery cost {yuan), irrigation cost (yuan), labour
input (persondays) azd otier costs (yuan). Those variables in value terms are
deflated by a weighted index of agricultural prices in state and free markets.

The Marquardt-Levenberg-Nash approach is adopted here to find the non-
linear least squares estimates of Bs (Marquardt 1963, Nash and Walker-Smith
1987). The estimates for ¢he mean output function and the output vauasice
function are, respectively. oresented in Tobles 1 and 2. These resukis are cb-
tained from several different sets of starting values.

In Table 1, estimated coefficients of the SUR heteroscedastic models are

reported in the thicd column. For comparison only, results from assuming uy =

15




€. are slso presented.

From Table 1(a), it is seen that, among the eight variablex included in the
model, four of them have coeflicients with negative signs. That is, rice pro-
duction elasticities with respect to lahour, chemical fertilisex, animal cost and
machinery cost are less than zero, Since rice is mainly planted in Southern
China, where substantial underemployment or over-supply of lebour exists in
the rural areas, it may be possible that negative refucns with zespect to labour
stazts occuring, particularly after the resamption of double cropping (after triple
cropping) since the late 1970s. The negative elseticity with respect to chemizal
fertiliser is consistent with the findings of Wiens (1982). Large increases in the
application of nitrogen without corresponding increase in pctassium and phos-
phorus might be one of the most fmportant reasons for the negative «  sticity
{Stone 1986). The negative elasticity associsted with machinery cost is plausible
as replacement of labour by machines “destroys™ the traditional Isbour-intensive
farming technique. This is pariicularly true with rice production since rice re-
quires fine s0il preparation and flat land but machine operation cannot meet
these requirments as well as lIabour does. As for the animal cost, the negative
sign is implausible. However, except for labour, all the negative coefficients have
95 five per cent confidenice intervals which include a positive range.

Among the remaining variables, all but irrigation are significant contributors
to rice output. Examination of the magnitudes of the estimates indicates that
sown area change asserted the greatest positive impact on rice ontput, followed
by organuc fertiliser. The insignificance of irrigation may result from the fact that
almost all the rice area sown is irrigated and thus irrigation is not a particulasly
Iimiting factor in rice production.

The estimates of the mean maize output function are tabulated in Table
1 (b). Judging by the asymptotic i-ratios, all the positive estimates are sta-
tistically significant at 0.05 level. On the cther hand, all the three negative

coeflicients have 95 per cent confidence intervals which include a positive range.

16



Furthermore, the three negative values for labour, chemical fertiliser and ani-
mal cost are implausible, Unlike in the case of rice, machinery cost is positively
related to maize production. A Possible explanation is that, for maise produc-
tion, machine operation is mainly involved with cultivation and plunting. Thus,
there is less post-harvess loss than harvesting by machines. More importantly,
timing of planting is more crucial for maize production than for rice and the
requirement for seedbed preparation is not as great us for rice. Maize is mainly
grown in the central and north of China, where farming techniques are relatively
poorer than in the south. In other words, replacement of lsbour by machines is
Likely to create a positive impact on maize output. Moreover, in the far north
the excess labour problem is less severe if it exists a¢ all. This may also help
explain the positive sign of Gg.

Atea sown is the dominant source of thaage of maize output. The production
elasticity with respect to sown area is 0.68, followd by 0.16 with respect to
organic fertiliser and 0.15 with zespect to other costs. The elasticity is only 0.02
for machinery cost and 0.016 for irrigation.

The wheat production function seems ta be estimated most successfully (Ta-
ble 1{c}). The only negative estimate is the elasticity of irrigation. Wheat is
largely planted in the far north of Chins, where water supply relys heavily on
rainfall. It is noted that the negative value has a smudl t-statistic. Thus, the
true elasticity of wheat output with respect to irrigation might be very small
and its estimate could well turn out to be nonpositive,

Contrery to both rice and maire, the coefficients of labour, chemical fertiliser
and animal cost are all positive, although the estimate associnted with animal
cost is not significaat at the 5 per cent level. Chemical fertiliser has the smallest
positive elasticity and organic fertiliser has the largest elasticity. The elasticity
with respect to labour is not only positive, but substantial relative to that for
other inputs. This comes as no surprise since wheat is predominantly planted
in ol Zar north of China where labour is relative scarce. The above-mentioned

17




reuson could also explain the relatively large elasticity of machinery cost in
wheat production.

Overall, Table 1 indicates that, whete labour is relatively scatce, machinery
generates o positive and significant impact on crop yield. For example, when
Jabour input has negative returns in rice production, machinery cresies s nega-
tiveeffect on production and the effect is significant at & 10 per centlevel, In the
case of jnaize production, labonr had no significant impact and machinery gen-
erated a limited, though a significant cffect on yield (the coefficient is only 0.02),
whereas when the laboureffect is significantly positive in wheat production, the
machinery effact becomes positive, significant and substantial (the elasticity is
0.08).

The parameters determining the signs of marginal risks are presented in
Table 2. Although attention will be focused on the estimates given by GLS, pa-
rameters estimated by other techniguesare also shown in Table 2. The goodness
of fit for the SU R system is calculated according to

é‘{&"f’* @ Inr)é (84)
Y{E- @ Dyp)Y
where £ is the variance covariance matrix of the SUR models, is o MNT'x 1
vector containing the GLS residuals, and Dyr = Iny — Inr/NT. The Fsyn
statistic is obtained based on Ry (Judge et al. 1985, p. 478), The Riyp and
Fsyg are not reported in the tables. The result shows that Riyp equals 0.55
and Fspp tquals 16,01, Noting thet data used for estiinanon are basically cross-

R%g&a 11—~

sectional (the time span is relatively short), 0.55 indicates a reasonable goodness
of fit. The Fspp is statistically significant at any conventional level, which
suggests the existence of heieroscedasticity. This may imply the insdequacy of
conventional functions or the superiority of the heteroscedastic SUR models.
Machinery, organic fertiliser and other costs seem to have stabilising effects
on rice output {Table 2(a)). The coefficient for machinery is insignificant. It is
reasonsble to kave a negative &g since the major component of other costs is

expenditure on mansgement. The significance of both positive Br and negative
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Brimply theimporbuare of organic fertiliser in achieving s high and table yicld
in China’s rice pre-fuction. ‘Ihe warance of production is positively painted to
chernical fartiliser application , though there is & lack of statistical significance,
This is in line with the expectation of Hasell (1984), who suspected that, as
seed-feriiliser technology advances with the adoption of high yielding varisties,
incrensed nse of chemical fertiliser may bring about higher production variabil-
ity. Asfar as enimal cost is concerned, the significantly positive sign is implau-
sible and thus needs further investigation. While irrigation is expected to help
stabilise production, the empirical result here does not seem supportable, Not-
ing that &y is significant and of considerable magnitude, better management of
the irrigatios system in China is implied to be nrgently needed. This is because
the positive oy and negative f5 could well be the result of malfunctioning of the
irrigation system dus to a collapsed management of water resource and irriga-
tion fiscilities after the introduction of the agricultural production responsibility
system in late 1078. The impact of ares scwn on production risks basically
depends on the correlation coefficients among rice outputs of different seasons
and on the management skills, In general, a positive relstionship is expected.
Finally, labour does not produce a significant impact on production risk. This is
primesily because the lsbour input in China was near “saturation” iong before
1980. Thus its changes may not generate any effect on ejther mean output or
output risk.

Contrar, to the case of rice production, animal cost and irrigation were
estimated to be stabilising factors in maize production in China (Table 2{b}).
This may be due to the relative insensitivity of maize to water supply in timing,
quantity and frequency. In other words, irrigation can help to stabiuse maize
production and, while there are problems of irrigation in China, these may
generate only very limited impact on maize yield vaxiability. The variables other
than animal cost and irrigation are all positively related to maize production

variance. This is piausible for Jabouz, area sown and chemical fertiliser for the
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ressons discussed carlier. The positive signs of machinery, organic fertiiser and
other costs are implausible. However, all the positive estimates have 95 per cent
confidence intervals which include negative values,

The relationship estimated between wheat cutput variance and inputs can
be found in Table 2{c). All the slope parameters ave insignificant at the § per
cent level. The negative value for arex sown is unexpected as is that for organic
fertiliser. The estimates associated with labour and other costs are not only
positive, out also quite large in magnitude, It should be stressed that all the
slope coefficients conld well be zeros in accordance with the asymptotic &-ratios.

It is diffcult to generate findings from the estimates of the three equations
because {8} most of the estimates are not encouraging in terms of statistical
significance; and (b} the magnitudes of and especially the signs of parameters
are so inconsistent across equations. However, as far a3 the relationship be-
tween the ‘green revolution’ snd production risks is concerned, the empirical
results indicate that there is a positive link between seed-fertiliser technology
and output variability. This may be due to the intreduction of modern cultivars
which have & narrower genetic base than their predecessors (Hazell 1984). The
nature of irrigation in the context of output variability crucially depends on the
relinbility of the water supply. Taking into account the fact that the irrigation
systems in many pants of China are severely damuged, a nonnegative effect of
irrigation on output tisk may be understandable. The machinery input possibly
brought about higher risks, which could arise from the poor quality of beth
toals and operstions.

The estimated matrices [fumis Buemths 810 and 18] are given in Table 3.
It is clear that the time effect may be negligible by comparing the correponding
values of Bami) and [8,ms). The existence of cross-equation covariance is seen
by the possibly significant off-dingonal values of "4 If the assumption of
& normal distribution for each of the three (time, region and random) errors
holds, the disgonal elements of {8ms] should be close to 4.9348. Statistical tests



{F statistics) revcal found that all three values are mot significantly different
frone 4,9348 at & 5per cent level, In passing, it is noted that the negative values
on the disgonals of these matvices are posgible and they can be set 1o gero in
practice if necessary {Fuller and Bustese 1974, p. 72).

The varispse-covarisnor mattices of the mean outpat functions are given in
Table 4. The lack of time e¥ects is again seen by the small ratios of Fama/Fuemt.
The costempotary covarianes scross equations sre ail positive snd substantial.

5 Summary

In this paper, SUR models which incorporate sime-specific and region-specific
erxor components and permit the marginal variances of outputs to be of either
positive or nonposttive sign ure pas, ~<ed, An estimation procedure is suggested.
This stterapt is of empiricad significance, particnlarly in agro-economic research,
sinve outputs of varivus sgricoltural activities tend to be influenced by some
common {actors, notakly weatherand policy changes. Also, incresses of different
inputs exp cither enhance or reduce output risks. Corventional SUR models
res: dict the mnrginal risks to be positive,

Using vombined time-series (4 years) and cross-section {28 regions) data
on Chiness rice, mtgre and wheat production, heteroscedastic SUR producgtion
functions were estimated. The results indicate that, as chemical fertiliser, sown
area and irrigation cost increase, cutput vanances generally rise. On the other
hand, organic fertiliser, muchinery cost snd the other costs may help stabilise
Chinese corend produstion. Laboy input does not create significant impacts en
either wean outputs of oniput vasiances. These results supgest the possible
supencuity of the heteroscedastic SUR over snore conventional ones.

I+ must be noted that most of the inputs considered in the models are not
nevessandy siginificantly related to production nisks. This ts not to suggest that

these and other inputs age, in fact, unimportant ¢° " ...comse, 0 production
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and fve viskiness. It may, however, ioply she importance of weather and govern-
mient intervention in sgrivultuse ln determining the varability of Chinese ereal
produrtion.
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Table 1: Pazameter Estimates for the Mean Output Function

{a) Rice
Specifications of Error Structure
YUye = vt Uy = ([1, + t\g + Uit)h“

B 6.836 269.663

(3.29) (3.37)

B —~0.181 0.728

(Area) (~2.47) (8.78)

B 0.347 --0.125
(Labour) {10.52) (-2.38)

Bs ~0.007 —0.005
(Chemical Fertiliser) (-0.1%) {—0.43)
Bs -1.031 -0.035
{Animal Ce<1) {—1.83) (~1.43)
Bs —0.010 0.017
{Irrigation (~0.75} (0.73)

Ay ~0.031 -0.073
{Machine. y Cost) (—2.59) (—-1.84)
L 0 205 0.379
{Orzanic Fertiliser)  (11.98) (5.48)
Bs 0.120 0.098

(Other Costs) (7.30) (3.00)

Note. Figures in brackets are asymptotic teragios



Table 1: Parameter Estimstes for the Mean Output Function

(b) Maize
Specifications of Error Structure
e SV W = (g F Ag+ bitjhg

¥ 325.277 415.365
{4.02) (6.42)
A 0.584 0.676
{Area) (15.10) {13.24)
N 0.012 ~0.027
{Labour) {0.32) {—0.70)
0.0002 ~0.001
{Chemical Fertiliser)  (0.01) {(~0.13)
B4 ~0.062 ~0.017
(Animal Cost)  (~5.7% (~0.81)
Bs 0.013 0.016
{Irrigation) {1.79) {104}
Bs 0.009 ob22
(Machinery Cost) {0.88) {2.13)
B 0.106 0.161
{Organic Fertiliser) (2.71) {4.55)
Bs 0 4% 0.147
(Other Costs) 18.61} {5.36)

Nate: Figures in brackets are asymptotic t-ratios.



Tuble I: Parameter Estimnates for the Mean Output Funetion

{c) Wheat -
Specifications ot Error Structute
P Y T ) |

E3 103.304 136.950

{3.79) {3.75)

& 0.382 0.198

{Aren} {441} {1.86)

B 0212 0.140
{Labour} (4.95) {2.14)

Ba -0.014 0.048
{Chemical Fertiliser) (—0.82) {1.98)
A ~0.044 0.064

(Animal Cost)  (-2.3%) {1.79)

s 0.011 ~0.024
{Irrigation) {0.80) (~121)

Bs 0.074 0.084
{Machinery Cost) {2.90) {3.29)

A 0.230 0.261
{Organic Fertiliser)  {7.60) {4.09)
B 0.148 0.187

{Other Costs) {2.78) (3.13)

Note: Pigures in brackets are ssymptotis teratios,




Tubls 2¢ Parameter Estimates for «he Output-Variance Function

(2) Rice
Estimation ' Technique
OLS  LSDV GLS
o7 22,432 - 18.813
{14.90) - {7.66}
24 3443 1.339 2.072
(Area) (8.02) (0.67)  (2.56)
26y ~0.910 0.651 0.174
{Labour) (~3.03) (044) (0.32)
2ay 0.303 1.017 0.515
(Chemical Fertiliser) (2.82}  (1.18)  (1.92)
2dy 0470 1.228 1.005
(Animal Cost) (2.63)  (136) (2.84)
205 0.273 1.049 0.796
(Irrigation) (1.89)  (1.27)  (2.40)
248 0.101 -0.179 ~0.00%
{Machinery Cost) (1.08) (—0.33) (~0.03)
2&y -2.003 1987 -1.350
(Organic Fertiliser) (~5.59) (~-1.28) (-2.8/,
2&g —0.45u0 1.894 ~".433
(Other Costs) (~1.89) (st {=3.17)
R? U.637
F-ratio 22.609

Note: Figures in brackets are asymptotic t-ratics.



‘Tuble 2: Parameter Estimates for the Dutpniwvuiunﬁar Function

{b) Maiz> ,
~ Estimation Technigue

QLS ~ LSDV  GIS
day - 9138 - 9.107

{8.17) - (3.91)

28y 0.377 1.675 1.056
(Ares) (0.83)  (0.45)  (1.34)

24, 0368 0013  0.058
{Labouz) (1.03) (0.004) (0.11)
243 0.040 0.054 0.099
(Chemical Fertiliser)  (0.35)  (0.08)  (9.56)
2%, -0.056 -0.785 —0.440
{Animal Cost) {—~0.39) (-0,70} (~1.77)
2dég -0.160 —-0.436 -0,182
{Izrigation) {—2.22) {(-0.79) (-1.28)
24, 0.282 0.399 0.349
(Machinery Cost) (2.87)y  {0.51)  (1.86)
2&7 0.340 0.338 0.437
{Orgenic Fertiliser)  (1.08)  (0.16)  (0.76)
28 0.250 0.484 0.261
{Other Costs) (0.82)  {0.29)  (0.49)

R? 0.533
F-ratio 14.684

Note: Figures in brackets are asymptotic t-ratios,



Table 2: Parameter Estimates for the Output-Variance Function

(c) Wheat .
. Estimation Technique

OLS LSOV GLS

‘ &y 8.310 - 7.226
(6.99) . (2.64)
28 0.016 -0.700  —0.,407
{Ares} {0.04) (~0.37) (-0.41)

26y 0.886 ~0,207  0.700
{Labour) (3.40) (—0.17) (1.26)

243 -0.331 0.2980 0.018
(Chemical Fertiliser) (-3.01) (0g6)  (0:09)
2ay ~0.005 0008 ~N073
(Animal Cost) (-0.03) (0.01) (-0.24)
283 -0.002 0184 0,056
(Irrigation) (-0.02) (042) (0.29)
268 0.444 -0,011 0.247
(Machinery Cost) (4.14) (~0.03) (1.13)
265 -0.141 0.682 0.113
{Organic Fertiliser) (-0.47)  (0.67) {0.19)
2&g 0.482 1.270 0.878

(Other Costs) (1.64)  (1.58) {1.65)

R? 0.596
F-zatio 19.010

Note: Pigures in brackets are asymp tie f-rutios.




Table 3: Covarisnce Matrices of Output-Variance Functions

T 0010 -0.043 0168
fam] 0043 0058 -0.046
0,168 -.046  0.148

i 1660 1336 -0.697
Bumi] 1336 3373 -0.402
0,697 -0.402 3321

5293 1227 -0.088
Bomi] 0227 2803 0122
0,088 0122 2009
6093 0.833 -0.576
B} 0833 5035 -0.118
3576 -6.0i5  3.981

Table 4: Covariance Matrices of Mean QOutput Functions

15928522 5809,082 840678.539
{6 uent) 5309.082 4593.849 271162.822
“40678.539 271162.822 186857666.081

1570.784 619.503  -131845.170
{Fami] 619.503 246,118  -277397.578
131845170 -277307.578  76840813.036

14630,159 3448.611 1982192.815
[Gumi) 3448.611 56.530 9856374.956
1982192.815 985374.936 263829701.787
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