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Abstract

Historically, sheep overstocking has occurred in the pastoral
aress of Australia. This has caused a decline in range
productivity. This trend is likely to continue unless long term
management strategies which f£acilitate an improvement in rauge
condition are devised. This study used stochastic dynamic
programming to derive near-cptimal decision rule for the stocking
rate. Stochastic dynamic programming requires the derivation of
transition probabilities between different states of range
condition unler ~wvarious management strategies. A pastoral
sheep-grazing simulation model was constructed to derive these
transition probabilities. This model is driven mainly by rainfall
and stocking rate, which simulates vegetation dynamics and sheep
production under different management strategies. The asymptotic
optimal decision zule shows that stocking rate is correlated
positively with rainfall season and with forage availability. The
marginal value of perennial forage is relatively more important in
a dry season than in other seasons. The marginal value of
ephemeral forage can be either positive or negative depending on
season and available perennial and ephemeral forage.



Introduceion
Bistoric..ly, a combination of a lack of knowledge and a

myopic approach to range management has tended to encourage
woolgrowers to overstock dryland grazing properties. As a result,
dominant shrub species which are an important feed source for
sheep were reduced from dense to scattered communities within the
rangelands and the valusble perennial species were replaced by
less desirable pasture plants. In many iInstances, where stock
tended to be concentrated around specific areas, ground cover was
coppletely destroyed and soil erosion occurred. This resulted in a
significant degradation of rangeland condition in many pastoral
woplgrowing areas of Australia, which in turn has reduced the
future financial visbility of woolgrowers. This decline in
rangeland productivity and woolgrower’'s long-xrun financial
viability is 1likely to continue in the future unless optimal
management strategles are discovered which allow woclgrowers to
rehabilitate their financial capability, as well as the condition
of their range.

The purpose of this study is to identify optimum rangeland
management strategies to guide pastoral wool growers in the choice
of stocking rate patterns over time, and of vhether or not to
apply diffsrent types of treatments to rehabilitate rangeland
carrying capacity. These treatments include reseeding and water
ponding, in conjunction with grazing management.

Since the rangeland environment {s both dynamic and stochastic
in nature and involves very significant intertemporal effects, a
stochastic optimal control approach was adopted in this study to
derive near-optimal rangeland management policies. This approach
requires the derivation of the transition probabilities between
different states of range condition under various management
strategies. A simulation model of rangeland regeneration was
constructed to derive these probabilities for various stocking
rates and treatments. This model simulates vegetation dynamics,
animal production, and the interaction among vegetation, grazing
and cultural treatments. The derivation of optimal stocking rates
was approximately formulated as a finite state Markov decision
process and solved by combining linear programming and Bellman’s
successive approximation method. Optimal decisions on whether to
apply a treatment or not for a given range condition will not be
analysed until the results derived for optimal stocking rates have
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been cross checked using a validated simulation model.

A Conceptusl Framework of Rangeland Msnagement

The characteristics of the decision-making process under
uncertainty in the rangeland enviromment are prasented by Figure
1. As indicated by the figure, the range manager must periodically
make management decisions after monitoring the state of the
vangeland ecosystem to achieve the management objectives. The
evolution of the rangeland ecosystew is affected by management
declisions, and by climatic sequences (mainly rainfall events). As
2 consequence, the initial state of the rangeland ecosystem will
be transformed into the next period states. In addition to the
dynanic transition of the range condition, thers iz an economic
return which comes from animal products. Again, at the beglnning
of each period, the manasger observes the state of the rangeland
ecosystem and thereby makes his decisions about stocking rate,
etc. which together with the climate will affect the evolutlon of
the system. The evolution of the ecosystem will generate economic
returns as well as the following period state. This management
decision e¢ycle is repeated.

A Markovisn Dacision Model

The above management framework can be closely represented by
& Markovian decision model. The formulation of & Markovian
decision model involves the following components: an objective
function; sets of state, exogenous and decision (contrel)
variables; and a set of state transition equations. In the
application of this decision model to rangeland management, the
objective function is assumed to represent the motives of the
decision-maker. In this study, it is assumed that the range
manager is risk neutral. Therefore, the objective function can be
specified as maximization of expected present value of the stream
of net profits received. The state variables must be observable,
and capture as closely as possible those aspects of past history
vhich influence the changes of the rangeland condition and
profits, and upon which the manager bases his decision. In this
study we assume that range condition is jointly described by
forage biomasses and desirable perenmnial plant density. The most
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important exogenous variable in the pagtoral area is rainfall
which 1s both stochastic and beyond the control of the range
monager. The control variables include those variables such as
stocking rate and range regeneration investments (e.g, reseeding,
bush clearing, fencing, cultivation, ponding etc.) which can be
manipulated by the manager to influence range condition and future
profits. The set of state transition equations make up the modsl
of range dymamics which describes the evolution of rangeland
condition over time. In other words, the nodel relates future
range condition to current range condition for a given sequences
of decisions and climatic patterns,

The formulation of the declsion problem is to discover the
optimal time paths of decision (control) varisbles to maximize the
expectation of the objective function subject to the transition
probabilities which are derived from state transition equations
and a set of initial values for the states and excgenous
variables. Mathematically, the formulation of the decision model
can be specified as follows:

t
Brr s ; L
Maxinize E OZ o n(‘xt,u&,wt) (A.1)
Subject to *:+1"'ﬁ"t’"t"'t) {(A.2)
XX (A.3"

where E, 1is the expectation held at initial period;

a is the discount factor;

n(xt,ut,vt) is the periodic net return function;

x, u and v are the vector of state variables, the vector of
control variables and the vector of random (or exogenous)
variables, respectively;

f(xu’“c'wt) is a set of transition equations';

x is a vector of the initial values for the state variables.

The constraint of transition equations (A.2) can be replaced
by the transition probability function Pij (uk). A transition
probability is defined as the probability that the next state will
be j given that the current state is { and control u-ty, is
applied. It can be specified as Pij (“k)'P(xt+1"j Ixt-i. ut-uk).
Therefore, it can be calculated from the transition equations



 because the state in pericd t+l is a random variable, its
conditional distribution depends on the current .state and control.

A Simulation Model of Rangclmd Regeneration in the Arid Zone of
Vestern Australis

1In order to derive the transition probilities a simulation model

of rangeland regeneration in the Western Australian arid zone was
constructed to simulate responses of range forage species and
sheep iniake of feeds under different stocking rates, treatments
anu a variety of seasonal patterns. The essence of the model which
simulates forage evolution and sheep production at paddock
level, is illustrated in Figure 2. A four monthly interval, wviz.
three seasons: Japuary-April, May-August and September-December,
was used for the simulation. This division of the year corresponds
to the periods of wunrelisble summer rainfall, reliable winter
rsnifsll and reliable summer drought respectively.

The driving variables for the simulation model are rainfall,
potential evaporation and temperature. Thess variables affect the
soil store water. A soil water balance submodel (WATBAL) developed
by Fitzpatrick et at., (1967) was used to derive the soil moisture
index in terms of growth periods (number of wet pentads). A wet
pentad is defined as a wet upper soil store during a2 five day
period,

The soil wmoisture index together with the mpanagement
decisions drive the vegetation dynamics. Vegetation is assumed to
consist of three related components: ephemeral forage biomass,
perennial forage biomass and desirable perennial plant density.
The dynamics of each component are represented by a set of
difference equation which add recruitment to the initial stock and
subtract disappearance due to sheep consumption and other reasons,
Recruitment basically is determined by the growth rate and initial
stock level. Growth rate is usually affected by the stock level
and the environmental factors such as rainfall and temperature.
The total veluntary or actual feed intake of sheep within the
paddock is mainly determined by liveweight, physiological state of
the sheep, stocking rate, forage availability and quality. The
total available perennial forage biomass together with the total
sheep intake of perennial forage determines the degree of grazing
pressure on the paddock. This gra:ing pressure together with
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climatic factors and the spplication of treatments will influence

the transition of the population of the desirable perennial
species, which in turn will influence the forage biomass in the

‘subsequent seasons. Shrep forage intake and stocking rate affect

sheep mortality, le=bing and wool production which determine the
income to the woulgrower.
This ningle paddock simulation model was comstructed for

making paddock-level decisions such as stocking rate and whether

to apply a trestment. However, in the future it will be
incorporated into a station-level model to derive optimal
strategies for the statfon-level decisfons such as flock
distribution, flock composition, timing of shearing, sheep
purchases and sales, etc..

The main components of the simulation model are presented by
the following submodels:

Soil witer balance submodel

The soil water balance submodel describes changes over time
in the percentage of soil water holding capacity in the soil aﬁd
uses a set of soil moisture balance equations to estimate soil
moisture in two stores of soil over a five-day (pentad) period.
Store A corresponds to the soil moisture avallable to plants for
evapotranspiration. Store B is the soil moisture held by the soil
at less than the wilting point, Soil moisture is wodelled
separately in these two zones. A growth peried (or wet pentad)
begins whenever store A is recharged after being zero. If store B
{5 also zero, then ranifall less runoff has to exceed 0.5 times
the potential evaporation for resuming growth. In the study, the
WATBAL model was used to estimate the frequency of wet pentads for
a station in the arid zone of W.A.. Climatic records for over 6%
years were used. The vegetation type of the station was typical of
a chenopod dominant plant community.

Vegetation dynamic submodel

The vegetation dynamic submodel is composed of three
components: desirable perennial plants density Sp. perennial
forage biomass Si and ephemeral forage biomass 52. Each component
is described by a difference equation (V.1), vhich has a
four-month time step to reflect the rainfall season, Each
difference equation indicates that the sum of initial stock level



S‘:: plus recruitment Ré minus the disappearance Dé from the steck
makes up the season-ending stock 5 ,. Paddock-level recruitment
is assumed to be a weighted average of the recruitment in the
areas under different treatments {(a fraction § is used to
calculate the weight). Similarily, stock disappearance ls a
weighted average of the stock which disappeares in the areas under
different treatments.

i ) S Y |

st+f's;+3t‘ N i=p,h,f v.n)
Rh(1-p,-8,)RY +p.RY g pt 0sp,s1, 0sf,s1 (v.2)
Tt 17277,077176,17727,2 1= 2 :

'y i i 1
Dt'(l'ﬂl'ﬁz)Dt‘o+ﬁ1Dt,1+p2Dt;2 {v.3)
vhere

si is initial size of stock i at season t;
Ri is recruitment to stock 1 during season t;
Dt is disappearance from stock 1 during season t; where i=p for

degirable perennial plants; i~f for perennial forage
biomass; { «h for ephemeral forage biomass;

51 is the proportion of paddock under treatment 1;

ﬁz is the proportion of paddock under treatment 2.

Recruitment of desirable perennial plants Rg is defined ax
the number of newly established young desirable perennial plants
aged two years. Equation (R.1) assumes that the actual recruitment
is proportional to the potential recruitment Rg*. The potential
recruitment is defined as the gap between the environmental
saturation level sgax and the current density Sz. This gap ia
adjusted by the proportional rate i.e. adjustment coefficient v to
give the actual recruitment. Since the establishment of a
desirable perennial plant comes from the successful germination of
the seeds and the survival of the following seedlings, the
adjustment coefficient is calculated by multiplication of three
indices: replacement capacity index RCIt-G' germination index

GMI

t-6 and survival index SI.. Each index ranges between 0 and 1,

*
&P j-vkg §=0,1,2; 0sy <1 (R.1)
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where
Ly ,j 1% the recrultment of perennial plant under treatment i,
where j=0 for no treatment; j~1 for treatment 1, 1i.e,
cultivation; j=2 for treatment 2, i.e, ponding and
reseeding;
¥ is adustwent coefficient which represents the proportion of
potential recruitment that can be realized in season t
under treatment j;
Rz* is the potential recruitment of desirable perennial plants
in season t;
'Sga x s the desirable perennial plant density at climax condition;
RCI, ¢ is the replacement capacity index which is used as a proxy
for seed stocks;
GMI':-S is the germination index during season t-6;
SI, iz the seedling survival index for recruitment,

Replacement cipacity index is used as a proxy for the seed
stock of desirable perennial plants in the soil and represents the
capacity of the conwvunity to replenish itself. It is a function of
the relative density of desirable perennial plants Dl’tqﬁ and type
of treatments T _ .. The time is lagged six seasons because it
takes about two years for the seedlings to reach maturity. All the
funtional forms in the study are shown in the Appendix A.l. The
functional form assumed for replacement capacity index is a
truncated hyperbolic in type (1.1). For the treatment involving
reseeding, the function is specified by (1.3) and (1.4) which
assume that the action of reseeding can immediately bring the
replacement capacity to its maximum level after which this
capacity decline due to loss of seed reserves through germination
and other factors.

RGI,  =f, (DP, (,T, () (R.1.2)

where
n?t-6 is the r«lative density of desirable peremnnial plants;

T is the tvpe: of treatment during season t-6.

t-6

Germination iidex is a function of wet pentads NWPt_ﬁ,




treatments and temperature b.. A negative exponetial functien
(2,1) was assumed, The effects of temperature on germination is
accounted by a seasonal factor bt: in (2.1),

where

rmz«t 1is elimatic driving variable in season t, # growth periods,
i.e. wet pentads;

b i3 a seasonal factor which is used to account for temperature
effects on germination;

Survival iIndex is a function of wet pentads, treatments,
grazing pressure G and density of ephemeral forage DH . Time is
lagged through zero to five periods because a successful survival
requires two years to complete. The functional forn assumed is a
multiplication of three indices: soil moisture index SMI, grazing
pressure index GIt and ephemeral competition index GIt. Soil
moisture index is assumed to be a truncated lineirly increasing
fupstion of wet pentads NWPt (3.2)-(3.4). Different. treatments and
different seedling ages have different intercepts and slopes for
this function, Grazing pressure index for the seedling survival is
assumed to be a hyperbolic function of grazing pressure in the
paddock (3.5). Ephemeral competition index is assumed to be a
truncated linear decreasing function of the density of ephemeral
forage biomass HD_ (3.6). Again, there are different slopes and
intercepts for different secedling ages.

ST =E,(NWP, (\T, .Gy 4 DH, ) i=0,1,...5 (R.1.4)

where
Gt-l is grazing pressure for the survival of perennial seedlings
at stage t-i;

Dﬂt_i is the existing ephemeral forage Qensity during season t-i.
Recruitment of perennial forage biomass Ri is calculated by

discounting the potential growth rate PGRi by two indices: soill

mpisture index SHIt and growth capacity index GCI . Potential

growth rate is defined by (R.2.1) as a gap between the

environmental saturation level Ki and the current 1level of

10




parennial forage biomass, Soil moiscure index is a function of wet
pentads and treatments, ‘I'he functional form assumed is truncated
linear in type (4.1). Growth capacity index iz a function of
perennial forage density DF.. The functional form assumed isg
hyperbolic in type (5.1). The environmental carrying capacity is a
function of relative density of desirable perenmial plants. A
negative exponential functional form (6.1) was assumed,

£ £or £
Rt,j-PGRtSMItGCIt 3=0,1,2 (R.2)
where
PGRg is potential growth rate of perennial forage biomass;
Slﬂi is soil moisture index for the perennial forage growth;
GGIt is growth capacity index for the perennial forage.
£ f
PGR =K -S {R.2.1)
vwhere
Kﬁ is the carrying capacity of perennial forage during season t.
SMIT=£, (WP, T, ) (R.2.2)
t 4 t't T
GCI ~£5(DF ) (R.2.3)
£ (op) (R.2.4)
6(PP, .2,
where

DFt; is relative density of perennial forage biomass at the

beginning of season t.

Recruitment of ephemeral forage biomass Rh is calculated by
discounting the potential growth rate PGR by the soil moisture
index SMII‘:. Potential growth rate is defined by (R.3.1) vhere K2
is the environmental carrying capacity of ephemeral forage
biomass. Soil moisture Index is a function of wet pentads, initial
ephemeral forage biomass, environmental ephemeral -carrying
capacity and treatments. The functional form assumed is truncated
linear in type (7.1)-(7.4). Environmental ephemeral carrying
capacity is a function of relative dens.:y of desirable perenmnial

plants. The functional form assumed is wn:gative exponential in

11



type (B.1).

b _ooho, b P _

Rt:, i PGRtSMIt j=0,1,2 {r.3)

where

PGR‘Q is potennial growth rate of ephemeral forage biomass;

SHI: g soil moisture index for the ephemeral forage growth;
h_h : 4

PGR =K -5, -sh {R.3.1)

where

lr:[l’:l is the carrying capacity of ephemeral forage biomass during

season t;
SMI - 7(NWPt,St,R T ) (R.3.2)
R -f (DP ) (R.3.3)

Disappearance of desirable perennial plants Uﬁ is computed by
maltiplying the initial 1level of plant population by its
disappearance rate dt‘ The disappearance rate is disapgregated
into two parts: natural mortality rate L) and the envirommental
factors induced mortality rate m,. The euvirommental factors
considered are grazing pressure, wet pentads, desirable perennial
plant density and treatments. m, 1is calculated by discounting
potential mortality rate by a weighted average index which Iinclude
the above environmental factors (see (9.1)-(9.7)).

P P -

D t.d dt:st j=0,1,2 (D.1)

where

d‘t is seasonal disappearance rate of desirable perennial

plants;

dc-mo-ml (D.1.1)
fQ(Gt-i’WPt-i’DPt:-i'Tt:-i) i=0,1,...5 (0.1.2)

where

™ is natural mortality rate of desirable perennial plants;

12
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" environmental factors induced wortality rate of

degirabel perennial plants.

Disappearance of perennial forage biomass Dﬁ consists of two
pools:intake by sheep and other loswes due to non-consumptive
reasons DNCF . Sheep intake is calculated by multiplying stocking
rate U by the perennial forage intake of sheep FI? . The
non-consumptive losses mainly are drying of the plant material.
Therefore, it is calculated by multiplying the existing forage
biomass =y the drying rate 81, Since the drying losses and sheep
intake occur at the same time a simultanecus equation system was
used to explain these two pools. The drying rate of perennial
forage biomass is calculated by dizcunting the maximal drying rate
by two indices, density index DIF_ and soil moisture index sHIFt,
respectively (10.1). Density index is assumed truncated linear
(10.2)and soil moisture index is hyperbolic in type (10.4).

£

Dt. juutnrgwcpt j=0,1,2 {D.2)

where

Ut is stocking rate of sheep per hectare in season ¢,
sheap/ha;

FIPt is the perennial forage intake of sheep, kg d.m,/sheep;
DNCF, 1is the losses of perennial forage due to non-consumptive

reasons, kg dm/ha;

S P 4

DNGFtvsl(sc—eEc-UcFIPt) (D.2.1)

where

51 is the drying rate of peremnial forage during season t.
§,=£, (sEerEy kEwee T ) (D.2.2)
1710 t 't t’ A e

Disappearance of ephemeral forage biomass Dl,: is divided into
three pools: intake by sheep, drying losses SLc and trampling
losses TL{:' Sheep intake is computed by multiplying stocking rate
by the ephemeral forage intake of sheep FIEt. Drying losses are
calculated by (D.3.1) where 82 is the ephemeral forage drying
rate. The drying rate is a function of ephemeral forage demsity

DR(:' wet pentads and treatments. The calculation and functional

13



form for the ephemeral drying rate are the same as those fer
perennials (11.1)-¢11.3). Trampling losses are calculated by
eguation @.3.»2) vhere 83 is the trampling loss rate of ephemeral
forage biomass. Trampling loss rate is a function of stocking

rate. The functional form assumed Is negative exponential in type
¢12,1). Trampling losses and drying losses are simultancously
determined with sheep intake. -

h .
Dt, j-vtm :+$Lt+TLt j=0,1,2 (D.3)
where

FIE, 1is the ephemeral forage intake of sheep, kg d.m./sheep;

SL, is the non-consumptive lossez of ephameral forege due to
is senescence;

TL, is the non-consumptive losses of ephemeral forage due to
trampling;

SL, =5, (sT4R-U_FIE -TL ) 0.3.2)

"t 2Vt et t t o

where

5‘2 is the drying rate of ephemeral forage bioiass during
seagon t under treatment j;

TL =5, (ST4+R"-U_FIE_-SL ) (p.3.3)
t 3V et t t e
6.3 is trampling loss rate of ephemeral foragz biomass during

season t; ‘
82-f11(DHt.NWPt.Tt) {D.3.4)
83-512{Ut) (D.3.5)

Sheep intaks submodel

Sheep intake is composed of two parts: ephemeral forage
intake and perennial forage intake. Ephemeral forage intake is
calculated by discounting potential sheep intake by ephemeral
forage availability index AIEC and quality index QIEC. AIEt is a
function of relative availability of ephemeral forage

14



(sP+RM.DNGE, ) /(a4 ). QIE, is a function of the digestibility of
epheneral forage fDG:a Perennial forage intake is calculated in a
samg way as e;ihenatil except that it includes an additional index,
sheep diet preference index '(l-hiEtQIEt). In this prefersnce
index, it 1is assumed that sheep select ephemeral forage
preferentially. The consumption of perennial forage is limited by
the extent to which the potentisl sheep intake iz =zatisfied by the
ephemersl forsge consumption. Digestibilities of ephemeral and
perennial forage are a function of their decying 1ate,
tespectively. The functional form assumed is hyperbolic in type
(17.1) & (18.1).

FTEe’aAIEtQIEc (1.1)
where
a is the conversion factor of potential sheap intake,

a=180kg dm/sheep;
ALE is epliemeral forage availability index for sheep intake;

t
QIE is ephemeral forvage quality index for sheep intake.

t

FIPt-a(l-AIEtQIEt)AIE"tQI?t (1.2)

where
AIP is perennial forage availability index for sheep intake;

t
Qir

¢ s perennial forage quality index for sheep intake.

h . h
AIEt-fIS(St’Rt‘DNCEt'Ut) (1.3)

QIE, =f (nct) (1.4)

t 14

vhere
h

DGt is digestibility of ephemeral forage.

£ f
AIPC-£15(st’Rt’DNCFt'Ut) (1.5)

Qip -fls(nci) (1.6)

where

DGi is digestibility of perennial forage.

15
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Grszing prossurs

the gamnuial intm» of .ahe.e,p to . the gemmial fqug«: '
availability. This is an index of the degree to which the pasture
is grazed.

L1} *!“IE ,
G
£ sk f-m«cy .1

Sheep performance submodel

Sheep population is increased by birth and decreased by
mortality., Since this is a paddock model there is only one class
of animal, e.g. breeding ewes or wsthars, contributed for any
simulation, In the environment of zangeland in W.A., lambing
oceurs at the end of season 2 and is a function of the plane of
nutrition NI in current pericd snd previous three periods. The
lagged effects of nutrition are included to reflect the influence
on lambing of factors such as ewe body condition at mating, early
pregnancy nutrition and late pregmancy nutrition. The plane of
nutrition is a function of sheep intake. The functional form
assumed is linear in type (20.1). Mortslity rate consists of twe
parts; natural mortality rate Ho and the plane of nutrition
induced mortality rate M. The functional form assumed for M1 is
exponential in type (21.1).

Wool clip per sheep is a function of digestible dry matter
intake DDMI . The functional form assumed is linear in type
(22.1). Digestible dry matter intake is calculated by equation
(s.7).

"Lsﬂ_l -5 *U *(1+L Ht:) {s.1)

where

A‘: is the area25Xsuitable for grazing in the paddock;

16



FLS,,, 13 sheep flock size at the end of season t, # sheep/paddock;
L, is lambing rate as a percentags of whole ewe population;

‘Ht ‘in seasonal ﬁi#ep wortality rats,
Lo~£1g(NI, _4) 1»0‘.1 sered \8.2)
where

NI, 48 che nutritional index for sheep during season t.

NIy Eao(FIE FIR,) (5.3
Homit sty “ (8.6)
where

H’o is natural seasonsl death :ri!:& of sheep;
M, is the sheep mortality rate induced by the plane of nutrition.

Hy=£,, (NL) (5.5)
VGS =, (DDAL,) (5.6)
DDMI ~FIE DG 4+FIE DG (5.7

t tt Tttt ¢
where

wcst is the average wool production per sheep per season,kg/sheep;
DDHIt is the digestible dry mstter intake per sheep.

Seasonal net profit function

The net profit 1s calculated by selling the sheep and wool
minus the marketing costs, shearing costs, other variable
costs, initial expenditure for purchasing the sheep and treatment

costs.,

Rt ~((PSr-HSt+(PRt*HHt)HCSt*Sct-VGt)(1+Lt-ﬁc)/(1+r)‘PBC)At*Ut

2
-AY ¢ (P.1)
t t
3=0

wvhere
PSt is sale price of a cheep, dollars/sheep;
Hs is marketing costs for selling a sheep, dollars/sheep;

¢
-

?ut is price of wool, dollars/kg;
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M@, is marketing costs for sellimg wool, dollars/kg wool;
§C, 1is shearing costs per sheep, dollars/sheep;

VGz is other varisble costs per sheep ¢g, mulesing, mustering,
maintenance, fuel and labour etc, dollars/sheep;

4 is seasonal interest rate, r=2.67%;

PB, is purchase price of sheep, dollars/sheep;

c‘j' is total costs of applying a treatment i, déna::slhu
Hethod

Define V(i) as the maximum expected value of the discounted
stream of returns In (A.1) for a given initial state x,=i. The
formulation of the range management problem can be solved by
following Howard's dynamic programming {DP) method:

N
V(i)emax (x(i,u)+a) Py (IV(I)) M.1)
u j=1°

vhere # is expected net profita; Py is transition probability
under a given decision u, and £, 3} are tha beginning state and
ending state, respectively. The time subscripts wexre dropped
hecause the solution 1is stationary, There are three methods for
solving the above functional equation: successive approximation,
policy iterative process and linear programming (LP) (see Derman
1970, Bertsekas 1976, Taha 1982)., Sutcessive approximation is
essentially the DP algorithm, which starts by assigning an
arbitrary value to V(}) end solving (M.1)) for V{i), V(j)} is then
replaced by V(i) and the process is repeated until the value of
V(i) converges.

The two other methods, pelicy iteration and LP, determine the
optimal policy in a finite number of iterations. They require
solution of linear systems of equations or of a linear program of
dimension as large as the number of points in the state space.
The policy iterative process starts with an arbitrary policy,

and consists of two basic components, called the value determination

step and the policy impraovement step. An improved policy is
generated at every iteration. The iterative process ends when two
successive policies are identical and the associated policy and
value function are the optimal solutions., LP method transforms
(M.1) into a LP format which is a wminimization problem. The
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‘optinal sdlution can be determined by the degenerate constraints
(i.e. slack equalg zero).

The optimal solutions for stocking rate and treatments in
this study can be deteimined by a two step procedure. First, by
formulating the problem with only one control variable,
e.g.stocking rate, and applying (M.1) to solve it. Second, after
the optimal stocking rate is derived a set of simulation runs can
be processed to obtein the optimal trestment decisions, The
reduced forms of the rangeland ecosystem without applying
treatments are as follows:

s’£+l-£€sg ’ 5’5,32‘1&.5“&“: cﬁBta 5&) (M4.2)
h P f h , ‘
st+1-£(st’st'St’“tfuwgt*nt*st) M.3)
P _eraP £ h \

Stn ﬂst-s_'st«j'sc,j *uwj"wgbi'st-j "c) (1.4)

1=0,1,...,6; 3j=0,1,...,5

in which

B, is the effects of other exogeneous variables (mainly the
parameters);

st‘ia seasonal dependant index, s=1 for season 1, s-2 for season 2
and s=3 for seasovn 3;

other variables have the same notation as before.

Note that there are a total of 31 stzte variables in the
system, Equation (M.2) & (M.3) require that current perennial
plant density (Sz), perennial forage biomass (Si), ephemeral
forage biomass (SZ) be entered as state variables. Equation (M.4)
requires that first- through sixth-order lagged perennial plant
densities, first- through fifth-order lagged perennial forage
biomass, f£irst- through fifth-order lagged ephemeral forage
biomass, first- through fifth-order lagged sheep stocking rates
and first- through sixth-order lagged number of wet pentads be
entered as extra state variables. Moreover, since the model has
three decision stages within the year we need to include seasonal
index s as another state variable. Thus, the total number of state
variables is 31. Stocking rate U  is the only control varlable and
ﬂHPt is the random variable. Hence, in order to apply DP to the
above rangeland simulation model, thers is a total of 31 state
variables. Since it is impractical to solve a model containing 31
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state variables, soms gort of approximation has to be developed.

The procedure of approximation adopted in the study is based
on Burt, et al (1980). The idea of approximation is to use an
approximation to V(j) in (M.1) and =solve the one-stage
maxinization problem since the functional equation would be a
static optimization problem i{f the function V(j) were known. There
are various ways to arrive at an approximation to V(j). The better
approximation to the original problem would give the solution
closer to the opimum. In this study the proposed approximation
method is to use a simplified model containing only three state
variables to estimate V{(j). Akl other state variables are
suppressed. Three state variables are, peremnnial forage bicmass,
epheneral forage bilomass and seasonal index. This approximation
can greatly simplify the calculations, although ideally desirable
perennial plant density should alsc be included. The above
approximation is based on the proposition that the three state
variables carry the most information iIn the range management
decision process and the amount of independent variation betwesn
perennial forage biomass and desirable perennial plant density are
relatively small, In the simulation run of the reduced model, the
suppressed state variables are kept at their long-run expected
values or their average values. The approximation is to replace
V(j) in (M.1) by an estimate of the solutimn V* of the following
three-state variable DP problem, ‘

N
vh (P, s, symmax (n(sP, st s, v)eal Pij(U)V*(Sh+Rh-Bh,Sf+Rf-Df,s)}
u =1

(M.5)

where seasonal index s will follow the following transition

equations;
st:+1-st+1 for season 1 and season 2 (M.6)
-1 for season 3

Equation (M.5) is solved using the LP method, which is a
minimization problem with the number of activity equal
thedimension in the state space and the number of constraints
equal the dimensions of the state space multiplying the control
space. The optimal solution cccurs where the slack variable equals

zero (i.e. the constraint is degenerate),
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The wother state variables in- the simulation model are
- gradually phased into the expected present value function over six
additional stages because the longest time-lag is six periods.
Each stage the new lagged state variables will be introduced into
the recursive equation (M.1) and additfonal iteration contained an
increment to the number of state variables will be done to provide
an improved approximation te V(j) in (M.1). The final iteration
implicitly containad 31 state variables and generated d golution
for a glven initial state of the model.

The decision about whether to apply 4 treatment under a given
range condition can be determined after the derivation of optimal
stocking rates .und their cortesponding net present values. If the
effects of a treatment on improving the range condition can last
for 20 years, a simulation run of the regeneration model for 20
years can be done to calciilate the potential increment to the
profits resulted from improved range condition. Since after 20
years the transition of range condition will follow the same way
as no treatment the treatment costs can be used to compare with
the the expectatiorn of net present value of potential augumented
profits for a twenty-year period due to the treatments.

Data and implementation

The implementation of the simulation model requires
biological and economic data te estimate the parameters and a
compute package to solve the simultaneous nonlinear equations. Due
to lack of data, some of the parameter values in the functions are
informed guesses based on results reported in the literature or in
unpublished material from communication with research workers, so
the model presented herein is preliminary. Validation of the model
using rangeland monitorinp data is still in progress.

The state space for cphemeral forage and perennial forage was
partitioned in 200 kg dry matter (kg dm)/ha intervals from 0-1200
kg dm/ha and 0-1400 kg dm/ha, respectively. The control space for
stocking rates was partitioned into three rates, 0.1, 0.3 and 0.5
shcap/ha, respectively. These partitiors are made to include
possible ranges for the variables in tte rangeland. It is also
necessary to define the Initial states and climatic patterns of
the rangeland ecosystem The initial vaiues for the state
variables used in the stwiy are given by Table 1, which correspond
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TABLE 1. INITIAL STATE OF THE RANGELANC ECOSYSTEM, 1982

SEASON sp sF sh u NWP
planistha kg dm/ha kg dm/ha sheep/ha # pentads
1980 1 5300 850 40 0.14 11
2 5500 880 30 0.14 22
3 5700 950 390 0.14 11
- st 1 5850 830 30 0.12 8
2 5150 680 45 0.12 16
3 4940 630 15 0.12 2




to the 1980-1981 data for the station, The distribution of we:
pentads derived from climatic records sre presented by Table 2.

A list of the variables, functional forms ;and~~parameter
‘values used in ths simulation are presented in Appendices. The
solutions of the nonlinesr equations in the model were solved by
the software package, TKlSolver on an NEC APCIV personal computer,
The optimal solutions were calculated by using LP method which
is to solve a minimization problem with 126 activities and 378
contraints,

Empirical results

The optimal decision rules for stocking rates derived from
the simplified model containing only three state variables are
ugeful in showing the general structure of the decision rule for
grazing management. Since the stochastic process of rangeland
dynamics is formulated as a periodically stationary system,i.e.
three seasonal rainfall patterns per year, the optimal decision
rules are also periodic over time and can be shown in the
following three two-dimensional tables (Tables 3 to 5). These
tables illustrate the optimal stocking 1xules and their
corresponding net present values under three seasons.

As indicated by Table 3, the optimal stocking rates for
season one are increasing with both ephemeral and perennial forage
birmasses. For the lowest forage availability i.e. less than 200
kg dry matter {dm)/ha for both ephemeral and perennial forage at
the beginning of season 1, the optimal stocking rate is 0.1
sheep/ha. The medium stocking rate 0.3 sheep/ha is optimal for
most of the forage availability ranging from 0 to 400 kg dm/ha for
perennials combined with 0-1200 kg dm/ha for ephemerals, although
there are some exceptions to this pattern. The higher stocking
rate of 0.5 sheep/ha appears optimal for higher levels of
perennial availability (approximately 400-1400 kg dm/ha).
Generally, the optimal stocking rate seems to vary with increasing
perennial vegetation more so than with increasing available
ephemeral forage, which is ronsistent with the long term nature of
the range regeneration problem. The net present value also
increases with a rise in the availability of perennials. However,
this trend does not apply to the ephemerals. The lowest net
present value of $80.92/ha occurs when both ephemeral and
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TABLE 2, PROBABILITY DISTRIBUTION OF WET PENTADS DERIVED +ROM
WATBAL MODEL FOR THE STATION

e T c = " T —— c T~ o

NWP FREQUENCY CUMULATIVE DISTRIBUTION
#PENTADS  SEASON1  SEASON2  SEASON3  CDFi CDF2 _ CDF3
0 2 0 9 0.03 0 0,13
1 3 0 10 0.07 0 0.28
2 5 0 11 0.14 0 0.43
3 4 0 s 0.2 0 0.6
a 9 0 9 0.33 0 0.89
5 3 1 1 038 001 0.7
6 11 .0 o 054 001 071
7 4 2 4 059 0.04 0.76
8 4 0 5 0.65 0.04 0.84
9 5 2 6 072 0.07 0.93
10 3 0 1 077 0.07 0.94
11 4 0 2 0.83 0.07 0.97
12 1 2 1 084 0.1 0.9
13 2 3 0 0.7 045 0.99
14 2 3 0 0.8 019 0.99
15 2 2 1 093 o0.22 1
18 1 3 0 0.94 0.26 1
17 3 4 0 0.89 0.32 1
18 0 6 0 0.98  0.41 1
19 0 7 0  0.99 0.5 1
20 1 6 0 1 0.6 1
21 0 5 0 1 0.68 1
22 0 8 0 1 0.79 1
23 0 4 0 1 0.85 1
24 0 11 0 1 1 1

o
-
>
[
lm
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TABLE 3 GP?IHAL STOCKING R’M’ES & THE CORRESPONDING NT
ALUE FOR SEASON 1 HE CORRESPONDING NEV PRESE

mm PN
EPHEHERAL PERENNIAL FﬁRﬁ«GE
FORAGE *00 KG DH/HA
100 KG DM/HA_ . i ,
0-2""TTTERETTTTTRSE T TTéRE T T e-10 10-12 12-14
==—sheep/ha~=—-
Rttt 74 » | EEE
0“2 vl +3 3 vS 5 ; ;]
] 80.92 8i.16 81.28 381.36 81 -42 81 oﬁé 81.48
2-4 3, »3 +5 ) +S5
80,93 81,20 81.28 81037 81-42 83»67 81.:48
4-6 " .3 5 .5 /5
80,96 81,21 81.29 8h36 B!JS" 81:4? 81.48
6-8 X o3 5 ) 5
80.97 81.20 81,30 a1 ‘0,39 81 41 8 u‘-ﬁ B81.47
8-10 . .3 5 .5 .5 5
 80+97  81+19 . B81.30 81.38 81.40 3lw44 81.46
fo-12 - ¢ «3 +D ] v5 3 ) 5
80:96 81+29 B1.36 81.39 81+45

8!’-43

e

TABLE 4 OPTIHAL STOCKING RATES & THE CORRESPONDING NET PRESENT
VALUE FOR SEASON 2

EPHEHERAL

PERENNIAL FORAGE

FORAGE * 00 KG DM/HA
00 KG OH/HA,
- 2-4 4-6 6-8 8~10 10~-12 12-14
0~2 ) +9 3 +5 5 v3 3
82, 92 83.10 83.16 83.20 83.21 83.21 83.24
2-4 3 3 +3 5 +5 +5
82‘92 83.07 83.i6 83.17 83.21 83.21 83.24
4-6 5 +5 %] D 5 5 5
82.93 83.10 83.18 83.18 83.2] 83.21 83.24
6"’8 ls ~5 05 ‘5 15 05 '5
82.93 83.09 83.1% 83.19 83.20 83.20 83.23
8""0 05 [ 5 ‘5 05 “5 '5
82.92 83.09 83. 15 83.18 83.20 83.20 83.23
10-12 5 » S5 . 3 B
82.92 83.09 63-14 83.18 83.20 83.20 83.22

TABLE 5 OPTINAL STOCKING RATES & THE CORRESPONDING NET PRESENT
VALUE FOR SEASON 3

EPHENERAL PERENNIAL FORAGE
FORAGE * 00 KG DM/HA
*00 KG DH/HA__
-2 2-4 4-6 6-8 8-10  10-12 12-14
0-2 o1 of 3 +3 3 +3 'S
78.88 P9.08 79.25 79.34 79.42 79.51 79.59
2-4 N | . 3 »3 5 +5 %)
7889 79.12  79.28 79.35 79.45 79.53 79.60
4"’6 kl . ca a3 . ps ts
78.94 79.i4 79.28 79.35 79.45 79.52 79.60
6-8 ol «3 «3 +5 3 3 V5
78.93  79.14  79.28 79.36 7945 79.:53 7959
6‘[0 *! 03 *3 05 ns 15 ;5
78.94 79.i3 79.27 79.35 79.44 79.50 79.58
10-12 . . 3 . ‘5 . .
78.94 79.11 79.26 79.33 79.42 79.50 79457




persnnial forage are below 200 kg dm/ha and with stocking rate 0,1
sheep/ha. The highest net present value of $81,48/ha occurs when
epheneral availability is within the range of 200-400 kg dm/ha
combined with peremnials st 1200-1400 kg da/ha.

Table &4 indicates that ths optimal stocking rate for season 2
is 0.5 sheep/ha over the whole range of the available vegetstion.
This is in agreement with the expectation that a heavier stocking
rate should be employed during a season when rainfall is wmore
1ikaly to occur. The net present values again increase with a rise
in perennial forage levels and show no systematic pattern of
change with increasing ephemeral forage blomass. The lowest net
present wvalue of §82.92 occurs with the lowest forage
availabities, 0-200 kg dm/ha for both ephemers]l and perennials.
The highest net present value of $83.24/ha occurs when available
ephemeral forage is in the 0-200 kg dm/ha range, and narennial
forage is in the 1200-1400 kg dm/ha range,

Table 5 indicates that optimal stocking rate genersally
increases with increasing available forage. The optimal stocking
rates are 0.1 sheep/ha for low availablility of peremniais (i.e.
roughly below 200 kg dm/ha), 0.3 sheep/ha for medium availabiiity
(i.e. about 200-800 kg dw/ha), and 0.5 sheep/ha for high
perennial availability (i.e. more than 800 kg dm/ha), although
there are some exceptions. The net present values for season 3
rise with peremnial forage availability, but show no systematic
relation to available ephemeral forage biomsss. The minimal value
of §$78.88/ha occurs when the available forage is 0-200 kg dm/ha
for both ephemerals and perennials. The highest net present value
of §79.60/ha occurs at the combination of the ephemeral
availability of 200-400 kg dw/ha and the perennial availability of
1200-1400 kg dm/ha.

Comparing optimal stocking rates among the three seasons, it
can be seen that the stocking rates in season 2 are greater than
those in season 1 and the stocking rates in season 1 are greater
than those in season 3. The net present values among the three
seasons also follow the same sequence as the optimal stocking
rates. These patterns are consistent with the expectation that
higher stocking rate should be optimal for a higher probability of
Increasing forage avallability which could result from a higher
probability of rainfall events.

Marginal value (or shadow price) of the state variables are
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given by the partial derivatives of the optimal value function
V(x) with respect to the state variables, The discrete
approximations of marginal valuez of perennial and ephemeral
forage biomassez are calculated from Table 3 to 5 and given by
Teble 6a to Gc and Teble 7a to 7c, respectively, As illustrated
by Table 6a to 6c marginal value of perennial forage is positive
every where and generally decreases with the increasing
availabilities., Table 7a to 7c indicate thet the marginal value of
ephemeral forage is negative for the high availabities but
positive for the low availabilities although there are some
exceptions in season 2. Comparing the magnitude of marginal values
of ephemeral and perennial forage, we can claim that the perennial
forage ies move important than ephemeral forage in making range
management decisions.Comparing mzypinal values of perennlial forage
among three seasons, we know that the perennial forage is most
importent during dry season (season 3) but less important when the
geason is wet (season 3).

The optimal decision rule of stocking rates derived from
using all information available in the beginning period (season 1
in 1982) is 0.5 sheep/ha and the net present value is §79.74/ha.
The decision rule of optimal stocking rate after 1982 cannot be
determined until the value of the state variables are observed and
the entire approximatior computational process with the observed
data is repeated. However, the asymptotic optimsl deciszion rule
derived from the simplified model can be used as a general guide
for the chnlce of stocking rate.

Discussion

Optimal stocking races increase with increasing available
perennial vegetation more so than with increasing available
ephemeral forage. The assoclated net present values also increase
with increasing available perennial forage but show no systematic
pattern of changes with increasing ephemerals. These patterns are
caused by the strong Markov chain in the perennial forage biomass.
Generally speaking, the higher autocorrelation exists in a state
variable, the better the state variable can capture the essence of
the system and vice versa. Thus, optimal stocking rates and net
present values would be affected mainly by the variation of
perennial availability.
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TABLE éa ﬁARGINAL VALUES OF PERE“NIAL FORAGE BlUﬁASS FQR SEASBN 1

EPHEMERAL PERENMIAL FORAGE B
FORAGE KG OM/HA
KG DM/HA 1oo~3oo soo«soa soo~?oo ?oo~9oe 9oo~1100 1;00 213007
100 603 197 296 15c 96 a3
300 693 183 248 125 105 43
500 620 194 183 167 98 39
700 571 260 204 67 94 58
900 549 ggg 197 64 92 57

1100

859

189

79

81

58

TABLE 6b NARGINAL VALUEQ OF PERENNIAL FORAGE BIOﬁASS FOR SEASON 2

EPHEMERAL  PERENNIAL FORAGE
FORAGE KG DM/HA
KG DHM/HA ~ 100-300 300-500 S500-700 700-900 900-1100 1100-1300
— —-=-~-cents/kg p T m—— o o
100 453 153 8 36 z 75
300 373 219 25 98 2 75
500 429 208 10 58 1 71
700 419 148 91 35 2 48
900 414 141 92 39 1 68
1100 412 141 90 a1 18 S1
TOBLE 6c NARGINAL VALUES OF PERENNIAL FORAGE BIOMASS FOR SEASON 3
[ AR L I A L N S M A R S G S S GRS D
EPHEMERAL PERENNIAL FORAGE
FORAGE KG DM/HA
KG DM/HA ~ 100-300 300-500 500-700 700-900 900-1100 1100-1300
~~~~~~ cents/kg dm———m——
100 505 428 225 182 237 194
300 567 391 190 234 209 182
500 487 357 180 249 176 198
700 507 345 201 234 193 171
900 479 348 197 234 152 212
1100 430 366 182 238 198 173




TABLE 7a

HARGINAL UALUES OF EPHEMERAL FORAG& BIDNASS FDR SEASON 1

EPHEMERAL PERENNIAL FORAGE

FORAGE KB DM/HA

KG Bﬁ/HA =106 """360 566700 900 1100 1300
S 1 ~~~~~~centsfks dm~~~—*--‘ S

100-300 6 96 82 34 9 18 18

300~500 87 14 25  ~40 3 -5 -9

500-700 27 =22 a4 65  -36 -840  ~21

700-900 8 -I5 -0 ~17 -20 -22 -23

900-1100 -37 ~27 =31 -25

-40

-36

=36

TABLE 7b MARGINAL VALUES OF EPHEMERAL FORAGE BIONASS FUR SEQSUN 2
s PR ST e L

EPHEMERAL PERENNIAL FORAGE

FORAGE KG DM/HA

KG DM/HA 100 300 500 700 900 1100 1300

’ ; —w—e—wcents/kg dip——————

100-300 7 ~73 -7 -71 -9 -2 -9
300-500 5 61 49 34 -6 -7 -10
500-700 4 -7 ~67 15 ~9 -8 -11
700-900 ~6 ~11 -~18 ~-17 ~-12 -13 -13
900-1100 -7 -9 -9 ~-11 -9 -8 -9

TABLE 7c. ﬂARGINAL
EPHENERAL

VALUEQ OF EPHEMERAL FORAGE BIQNASS FGR

PERENNIAL FORAGE

FORAGE KG OM/HA
KG DM/HA 100 300 500 700 900 1100 1300
----- cenis/kg dm————==

100-300 33 95 59 24 76 48 36
300-500 126 a6  -12 2 17 -17 -1
500-70¢ -22 -1 -13 8 -7 10 -17
700-900 4 -25 -22 -21 -26 -67 -26
900-1100 5 -85 =27 -41 -37 9 -30

SEASON 3



The marginal values of ephemeral forage are negative for some
higher ranges. This phenomenon may be caused by the fact that the
ephemeral forage dry out very quickly and their digestibilities
also drop very fast when the availability of ephemeral forage is
high. The lower digestibility of ephemeral forage would reduce the
total digestible dry matter intake of sheep to an extent that the
total wool production starts to decline. Thus, the marginal value
of ephemeral forage will be negative at some level of the
ephemeral forage biomass. The marginsl values of perennisl forage
in season 3 are the highest in the year, This Indicates that the
perennial forage is very important for sheep survival during the
dry season because there are only scarce ephemeral forage
available to sheep.

The optimel stocking rates for season 2 are 0.5 sheep/ha cver
the whole rage of forage avallability. This may indicate that tha
upper limit of the range for stocking rate should be increased.
However, optimal stocking ratés for all three seasons in this
study ave derived on the assumption that the costs of stocking
rate adjustment zmong three seasons are zero and negligible. In
reality, if the adjustment costs are expensive the modei should
take them into account and the optimal stocking rate so derived
would be much lower.

There are problems in simplifying the wodel. As nentioned
before it was hopad that the model of only three state variables
might catch the essence of the original model due to the linear
correlation between perennial forage biomass and desirable
perennial plants. The results presented above suggest another way
to simplify the model, which only containing the following three
state variables: total forage avallability s§+sg. desirable
perennial plant density Si and desirable perennial seedling

P

density sg Since the ephemeral forage biomass 1is vrelative

unimportant it can be added into perennial forage to form a tetal
forage availability S§+St. State variable, season, in the original
model is dropped because we will aggregate the seasonal model into
an annual model to reduce the time lags. However, in the
aggregated annual model we have to pre-specify the stocking rates
among three seasons. Although this is a major shortcoming in
aggregating the model it can take stocking rate adjustment costs
into account because each pre-specified stocking rate will incur a

different costs. Desirable perennial plant density should be
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explicitly taken into account due to the strong Markov chain.
Since there are two years for a young geedling to reach maturity a
distinguish between populations (i.e. cohort) of young plant and
adult plant may be important., There is an evident need to test the
optimal decisions derived by these tw different types of
simplificaitons,

The nmethod requived tu derive optimal decisions on whether to
apply a csultural treatment will vary with the type of treatment.
If the application ¢f a treatment is a periodic decision such as
reseeding, clearing bush, chemical spraying, fencing, etc, so that
its effect only lasts for a limited period, then the optimal
treatment decizion needs to be derived by combining the treatment
decision with choice of stocking rate, thus increasing the
dimension of decision space, The optimal frequency of treatment
application will be an important decision to be made, and could be
determined by adding another state variable F, wbich is number of
periods since treatment was last applied. Note that such &
variable F is deterministic and subject to the following
transition equations:

F .= Ft:+1 for not applying treatment and Ft<l°‘ a

t+l
-] for applying treatment;
-Fu for not applying treatment and FtuF“

where F a is the periods over which treatment effects persist. The
variable F affects the transition probability of range dynamics.
The optimal value of F so derived is the optimal frequency of
applylng a treatment for each range condition.

If a treatment is not a periodic deciszion such as ponding
and/or cultivation which at;e both "once in a life-time® declsions,
the treatment effects can remain indefinitely. Thus, the optimal
frequency of applying the treatment is not importamt, and whether
to apply the treatment or not at current range condition turns out
to be the only decision required about the treatment. And the
optimal decision can be derived by the above analysis.

Futher revision of the simulation model also is needed.
Three important factors currently omitted from the model which
need to be included are: firstly, the effects of other animals in
the paddock such as cattle, goat, kangaroo and rabbit; secondly,
the variable of dry forage biomass; and thirdly, the costs of

stocking rate adjustment among three seasons.
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Sumary and conclusion

This paper uses stochastic dynamic pyogramming to solve the
range regeneration management problem with respect to decisions
about stocking rate, Declsions about whether to apply a treatment
or not can be determined after the derivation of the optimsl
stocking rate. A simulation model was developed to investigate the
vegetation response to cultural treatments and different stocking
rates, Transition probabilities were derived by simplifying this
model.

The optimal decision rule was derived by an approximation
method to reduce the state space. The asymptotic optimal decision
rule is periodic stationary, corresponding to the three rainfall
geasons, As would be expected, high stocking rates ars optimal in
the high rainfall season, and low stocking rates are best in the
dry season. The marginal values of perennial forage biomass are
positive but these of ephemeral forage can be either positive or
negative. The perennial forage biomass seems to be more important
during the dry season when available forage is relatively scarce.
Although the solution presented is preliminary it is consistent
with conventional wisdom about choice of stocking rate for range
regeneration under uncertainty. Further research is needed to
validate the simulation model and to test the near-optimal
decision rule derived in this study.
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blomesn; 4 =b for ephemeral forage Biomasy;
‘the proportion of paddock wrder treatment 1;

the proportion of paddock under trestment 2;
the recruitagnt  of parsnnial plant ander treatment de

where =0 for no  trestment;iel for teantment. 1, L.e.
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desirabel persnnial plants;
grazing FTASIUTE indsx for perenniel plant mortality

during sesaon t;
the cuplative grazing pressures for parennial plants
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marketing oosts for selling a shesp, collars/shueep;

peice of wosl, dollars/kg; | |

mazketing sosts for sslling woel, dollare/kg wool:

sbiesing costy per ehesp, doliars/sheep: ‘
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