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1. Introduction

Hardly a day goes by without one reading or hearing about some environmental

disaster creeping at our doorstep or a natural catastrophe of that sort or another

soon to occur. We hear about species that are threatened, endangered or already

extinguished. We are informed that the accumulation of CO2 and other greenhouse

gases in the atmosphere may lead to global warming with the possibility of severe

damages (Nordhaus, 1991, Cline, 1992). We read about aquifers that shrink in size

or already are depleted as a result of prolonged pumping above recharge (Apostol,

1993); and about large scale deforestation (Hartwick, 1992), leading to the

extinction of incalculable number of species (Colinvaux, 1989) and decreasing the

rate of CO2 removal from the atmosphere.

While some of these alarms may turn out to be premature or even false, others

pose real threats on the well-being of the living species on this Earth and of

future generations. The mechanisms that drive environmental processes are often

poorly understood, and the associated parameters are subject to large

uncertainties. Yet, the possibility of irreversible losses requires prudent

management because mistakes cannot be fixed.

In this work we offer a framework for analyzing a situation in which the

exploitation of a renewable natural resource stock may lead to the occurrence of

an undesirable event. Occurrence conditions are not completely known; this is the

source of uncertainty in this class of models. The events are classified

according to their consequences: The event is irreversible if the resource cannot

be used after occurrence; it is partly reversible if occurrence entails a cost

(penalty) following which the resource can be reused, possibly with some

additional constraints associated with the resolution of the uncertainty regarding

the event occurrence.
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Irreversible events were studied by Tsur and Zemel (1994a) in the context of

groundwater extraction under risk of saline water intrusion. This event is

irreversible because its occurrence renders the aquifer obsolete. Partly

reversible events were analyzed by Tsur and Zemel (1994b) who discuss fossil fuel

combustion and the process of global warming due to the accumulation of greenhouse

gases in the atmosphere. This process may trigger a costly event. The event is

partly reversible in that its occurrence involves economic penalties, but it does

not prevent fossil fuel usage afterwards. The case of a resource stock (e.g., a

water stream) that serves both human needs (e.g., irrigation) and as a wild life

habitat is studied in Tsur and Zemel (1995). The event in this example

corresponds to the extinction of the animal population and it occurs when the

resource stock decreases below some (uncertain) critical level. The elimination

of the species inflicts the loss of recreational options and other nonuse values

(Hanemann, 1994) as well as a decrease in biodiversity (Weitzman, 1992, 1993;

Polasky, Solow and Broadus, 1993).

The model here described accommodates these examples as special cases and

enables the consideration of two types of event uncertainty: events that occur

when the resource stock reaches a threshold level, and events that occur due to

external (environmental) conditions. For the first type of events with uncertain

threshold levels, uncertainty stems from our ignorance rather than from a truly

stochastic process, and gives rise to a common pattern of behavior: a steady-

state interval is identified such that optimal state processes initiated within

the interval remain in equilibrium. When initiated outside the interval, the

optimal state process converges to one of its boundary points. This behavior is

contrasted with the non-event (when no event can interrupt) and certainty (when

the critical state level is known) situations, and with the external
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(environmental) event uncertainty, in all of which the optimal state processes

converge to a particular state level. The equilibrium interval gives precise

policy prescriptions to environmental claims that the presence of event

uncertainties of the first type calls for more preservation. Such claims,

however, may not always be valid under event uncertainties of the second type

[those due to external conditions, see Clarke and Reed (1994)].

The analysis is built on two strands of literature. The first is the

literature on event uncertainty in nonrenewable resources, initiated by Long

(1975), Kemp (1976), Loury (1978) and Gilbert (1978), and synthesized by Deshmukh

and Pliska (1985). We extend this literature to renewable resources. As it turns

out, the introduction of recharge processes brings in the delicate issue of

whether to extract at or below the rate of recharge, thus avoiding the event

occurrence risk, or to extract above it, reducing the resource stock and taking a

risk that the event will occur. These considerations give rise to the steady-

state interval mentioned above.

Another precursor of this work is the line of research set forth by Cropper

(1976) and Heal (1984) and developed further by Clarke and Reed (1994). Our

framework extends this research in several respects. First, we consider

ignorance-type event uncertainty, which is somewhat harder to recast in the

standard optimal control form. By establishing the monotonicity of the optimal

state process we are able to provide a complete formulation of the exploitation

model under this type of uncertainty, hence to fully characterize the optimal

state process. The equilibrium states are identified in terms of the roots of a

simple function of the state variable, and their determination does not require

the knowledge of the optimal policy. Moreover, we consider events that are not

necessarily terminal: there is life after the event, as we allow for partially
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reversible events.

We limit consideration to events that occur at once. This is not always the

case, as many events evolve gradually over time. Such gradual events, however,

are easier to avoid and therefore do not pose the same threat as their abrupt

counterparts.

2. Optimal resource management

The state (stock) of the resource S t evolves over time as a result of human

extraction at the rate gt and of natural recharge at the rate R(SS), according to

dSt/dt - St = R(St) - g (2.1)

The analysis is simplified when R(S) is assumed to be decreasing and concave,

vanishing at the resource carrying capacity S; this typically holds for

resources that are exogenously replenished, such as groundwater.

Let B(g,S) represent the instantaneous net benefit generated by g when the

stock is at the level S. We assume that B satisfies: a2B/ag2 < 0; aB/aS > 0;

a2 B/agaS > 0 and a2B/aS2 < 0. The benefit functions postulated for the specific

examples discussed below are consistent with these conditions.

An extraction plan initiated at a state level S consists of the extraction

process gt and the associated state process St, t > 0. A plan {gt,St} is feasible

if it satisfies (2.1) and

SO = S, gt > 0 and St > S, (2.2)

where S is the lower bound on the resource level.

2.1. Non-event: When no event can interrupt the plan, the problem is to find

the feasible plan that maximizes the discounted stream of benefits:
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Vn(S) = Max B(gt,St)ePtdt s.t. (2.1)-(2.2), (2.3)
{gt}

where p is the time rate of discount. We call (2.3) the non-event problem and

denote by {gtSt} its optimal plan. It is established (Tsur and Zemel, 1995) that

St converges monotonically to a unique steady state S, defined by

S = S if L(S) > 0
S = S if L(S) < 0 (2.4)
L(S) = 0 otherwise

where the evolution function L(S) is given by

L(S) = [p-R(S)] B(g lg=R(S) -aB g=R(S) (2.5)

The properties of R and B ensure that S is unique.

Further insight into the meaning of the evolution function L(S) can be gained

by considering, for some arbitrary small constants h>O and 6, the following

extraction plan, starting at some interior level S e (SS),

8h R(S) + 6, 0 t < h(2.6)

ht lR(S) , t h

Let V6h(S) denote the benefit associated with gh and W(S) B(R(S),S)/p represent

the benefit obtained under the steady state policy g = R(S). It is shown in Tsur

and Zemel (1994a) that

vh(s) - W(S) = L(S)6h/p + o(6h). (2.7)

When L(S) > 0, there exist h > 0 and 6 > 0 such that V 6h(S) > W(S), and the

steady state plan cannot be optimal for this state. Similarly, with 6 < 0 it is

seen that interior state levels satisfying L(S) < 0 cannot be steady states

either. Thus, the root of L(S) and the boundary points S and S are the only

possible equilibria.

For a particular specification of R and B, the optimal plan {gtSt} and the

value function Vn(S) are found via standard dynamic programming or optimal control
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methods (see Tsur and Zemel, 1995).

2.2. Certainty: Suppose now that an event occurs as soon as St reaches a

certain threshold level X, and assume that X is known. The event is undesirable

in two respects. First, occurrence reduces the value of the resource. Let (p(S)

be the post-event value function, representing the value of the resource upon

occurrence (when S = X). The undesirability of the event implies that

vn(S) > (p(S). Furthermore, we require that a delayed occurrence is preferred to

an immediate occurrence. That is, Vn(S)-(p(S) > e-Pt[Vn(Sn)- (S)] for all St < S

along the optimal non-event plan. The right-hand side of this inequality

represents the present value of a future loss caused by an occurrence at a later

time t, which cannot exceed the loss associated with an immediate occurrence. The

post-event value functions associated with the various types of events discussed

below are consistent with these requirements.

With T > 0 denoting the event occurrence time (T = oo if the event never

occurs) and X substituting S in (2.2), the allocation problem for S > X is

formulated as
T

VC(SX) = Max fB(gt,S)ePtdt + ePTqp(X)
{gt,T} ,

s.t. (2.1)-(2.2) and ST = X. (2.8)

We call (2.8) the certainty problem and denote by {gc,St} the associated optimal

plan. As in the non-event case it is verified (Tsur and Zemel, 1995) that the

optimal solution S t (at least one in the case of multiple soltipl lions) evolves

monotonically in time.

Since the event is unwanted, it is not optimal to decrease St to the

occurrence level X when S > X. This is so because the non-event process St stays

above X and Vn(S) exceeds the value of any plan that goes through X. 1 Thus, when
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S > X the optimal certainty process coincides with the non-event process.

When S < X, following the non-event path would eventually trigger the event,

as S t must pass through X on its way to S. This may not be desirable if the event

is too costly. How then to decide whether or not it pays to trigger the event?

Just above X the planner must decide whether to decrease St further (and collect

the post-event benefit (p(X)), or remain above X and enjoy a benefit (arbitrarily

close to) W(X). It is intuitively clear that the former policy is advantageous

when (p(X) > W(X) while the latter policy is preferable otherwise. Indeed, Tsur

and Zemel (1995) established the following rule:

(a) If S > X, then S t = St.

(b) If S < X and W(X) Ž (p(X), then St decreases asymptotically towards X but never

reaches it at a finite time. In this case, St is found by solving

00

Vc(S,X) = Max B(gtSt)e-Ptdt s.t. (2.1), gt > 0, So = S and St > X.
{gt}

(c) If S < X and W(X) < (p(X), then St will reach X following which the post-event

policy will be enacted: {St , t E [0,T]} and T are found by solving

T

VC(S,X) = Max fB(gt,St)ePtdt + e-PTP(X) s.t. (2.1)-(2.2) and ST = X.
{gt,T} 0

2.3. Uncertainty: Often X is incompletely known and can be specified in terms

of the distribution and density functions F(S) = Pr{X<S} and f(S) = dF/dS. The

distribution F is assumed to be smooth (twice continuously differentiable) over

[S,S]) where S is the highest state level at which the event is bound to occur.

For any extraction plan {gt,St}, the distribution on X induces a distribution

on the occurrence time T. Starting at a pre-event state S, we search for the

exploitation policy corresponding to
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T

V(S) = Max EJfB(gt,S)e-Ptdt + e'PT P(ST)T> O} s.t. (2.1)-(2.2), (2.9)
{gt} o

where ET represents expectation with respect to the distribution of T. We call

(2.9) the uncertainty problem and denote by {g*,ST} the corresponding optimal

plan.

As the process evolves in time, the distributions of X and T are modified to

account for the information that X must lie below Min {So}; for otherwise the
TE [o,t]

event would have occurred at some time X before t. The expected benefit (2.9),

thus, depends on all history to time t. When St evolves monotonically in time,

Min {So} = St or So if St is non-increasing or non-decreasing, respectively.
E [O,t]

It turns out that at least one of the optimal S-trajectories corresponding to

(2.9) evolves monotonically in time, allowing us to restrict attention to

monotonic trajectories.

A detailed proof of the monotonicity property is given in Tsur and Zemel

(1995). The property is due to the autonomous nature of the problem, as the

functions B(g,S), R(S) and F(S) do not depend explicitly on time. It is shown

that knowing, at any state level along the optimal trajectory, that the event has

not yet occurred cannot affect earlier decisions. Prior to occurrence, no need

ever arises to update the optimal plan (implying that the open- and closed-loop

solutions are the same).

If a non-decreasing state trajectories is chosen, it is known at the outset

that the event will never occur and the allocation problem is the same as the non-

event situation.

For non-increasing state processes, the distribution of T, induced by that of

X, is given by

l-FT(t) Pr{T > t T > } = Pr{X < St X < So} = F(S)/F(So)
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and the allocation problem is that of2

00

Va(S) = MaxJ{B(gt,St) +S)[gtR(S)]p(S)F t dt
{gJt 0

s.t. (2.1)-(2.2), (2.10)

where X(S) f(S)/F(S) is a measure of the risk that the event will occur

following a small decline in the resource stock from a pre-event level S. X(S) is

assumed to decrease with S. We call (2.10) the auxiliary problem and denote by

{gt,St} its optimal plan. In similarity with the previous problems, St evolves

monotonically in time.

Although (2.10) is motivated by (2.9), we stress that the auxiliary and

uncertainty problems are distinct, because they share the same objective only when

the trajectory corresponding to the latter problem decreases. In fact, we

expect that when St increases it will coincide with St, and when it deceases it

will follow St. The behavior of St has been characterized above. Now, it is easy

to verify that while passing through state levels below the non-event equilibrium

S, the optimal trajectory St must increase. Thus, the auxiliary problem is

relevant only for S > S, and S replaces S in the application of condition (2.2) to

(2.10). Since X(S) does not increase, the auxiliary and non-event problems are

distinct only when X(S) > 0.

The dynamic behavior of St is determined by the auxiliary evolution function

La(S) = L(S) - pX(S)[W(S) - (p(S)]. (2.11)

In similarity with the non-event problem, the roots of La(S) and the boundary

points S and S are the only possible equilibria. With k(S) > 0 and

W(S) = Vn(S) > (p(S), we find that La(S) < L(S) = 0.

When La(S) has at most one root in [S,S], a state S is uniquely defined by:
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a(Sa ) = if La(S) (2.2)

S = S if La(S) < 0

In this case, the analysis of the non-event problem can be repeated (with obvious

modifications) to show that St converges to Sa from any initial state. Having

characterized the non-event and auxiliary plans, the uncertainty trajectory can

also be characterized by:

(i) St increases at S levels below S (for which L(S) < 0).

(ii) S t decreases at S levels above S (for which La(S) > 0).

(iii) All state levels in [S,Sa] (for which L(S) > 0 and La(S) < 0) are

equilibrium states of St .

It is seen that the optimal process under uncertainty converges to the

boundaries of [S,Sa] from any initial state outside this interval, and remains
A q

constant when initiated at any state within the interval. At Sa the expected loss

due to event occurrence is so high that entering the interval cannot be optimal,

though without the event risk doing so would yield a higher benefit. Indeed, the

steady-state interval is due to the difference between the evolution functions

L(S) and La(S), namely X(S)p[W(S)-(p(S)], which measures the expected benefit loss

from an event following immediately a policy that extracts above recharge. Within

(S,Sa), the expected loss more than outweighs the benefit, and extraction above

recharge is not desirable.

The case in which La (S) admits multiple roots in [S,S] is more involved and is

discussed in Tsur and Zemel (1994a).

2.4. Environmental uncertainty: As shown above, the equilibrium interval

emerges because the uncertainty problem reduces to two distinct problems, namely

the non-event problem and the auxiliary problem, according to whether the state

variable increases or decreases with time. This is obviously due to the type of
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uncertainty considered, which reflects our ignorance with regard to the exact

location of the critical level. Increasing trajectories cannot trigger the event,

and uncertainty does not affect the expected benefit. In order to further

illustrate the relation between the equilibrium interval and this type of

uncertainty, we consider now uncertainty of a different origin, which does not

give rise to equilibrium intervals.

Assume, following the catastrophic pollution model of Cropper (1976), that

occurrence is not entirely due to the extraction plan driving the resource below

the critical level, but that it can be influenced by random (exogenous)

environmental conditions. Specifically, we take X to be the hazard rate of the

event occurrence, so that Pr(T<h|T>0) = Xh+o(h) for all S. With constant X, T is

distributed exponentially with
t

Pr(T>tlT> 0) l-FT(t) = exp{-fdrt} = e- t and fT(t) = Xe- t.

0

The objective function is

T

EJB(gt,S)e-Ptdt+e-PT(p(ST) I T > 0

o

00

= Be B(gt,S~e I(T>t)dt +e-PTpS T>0)

00

= EIB(gt,S)e-PtI(T > t)dt + e-PT p(ST) T > }

0

0 0
00

= f{B(gt,S0) + X(p(St)}e-(P+k)tdt,

0

and the allocation problem is
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Ve(S) = Max {B(gt,S + (p(S)e-(+)tdt, s.t. (2.1)-(2.2), (2.13)
{gt} o

giving rise to

Le(S) = L(S) + B(g,S)l g=R(S) ) (2.14)

for the environmental uncertainty evolution function, where L(S) is the non-event

evolution function (2.5). In similarity with the previous problems, the optimal

plan corresponding to (2.13) is monotonic, approaching an equilibrium state which

must be either a root of Le(S) or an endpoint. However, (2.13) describes the

expected benefit regardless of whether the trajectory increases or decreases,

hence it corresponds to the full uncertainty problem. Thus, no equilibrium

interval can emerge. A concrete example of this type of uncertainty is treated in

the following section.

3. Examples

We present here several examples of event uncertainty. The first example,

(Tsur and Zemel 1994a), corresponds to groundwater extraction under uncertainty

with regard to saline water intrusion. Since occurrence renders the aquifer

useless, the event is irreversible. The second example, (Tsur and Zemel 1994b),

concerns policy implications of possible consequences of global warming due to

the accumulation of greenhouse gases in the atmosphere. In the third example,

(Tsur and Zemel 1995), we consider the exploitation of resources that serve both

human needs and a wildlife population: exploiting the resource beyond an

incompletely known threshold level entails the extinction of the wildlife

population. Finally, we return to the aquifer example, but consider events the

occurrence of which is determined by exogenous factors; the uncertainty is of the

environmental type.
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3.1. Irreversible event: Groundwater extraction under salinity risk

Consider a coastal aquifer exploited for domestic, irrigation or industrial

purposes. At time t, St is the aquifer stock, gt is the extraction rate and

R(G) denotes the natural recharge rate. When the stock level decreases to a

threshold level X, saline water penetrates and ruins the aquifer. The critical

level X is known only up to a probability distribution F(S) = Pr(X<S).

Let Y(g) be the profit generated by extracting at the rate g and C(S) be the

unit extraction cost when the stock is at the level S. The net instantaneous

benefit is B(g,S) = Y(g)-C(S)g. We assume that Y(0) = 0, Y(g) is increasing and

strictly concave, and C(S) is non-increasing and convex. Since the aquifer is

useless after the event, the post-event value function (p(S) vanishes at all S.

This benefit function satisfies all the conditions on B, specified above, and

gives rise to the following the non-event evolution function (Eq. 2.5):

L(S) = [p-R'((S)][Y'(R(S))-C(S)] + C'(S)R(S)

yielding a unique non-event equilibrium state S as defined in (2.4). The steady

state value is Vn(S) = W(S) = [Y(R(S))-C(S)R(S)]/p.

Since (p(S) = 0 for all S, the auxiliary evolution function (2.11) becomes

La(S) = L(S) - X(S)pW(S).

Suppose that S < S < S (if S = S the aquifer does not admit profitable

exploitation, and the analysis easily extends to the case S = S) so that

L(S) = 0. Since W(S) > 0 at S (otherwise the steady state extraction rate

vanishes, which is permitted only at S), La(S) = -X(S)pW(S) < 0, provided

X(S) > 0. Since W(S) = 0, and L() > O, we see that La(S) > 0. Thus, La(S) = 0

must have solutions in [S,S].

When La(S) = 0 has a unique solution, equation (2.12) can be invoked to

define Sa as the root of La(S). Applying the uncertainty results of Section 2,
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we conclude that the optimal extraction rate exceeds, is equal to or falls short

of recharge at stock levels above Sa, in [S,Sa], or below S, respectively.

If La(S) has multiple roots in [S,S], let Sa and Su denote the smallest and

largest of these roots. Tsur and Zemel (1994a) established that any state in

[S,S] must be a steady state. If the initial state lies below S, the optimal

policy is to recover the stock to the level S and to extract R(S) thereafter.

Above SU it is always optimal to extract above recharge and to decrease the

stock. The steady state to which the stock converges in this case must be one

of the roots of La(S) for which La'(S) > 0. Which of these roots is the optimal

steady state must be determined in each case, depending on the particular

specification of Y, C, R and F.

3.2. Partial reversibility: Accounting for global warming risks.

The combustion of fossil fuel produces C02 and other gases that accumulate in

the atmosphere and, via the greenhouse effect, may lead to global warming. This

process and its possible consequences are subject to a lively debate: some claim

that a catastrophe is inevitable if C02 emission is not controlled; others

maintain that the overall effect of a likely rise in the Earth's average

temperature is beneficial; other opinions are scattered between these two extreme

views (Cline, 1992; Nordhaus, 1991, 1994). The view taken here is closer to the

pessimistic end of this spectrum, assuming that as soon as the atmospheric

concentration of greenhouse gases reaches a certain (unknown) threshold level it

triggers an undesirable event, inflicting an economic loss Ay.

To be consistent with the general framework of Section 2, the state

variable should be defined as the purity level of the atmosphere, with S denoting

the maximum purity (say natural C02 concentration before the industrial

revolution) and S is the minimum purity, i.e., the carrying capacity of
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atmospheric pollution. The resource, in this case, corresponds to atmospheric

purity. It is more natural, however, to define the state variable in terms of

the pollution level. To do that, let G = S - S, so that G = 0 corresponds to

zero pollution and G = S-S corresponds to maximum pollution.

The natural rate of removal of greenhouse gases from the atmosphere is

R(S) = R(S-G) _ Q(G), where Q(0) = 0 and Q(G) is increasing and concave. The net

benefit function is specified as

B(g,G) = Y(g) - C(G),

where C(G) is a non-decreasing and convex function describing the flow of costs

(unrelated to the event) associated with pollution. X is the pollution level at

which the event occurs, known up to the probability distribution

F(G) = Pr(X<G). Following the event, C02 emission is restricted not to exceed

the natural removal rate in order to avoid further occurrences. Tsur and Zemel

(1994b) have shown that if the event occurs under the optimal policy, it never

pays to reduce the pollution level, hence the post-event emission equals Q(G) and

the post-event value function is given by (p(G) = W(G) - W.

With these specifications, the non-event evolution function (2.5) specializes

to

L(G) = [p+Q'(G)]Y'(Q(G)) - C'(G)

and L(G)/[p+Q'(G)] decreases in G. The non-event steady state to which the non-

event optimal state converges is defined by (2.4):

G = G if L(G) > 0
G = if L(0) < 0
L(G) = 0 otherwise

The evolution function of the auxiliary problem specializes to

La(G) = L(G) - (G)pW.

Since k(G) is non-decreasing, a(G)/[p+Q'(G)] decreases with G, and Ga of (2.12)
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is unique. Our analysis then implies that the optimal uncertainty state process

converges to the boundaries of [Ga,G] from any initial state outside this

interval and remains in equilibrium inside the interval.

3.3. Coexistence and Competition between human and wildlife populations

Here the framework of Section 2 is applied to a situation in which off-stream

diversion of water for irrigation (or other human needs) may lead to the

extinction of some wildlife, say fish, population. The resource state S measures

the water level at some crucial point along the river, R(S) represents net natural

replenishment rate, and the off-stream diversion rate is denoted by g. As in the

groundwater case, the instantaneous net benefit is of the form

B(g,S) = Y(g)-C(S)g, with Y(g) increasing and strictly concave and C(S) non-

increasing and convex.

Excessive off-stream diversion will lead to the elimination of the wildlife

population if the water level decreases below a critical value, inflicting a

penalty W. The penalty represents biodiversity, recreational and nonuse benefits

forgone due to extinction, and is taken as an exogenous parameter. Unlike the

previous example, the post-event diversion process proceeds with no further

restrictions. With events of this nature, the post-event value function takes the

form (p(S) = V"(S) - V.

The non-event evolution function and the corresponding equilibrium state S are

the same as in the groundwater example. The auxiliary evolution function reflects

the different form of 'p:

La(S) = L(S) + pX(S)[Vn(S)-W(S)-W].

Since Vn(§) = W(S) and L(S) = 0, L (S) = -pX(S)V < 0. Tsur and Zemel (1995) have

established that La(S) can have at most one root in [S,S]: either La(S) is

negative for all S in [S,S], in which case Sa = S, or La(Sa) = 0 for some Sa in
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(S,S] (cf. 2.12). Again, the optimal state process S t must converge to the nearby

boundary of [S,Sa] when initiated outside this interval and remain at equilibrium

within the interval. The upper boundary Sa depends on the penalty W: Sa increases

with A. When the penalty is so high that La(S) is negative, Sa = S, and it is

never optimal to extract above recharge. In this case, preservation is

guaranteed.

3.4. Irreversible event: Groundwater extraction under environmental

uncertainty.

Consider again the aquifer of example 3.1, managed under the risk that an

event will render it useless. This time, however, occurrence is not restricted

to the state process arriving at the unknown critical level. Rather, an event

(such as the discovery of a cheaper resource by a competitor, or the destruction

of the resource by an accident in a nearby pollution source), can occur at any

state level according to the hazard rate X. With (p - 0, the evolution function

(2.14) reduces to Le(S) = L(S) + X[Y'(R(S))-C(S)]. The arguments for the

uniqueness of S apply for Le(S) as well, implying that this evolution function

can have at most one root in [S,S]. For S Ž §, when L(S) > 0, the second term of

Le(S) is positive and Le(S) cannot vanish. Thus, the root of Le(S),

corresponding to the equilibrium state of this uncertainty problem, must lie

below S. This behavior is in sharp contrast with the results of the previous

examples, in which uncertainty implies a more prudent management. The reason for

this is clear [Clarke and Reed, (1994)]: since the extraction policy does not

affect the occurrence probability, the manager is encouraged to extract as much

as he can before the aquifer is ruined. Indeed, with (p - 0, the allocation

problem (2.13) reduces to the non-event problem, with (p+X) replacing p as the

effective discount rate. Obviously, this kind of event uncertainty cannot give
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rise to equilibrium intervals.

4. Summary

In this chapter we offer a unified framework for a systematic investigation of

the effects of uncertainty on natural resource exploitation policies. The

uncertainty concerns the conditions leading to the occurrence of an undesirable

event. The events can differ in their consequences: Irreversible events render

the resource useless, while partly reversible events imply an economic penalty,

but they do not prohibit further exploitation. Another classification is

according to occurrence conditions: Some events occur if, and only if, the

resource stock declines to a critical level which is not a-priori known. Other

events are subject to environmental uncertainty and do not depend entirely on the

resource stock.

An important common feature of all these models is the monotonic evolution of

the state process. In other respects, the processes vary significantly. Events

that occur at the critical level call for prudent exploitation and more

preservation. This is manifested by an equilibrium interval, inside which

extraction equals the rate of recharge. The interval is clearly associated with

the uncertainty - without occurrence risk it pays to extract above the recharge

rate when the resource level is within the interval. The equilibrium interval is

easily determined in terms of the roots of certain functions of the state

variable, which we call the evolution functions. Explicit knowledge of the

optimal trajectories is not required for this task. In this manner the evolution

functions conveniently provide policy prescriptions aimed at determining when

extraction should not exceed recharge.

The equilibrium interval is unique to events whose occurrence conditions
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depend entirely on the resource state. When the event occurs as a result of

conditions external to the resource state, no such intervals emerge and the

optimal state converges to a particular level. For such events, it is even

possible that the event uncertainty encourages more exploitation rather than

preservation because the prudent policy does not imply reduced occurrence risks.
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Endnotes

T

1 If St decreases to X, then V(S,X) = JB(gC,St)e-Ptdt + e-PT(p(X) <

0

T

fB(gt,St)e-P tdt + ePTVn(X) < Vn(S). The first inequality follows from Vn(X)>(p(X)

o

and the second holds because the state trajectory that coincides with St for

te[O,T] and follows St that departs from X thereafter is feasible but may not be

optimal for the non-event problem.

2 The density of T is fT(t) _ dFT(t)/dt = f(S)[gt-R(S)]/F(So) with the hazard

rate fT(t)/[l-FT(t)] = h(S)[gt-R(St)]. By expressing the expectation in (2.9) as

oo

E{JB(gt,S)I(T> t)e-tdt+e-PT(p(ST) I T>0, with I(.) = 1 or I(-) = 0 when its

0

argument is true or false, respectively, and noting that E,{I(T > t) I T> 0} = 1 -FT(t)

= F(St)/F(So), the objective of (2.9) for non-increasing S trajectories becomes

00oo

{B(gtSt) +k(St)[gcR(St)]p(St)}jeF( Ptdt, which leads to (2.10).

0


