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A STOCHASTIC MODEL FOR TACTICAL HERBICIDE DECISION MAKING

DAVID J. PANNELL

School of Agriculture, University of Western Australla and
Economic Analysis Branch, West. Aust. Department of Agriculture
A simple model for determination of optimal herbicide rates
for a single veed in a crop is developed. The effect of
parameter uncertainty or variability is analyzed. It is found
that even risk neutral decision makers may respond to
uncertainty about some parameters and that, contrary to
findings in the literature, the effect of risk is not
necessarily to increase the optimal herbiclide rate. The
inclusicn of tactical information about climate and weed

density is found to have an impertant effect on decision
making.

Weed competition for light, molsture and nutrients causes major
losses of production and profits throughout the world. For example,
annual weed induced losges have been variously estimated as $20,400
million or 9.7% ¢. the potential world cereal harvest (Cramer 1967),
$4500 million in the United States (Candler 1979) and #2800 million in
Australia {Combellack 1S87). Despite the questionable sccuracy {Vere
and Auld 1982) and usefulness (Pannall 1887) of estimates such as
these, they do indicate that potential savings from improvements in
efficiency of weed control are considerable. It ls somewhat surprising,
then, that agricultural econromlsts have published little on the

econonmics of weed control.

Many farmers attempt to improve economic effliciency by applying
herbicides at rates other than those specified on chemical labels.
However, in most discussion and analysis of the economics of herbiclde
use, the issue of optimal application rates is ignored. Rather the
emphasis tends to be on whether the weed densily exceeds the threshold



required to warrant treatesnt with s pre-defined chemical doge (e.g.
¥erra and Carlson 1983; Auld et wl. 1887). This siudy is not based on
the economic threshold concept but rather allows for the ldentification
of optimal herbicide rates for weed control. The decision framework
includes perameter variability and risk aversion. The wmodel is applied
in a tactical decision frasework in which up to date climstic and
agronomic information is incorporated in decisions made during the
growing season.

In the following section the baslc model i3 presented. Then the
responses to risk by risk neutral and risk averse decision makers are
analyzed. Finally the stochastic model is applied to tactical herbicide
decision making. The aim of the tactical analysls is to deteralns
whether tactical information is 1likely to have a significent impact on
optimal herbicide strategies for weed control in crops.

The Model

Lichtenberg and 2ilberman (1886) have shown that errors can arise if
economic models used to determine pesticide use are foramulated without
considering technical or blological knowledge about the chemical/pest/
crop system. As in their paper, the yleld response function has two
components: the weed survival function which represents the effect of
herbicide rate (H#) on weed density (W) and the actual crop yleld
function representing the effect of weed density on crop yield (Y).

Weed survival

Weed kill (K) is a function of herbicide rate and is represented as a
proportion of weed density without spraying (U;). Bazed on field trial
results for a range of weeds and herblcides, an exponential function
was chosen to represent weed kill. Thus weed survival after spraying is
given by:
(1) W= u;[x - K(H)] = w;Exp(~cH)
where ¢ = marginal proportion of weeds killed as H » 0 (¢ > 0).

Actual crop yield function
Crop yield is a function of weed density after spraying. Damage (D)



is defined as the proportion of weed-free yleld (Yo) lost due to weeds.
Cousens (1985) tested a range of functional forms for the
representation of crop damage by weeds and found that a hyperbola best
represented the relationship. Thus actual crop yleld is given by:

2
(2) Y= Yoli - D(U)] = YO[I - m]

where a = maximum proportion of yield lost (a > 0); and

b = marginal proportion yield lost as W -+ 0 (b > 0). Note that a
is normally less than one; that is, even at extremely high weed
densities some crop yleld is obtalned.

The economic mcdel
Profit (=) is given by:
{3) n#PyY-'PhE-F
where Py = price of output;
Ph = price of herbicide; and
F = fixed costs.

First order condition for profit maximisation on herbicide rate:
an _ ay

(4) E-E*Pyﬁ-?h::o
3y _ 8y aw
but 5% = & an ,
3y _ _, ap
5-[; = Yo W and
1%
3F = —cl-'ozxp( ~-cH),

so the optimal herbicide rate (H') is given by:
ap . _
Py ( Yo) 3 ( c)onxp( cH ) P =

Rearranging gives:

e .1 an
) # =L [ 2] + merg -l m g, ]
This indicates that the optimal herbicide rate is higher for higher
values of‘ (at the optimal solutlon) Ye. w or Por lower values

of Ph. The marglnal yield loss ‘ ) at the optimal solutlon is quite a
complex term depending on a number of parameters.
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Responses of Risk Neutral lecision Nakers to Stochastic Parameters
Various authors have noted that risk aversion is not a necessary
condition for decision mekers to respond to risk (e.g. Just 18975; Antle

1983; Taylor 1988). Even if a decislon maker is risk neutral
variability can afflect their decisicn making if it affects their
expected returns. The herbiclide decision problem provides four exsmples
of this phenomenon. If initial weed density (wc). weed competitiveness
(b), herbicide effectiveness (c) or herbicide rate (H) are uncertain,

a risk neutral decision maker may adjust their preferred herbicide
application rate.

First consider weed density for which there are two sources of
stochasticity: (i) uncertainty sbout the representativeness of the
sample areas in which weeds were counted and (ii) spatial variability
in weed density. As a result of the convexity of the actual yield
function (given by (2)) a mean preserving spread in the probability
distribution for weed density increases the expected yield, This is
illustrated in Figure 1. A crop containing weeds at uniform density U%
would produce an expected yield of Y. A similar crop with a mixture of
areas with weed densities LQ and H% such that the average weed density
for the crop was H; would produce a higher expected yleld of Y. The
chenge is similar in nature to a reduction in weed competitiveness (b).
It reduces the marginal yield loss per weed and it can be shown
(Pannell 1988) that it reduces the optimal herbicide rate.

Variability in weed competitiveness may result from differences
between individual weeds (e.g. a staggered germinatlon of weed seeds
produces weeds with a range of sizes and competitive abilities) or
differences in environmental conditions over space or time. The result
is agaln an increase in expected yield so that even risk neutral
decision makers can respond to the uncertainty. As with uncertain weed
density, the respense is likely to be a reduction iIn the optimal
herbicide rate [see Pannell (1988)].

1 Proofs of results in this and the next sectlon are not presented here
but can be found in Pannell (1888B).
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FIGURE 1 — Effect of variable weed
dencsity on expected crop yield.




These first two examples refer to uncertainty about the crop damage
function, There are also two analogous examples for the kill function;
uncertainty about the actual level of herbicide administered tee
particular weed (H) or about the proportion of weeds killed at a given
herbicide dose (reflected in tmcertainty about the value of ¢) can both
produce a response by rigk neutral decision makers.

Uncertainty about herbicide rate is distinguished from that for other
parameters in that herbicide rate is under the control of the decision
maker. The uncertainty way arise if, for exsmple, the herbicide ie not
applied with an even spatial diztribution. This may apply to any
agricultural input, but is particulaerly likely to be a problem with
some of the modern herbicides which are applied at rates of a few grams
of active ingredient per hectare.

Uncertainty about weed kill appears to loom Iarge for many farmers
and to be put forward as justification for applying hipher herbicide
rates to reduce the probability of many weeds surviving. This attitude
may be rational even if the farmér is not risk averse, As before, the
effect of uncertalnty under risk neutrality is due to the convexity of
a function: this time, the weed survival functlon {1}. Uncertainty about
c or H increasses expected weed survival and the direct response to this
is often to increase the optimal herbicide rate (Pannell 1988), However
these sources of uncertainty also result in un uncertain weed density
which, as has been shown above, reduces the optimal herbiclde rate. The
net result depends on the balance of forces.

Responses of Risk Averse Decision Nakers to Stochastic Parameters

Apart from the above described effects on & risk neutral decision
mpaker, variability or uncertainty will have addicional effects on
behaviour if the declsion meker is risk averse. In this section a
selection of parameters are analyzed individually for implications of
their variability under risk aversion.

Foder (1979) and Robison and Barry (1987) bave shown that uncertainty
about the pest density increases the treatment rate which is optimal
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under risk aversi. . o water the pisk aversion, the higher

the treatment rate, The e firdings are true for uncertainty about

- weed density (Pannell 1988). The results arise because under weed or

pest dersity imcertainty, increasing the level of control reduces the
variance of income, Hence pesticldes and herbicides are often described
as "risk reducing inputs".

However the resalts described above were derived without considering
the effect of uncertainty about weed or pest density on expected
profit. In both the above publications (Feder 1879; Robison and Barry
1987), c¢rop damage was approximated as a linear function of pest
density. It is apparent from Figure i that in these circumstances
uncertainty aboul pest density hes no effect on expected yleld and
hence no effect on declsion making under risk neutrality. But, as
discussed in the previous section, if the actual yleld (damage)
function 18 convex (concave), as it is for weeds, uncertainty about
peut density reduces the optimal treatment rate for risk neutral
decision makers.

Thus risk averse decision mekers facing a concave damage functlon are
affected in two ways by pest density uncertainty. Its offect on
expected yleld tends to make them reduce the level of control, while
its effect on yvield variablility prompts an increase in control. The net
effect depends on which response is larger. A realistic numerical
example shows that at moderate risk aversion levels the response due to
expected profit doninates.z Since a risk neutral decislon maker only
shows the negative response, while a risk averter tempers their

negative response with a smaller positive response, there arises the

2For' example consider the following parameter values: a = 0.6, b =
0.01, ¢ = 3, Yf 1300, Py = 0.12, A"h = 18, F = 2.5. Then if wois

deterministic with a value or 100, K= 1.04. But if llo is stochastic and
normally distributed with mean 100 and standard deviation 50 and the
decision maker has a constant relative risk aversion utility function
(U= kl + kaﬂl_R) with R = 1.2 and initial wealth of 100 then A is
reduced to 1.03.




. apperent paradox that risk neutral decision makers may respond more to
risk than do risk averters.

Another important uncertain variable is the weed-free yield (Y )
which with the final weed density determines the actual yleld, Yield
uncertalnty due fo climatic variability is probably the major source of
risk for dryland crop producers in Australia. Yield uncertainty does
not affect herbicide decisicns under risk neutrality but it may under
risk aversion depending on the errop structures assumed. Beas:mable
error structures, supported by empirical data, lead to a zero or
negative but not positive effect of yield uncertainty on optimal
herbicide rate. The negative response is greater fopr greater yield
variance and for greater risk aversion {Pannell 189868).

Derivation of an analyt.ical solution for the optimal response to
uncertainty about the kiil function under risk aversion is extremely
difficult. In this study, resort has been made to a nuserical spproach
to obtaln desired qualitative results. In a numerical example using
similar parameters to those shown in fdotnote 2, the net effect of weed
kill uncertainty is an increase in the optimal herbicide rate. This
includes effects due to both expected profit and risk aversion. However
this result depends on the parameters used and on weed kill being the
only source cof uncertainty. As Table 1 shows, if weed-free yield is
also uncertain, the introduction of uncertainty about weed kill may
reduce the optimal rate. Given the system’s complexity, it seems that
analytical results for weed kill uncertainty alone are likely to be of
little value even if derived easily.




TABLE 1

Direction of change of optimsl herbiclide rate following introduction of
' weed kill uncertainty

Other uncertain perameters Direction of change
Weed-free yield '(Yo} -
Initial weed density (W) +
Yq and Uc -

Responses to Tactical Information

Various suthors have distinguished between strategic and tactical
decision making (e.g. Trebeck and Hardaker 1972; Raiszadeh and Lingara)
1986). In this study, tactical decisions sre defined as those made in
real time with use of up to date information, Any analysis using only
average or expected values of parameters or distributions would be
regarded as strategic, whereas a tactical analysis would generally
include values which departed from long run expectations, Most xeed
control decisions are made after some climatic information for the
relevant season has bzcome available and some are made after actual
weed densities have been observed, Consequently, a tactical analysis is
often appropriate for weed control decision making. Results presented
below are from calculations of optimal herbiclde rates making tactical
use of climatic and weed density information.

Methods

At the time of post-emergent herbicide application there are a number
of variables about which expectations are likely to have changed since
preliminary plans were made. If a parameter or varliable 1g now expected
to deviate from its long-~run expected value, the appiication rate can
be adjusted accordingly. In this study three types of tactical
inforaation are analyzed:

(a) Weed density without treatment ( w@). Weeds czn be counted in the
field and their untreated deasity estimated. Here it is assumed
that the density is uniform across the field.



(b) Heed free yield fY ). Ralnfall prior to treatment will affect the
probability dtatributian of Y On the day of tredtment Y is still
an uncertain veriable but th& mean and variance of its probabinty
distribution hus rrobably changed.

{c) Herbicide effectiveness (¢). The proportion of weeds killed by an:,r
given dose of herblieide can be markedly influenced by climatic and
soll conditions at and Just prior to application (Caseley 1987).
The most important determinsnt of ¢ is probably temperaturs.

Tactical analyses require some means of ascertaining the implications
of the dynamically observed information for the expected level and,
possibly, distribution of net returns. Historical records, experiment
results and/or subjective jJjudgments may be used. Each of these sources
was used in developing the dynamic simulation model of wheat growth
used in this study to calculate the effects of climate on wheat yleld.
The other two parameters Wc and ¢) are treated as deterministic and,
once observed, known with certainty in the tactical analysis.

In evaluating the approach, tactical infermation for rainfall was
obtained from historical records for lerredin, a towit in Western
Australia’s eastern wheatbelt. Values for wo vere generated by a noreal
random number generator using a mean of 100 a:d variance of 50 weeds
per square metre. Values of c were calculated from randomly generated
temperatures. Parameters of the kill and damage functions were based on
Cou s’ (1986) wild oats model. An iterative procedure on @
microcomputer spreadsheet was used to find expected utility maximising
herbicide rates assuming a constant relative risk aversion utility
function (U = k + kaul-R).‘

Results and discussion

Figure 2 shows optimal herbicide rates for a slightly risk averse
decision maker (Rn = 0.8) for a sample perlod of 35 years. The
horizontal line 1s the optimal rate calculated using long-run
distributions, 1.e. without considering tactical information. There is
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FIGURE 2 — Profit increase from tactical
approach.




conslderable between-year variation in the optimal tactical rate. There
are several years in which no herbiclde is Justified, wost due to poor
yield expectations but one in this sample dus to low seed density. The
optimul rate ls approximately as likely to be above the long-run
optinmum as below it.

Figure 3 shows the increase in expected profit firom the taciical
approach compared to the purely strategic approach. Annual improvements
of up to $20 per hectare are indicated, and the mean incresse is $4.
Most of the larger increases sre associated with years in which no
herbicide was selected, but the greatest increase occcurs in a year of
high herbicide rate.

Conclusion

Tt has heen shown that even risk neutral decision makers may respond
to uncertalnty about the crop/weed/herbicide system by adjusting
herbicide rates. Despite the conventional wisdom that herbicldes are
risk reducing inputs, a nusmber of circumstances have been identified in
which risk reduces the optimal herbicide rate. The inclusion in
decision making of tactical information about weed density and weather
conditions has been shown to have a dramatic effect on selected
treatment rates and a significant effect on expected returns from
herbicide treatment.
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Appendix A
PROOFS OF RESULTS FOR DETERMINISTIC HERBICIDE MODEL
A.1 The Basic lodel

Effect of herbicide rate () on weed density (¥):
W= 'ch - K(E) = lv’nlixp("cli) (A.1)
vhere Vo = weed density before spraying;
K(H) = proportion of weeds killed at herbicide rate #; and

¢ = marginal proportion of weeds killed as H 5 0 (c > 0).

Effect of weed density (W) on crop yleld (Y):

a
Y= Y01 - 0001 = Y[t - ] (A.2)
where Yo = weed free crop yield;
D{W) = proportion of yleld lost due to weeds;
a = paximun proportion of yleld lost (a > 0); and

b = marginal proportion yleld lost as W > 0 (b > 0).

Profit (=):

"n=PY-PH-F {A.3)
y h

1



Tactical Weed Control

where Py = price of output;
Pn = price of herbicide; and
F = flixed costs.

Supplementary Notes

First ord-, conditi~ . ror profit maximimation on herblcide rate:

g%=? o -p =0 (A.2)
BY ay oW
but o7 = oW aH ,
8y _ . 8D
W= Y gy 2
—53 = -cVDExp(-cH).
so the optimal herbiclide rate (F) is given by:
1 . -
Py (*Yo) 3 ("C}WOEXP("CR y - Ph 0
] h 1 1
Expl-cl) = 5~ gp750 ¥ 0"
y 00
s 1 aD _
B = z [ln[ } + ln(c’{o!lo) la[ Ph/Py }] {A.5)
A.2 Effect of Initial Weed Density on Optimal Herbicide Rate
From (A.5):
° 2
o' 1f 1 o° .1 e
8’:1'0 c | ap/avw M“'BUO " o
2
8D a
— >0 (A.7)
W21+ azten)?
8°p _a®[-2aWw 1 L, (2 1 -ab_ 3w
aWaW, b BV, (1 asaw)? WP (1 + az(b)) (0P B
a® aw (-2) 1
= = {W ~ D/b)

3 Vo azen)?
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=M (=2) 8D (0, _ pa) (A.8)
o, VoW
Substituting (A. ‘8) into {A.8):
8)‘1 oW (-2) ‘
{W - D/b) + L (A.8}
o, [au W W, ]

which is greater than zero iff:

M2 o<l
aw P A

aw

Substituting Exp(-cH) i‘or and sultiplying by w :

W Exp(-cHl) «Ew-z- W= om) <1
Substituting ¥ for I:'DExp(-cII}:
2(1 - D/(BW}) < 1
Substituting bW/(1 + pl/a) for D:
¥V < a/b
which is true for any realistic problem. e.g. if a = 0.8 and b =
8l

0.01 then 3'!7' > 0 if the weed density after spraying with the optimal

herbiclide ra.te is less than 60.

A.3 Effect of Weed-Free Yield on Optimal Herbicide Rate

[ ]

8H 1

e = 2= > O {A. 10)
8:’0 ch

2 [ ]
*2;2’1_ 3 ..ly.a. <o (A.11)
8 0 ¢te

A.4 Effect of Cutput Price on Optimal Herbicide Rate
8!1 1
ap = EF; >0 (A.12)
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Tactical Weed Control

2,0 .
.8...._127 =21 <o (A.13)
8P ,c‘P?

Yy ¥

A.S Effect of Input Price on Optimal l?erbic‘:d_s Rate

%ﬁ— -%—w (A.14)
Rr® \
2;.‘:.,_....12»0 (A.15)
n P

From (A.5):

ap a
— B >0 (A. 17)
A

2°p _ 1 1 _2a® 1
awea "z | *f as(BWNZ bW (1 + as(eW))®

a® 2f,.__= 1
w‘*u + asoi)? 2 1+ a/(bW) bW

_anz ., _
il A [1 - D/(bW}1 (A.18)
Substituting (A.18) into (A.18):
8l _2
32 " a0 [1 - D/(bW)] (A.19a)
Substituting dW/{1 + bW/a) for D:
»
aH 211 1
Ergz[;‘m]:’o (A.lgb)
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g | ‘
o°H ?.[ 1 ...L](O (A.20)
822 SlLia+p)® 24 ”

A7 Effect /qi‘w wead Gomtiytwlv’eneas“ °,““°’?'?i1?“1, Herblcide ‘ynatai

aa 11 an

m EW '(59211
D _ a® ‘
o~ DR © artEn)’
a’n__ -1 1 . 2aW s
8Wab w” b2 (1 + az(pW))®  BW® (1 + az(W))®
a>

e 4 $20

- ‘ , | g ¢ —a 220V 2abl
b1 + az(bi))? [ 1 + as(bW) (bW)?

1 U P a3 2ab¥
WD ‘ 2
1+ as(b¥) (BW)

8D 1 2a°
awﬁ[b““war'a“l} a.22)
Substituting (A.22) into (A.21):
&Il 2&
" [ B+ a } (.23)
which is greater than zero iff:
232
W+a !

i.e. iff:

W< a(2a - 1)/b
L]

A necegsary condition for gg > 0 is thus a > 0.5. Beyond this, no

generalisations are possible. Using parameters reported by Cousens
{1988) for wild oats {a = 0.6; b = 0.01) glves a cut off value for ¥

of 20. That is, gg > 0 if the weed density after spraying with the
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.cptlnai h&z-‘bi;cxde rate 1s less than 20 plants per square !e,trc. At
current price relativities and expected ylelds, this will be true |
except for extremely high initial weed densities. Many weeds are
less compstitive with crops t;han wild oats are and so wWill have
lower b values. If a is held constant, the cut off post-spraying
weed density for these weeds will be even higher than 20 x -,

A.8 Eff'ect of Herbicid_a Effectiveness on Optimal }{erbic;idg Rate

Frea (ALB):

an” _ -1 Y, - Y

& " [ln[ 5 ] + In(cY W) ln[ Ph/i’y ]] + Z

-L 1-»1::[”‘ -InIchi)+1n{P~P ] (A.24)
o2 aw | o0 h/; ' &=

&

Therefore o < 0 iff:

8¢
D
1+ In[ Bh/Py] < ‘ln{ -a—-} + InlcY V)

o)

l,e. Iff:

e < Uec'fo au l.‘/P

¢.8 if a=0.6, b=0,01, ¢=3, P= 0.12, Ph” 18, Vo = 100 and Yo

>

, . 8D 8H
= 1200 then H= 1.01, Uzll 83 and UocYu &U P = 20.5, so T < 0.
Appendix B
PROOFS OF RESULTS FOR STOCHASTIC HERBICIDE MODEL
B.1 Risk neutral decision maker

B.1.1 Stochastic Pre-treatment Weed Density

Let U= §°+ £ where ¢ ~ N(O.o‘i}‘ From (A.1), (A.2) and (A.3) the

profit function is:
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x*PY(l -DW(I*K))) ~PI! - F ‘ (Bgl)
The dam.ge function, D(W) can be approximated by & second order
Taylor geries approximation about '"d' the expected valm_s of "b*‘
D) moa e BY W (B.2)
y "',_,.,-‘""."'":,“ 1‘ WEWITE
vhere @ = D(W,) - ¥, D'(W) + 3V 2" (W)
B=DI) - W () >0 since I'(W) > 0 {see (A.7)} and

2 r. ,
=W f| B2 < 0; and
Pl v B+ ase))
r=10(@) <o
Therefore:
2¢a 2] _pg o
"= ,Pylfo[l - ® = BU (1-K) ~ wﬁ{,i K) ] PH-F (B.3)
The objective is to maximise expected profits.
oy P 2 2
B » BY,[1 -« - 00 - 4@+ D007 -RE-F @0
The herbicide rate which maxixises expected profit is riven by the
first order condition:
17 K - 2 - -K? - =
PY| - 4@ e D@aner)] -5 =0
= * 17 2 - - =
Favg [gwo s 1P+ A0 x)] B/, =0
oH_
aa-""

= F 2 / F * where subscripts denote partial derivatives. But

L 3
F‘H' < 0 for H‘ a max. Therefore g-H—'- 20as Fz20. Now
30‘2': ¢ <
w

Fcz = ZYQK":(I—K) < 0 since ¥y < 0O
w

s0, '?-I-% < 0.
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B.1.2 Sto_t_;_h_nst;c_ y'eed Compet f{tiveness
Consider the actual yleld function:

v. T . 2 :
Y = 70[1 DW)! *® Y,O,[l Wm} {A.2)
This can be approximated by a second order Taylor series

approxisation:

Y Y [e+ BOOW) + 7(6W)°) (B.5)
where ¢ > 0, B <0 and 7 > Q.
Mow let the parameter b, the main indicator of weed competitiveness,

be & randos varisble b = b + £ where £ ~ N(O,o‘:L From {(B.5) the
expected yleld is given by:

E(Y) » Y (a + ROV + (57 + 00)) (B.8)

Therefore, é,%{_?. > O.l in other words, an increase in c: hag similar
éo
b

effects to a reduction in b: the extremities of the actual yield
function are unchanged but for all weed densitles grealer then zero
the expected yleld is increased. It has already been ghown in
Appendix A that the effect of a reductlon in b on H‘ is ambiguous but

ig ilkely to be & reduction.

B.1.3 Stochastic Weed Kill
Consider the weed kill function:

W= onxp(-cH) [A.1)
This can be approximated by a second order Taylor series
approximation:

W W (a+ B(cH) + y(ch)) {B.7)
where ¢ > 0, B < 0 and 7 > 0. Now let the parameter c¢, which
enicaptures the rate of weed kill, be a random variable c = ¢+ 7
where ¢ ~ N(G,c':). From (B.7} the expected weed density is

given by:
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E(Y) & W (e + fcH + g7 (" + 07)) (B.8)

Therefore, Q_Efg_{ > 0. In other words, an increase in :r: has similar
do
€

effects to a reduction in c; the extremities of the weed kill
function are unchanged but for sll herbicide rates greater then zero
the expected weed density is Increased. It has already been shown in
Appendix A thet the effect of a reduction in ¢ on 11' is ambiguous
but is Iikely to be an increase,

There iz, howevwer, a further impact of stochastic weed kill.
Uncertainty about ¢ leads to uncertainty about ¥ and from B.1.1

R ]
‘?.’.’.2. < 0. Thus uncertainty about weed kill has two opposing effects

ao

“
on H‘: (1) expected weed density is increased, increasing R' and
(11) weed density is made uncertain, decreasing H.. The net effect
depends on the balance of forces; a range of numeric examples has

shown that it can be in elther direction.

B.1.4 Stochastic herbicide rate

The case of stochastic herbicide rate 1s very similar to the
stochastic weed kill example above. Again there are two opposing

responses with an ambiguous net effect.
Consider the weed kill function:

W = W Exp(-cH) (A.1)
This can be approximated by a second order Taylor series
approximation as shown in (B.7). Now let the variable #, the
herbicide rate, be a random variable H = H + & where w ~ N(O,a‘il.

From (B.7) the expected weed density is given by:
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E() » W (a+ ol + 3 (B + o)) (B.9)
Therefore, EE{': > 0. In other words, an Increase in zr: has sinllar
ao '
h

effects to a reduction in ¢, As before, Lhe effect of a reduction in
¢ on \If is ambiguous but iz likely to be an increase.
Again there is a further impact of stochastic weed kill. Uncertainty

»
shout ¢ leads to uncertainty about ¥ and from B.1.1 QE;; < 0. Thus

fe
w
uncertainty about the herbicide rate actually applled has two

opposing effects on H‘ and the net effect can be in elther

direction.

B.2 Rigk averse decision maker

B.2.1 Stochastic Pre-treatment Weed Density

Using a second order Taylor series approximation of ti.e crop demage
function glves the following spproximstion of profit:
2 :
me PY[1-a-@U(l-K -a31-K% -PH-F (B.10)
Let W= W+ ¢ where & ~ N(O,trz). Then:
o ¢ v
E(z) » PY {1 -a~pW(1-K - (0 + ")t -K% -PH-F (B.11)
y o o ] w h
Now let A = PYRB(1 ~ K)W
y o [
and B = PYy(1 - KW
y o ]

Then
var(n) = var(4) + var(B) + covar(4,B) (B.12)
var(4) = [P.Yg(1 - K)1%° (B.13)
var(s) = [P Y y(1 - K)*Jvar(v?) (B.14)

= [PyYor( 1- K)gl(tlazo'i + 20-1) (see proof below)

covar(A,B) = p{P Y B(1 - K)o [P Y |7]|(1 - K)?].stdev(¥®) (B.15)
y o w y o o

10
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Proof that ver(¥’) = 4iPs” + 2%

wds wb ¥ €
; . o0x & o2
ui.. ﬁ; + 2l +e
‘ 2 2
E(W) =W+ of
var(wg) = BEW) - EGY)
E(W2)® can be essily derived; the challenge is E(W)).
w:si?;mﬁﬁc*a?zéa*dﬁas-rc‘
(W) = ¥
E(4lle) = 0
E(6W°c®) = 6WPE(?)
= 60 [E(e)? + o?)
= Bf?o‘z
“
E(47c®) = 4FE(D)
= 0 (¢ is normally distributed and so has zero skewness)
E(e?) = 3a~: (since for £ normal, kurtosis = El(e ~ ue)4]/¢; =3 3
Hogg and Craig 1978)
Thus E(W') = @ + 60" + 30
[ W ]

]
but E{lfz)z =W+ 20%° + ot
1] o " "]

so var(W) = 4ie° + 20°
0 1] w

Q.E.D.

From (B.13), (B.14) and (B.15) it can be shown that:

avar(4) N
o <G

avur(4)
aH

<0

11
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8covar(4, B)
aH

and therefore from (B.12) &—v—g’r-ﬁs—ﬂ <0

which means that given a stochastic initial weed density, risk

< 0 (given p > 0)

aversion increases the optimal herbicide rate and the greater the
degree of rigk aversion, the greater will be K. This can be shown
as follows.
The certainty equivalent value (“cz) can be approximated as follows
{Robison and Barry 1987):

n_ = E(n) - 3 var(n) (B.16)

Where A is the absolute risk aversion coefficient. To find the

certainty equivalent maximising herbicide rate set a"ca 8H equal to

zero:
an
- _CE _ BE(m) _ A gvar(nm) _
let F = 30 C3H "3 a3 - 0 (B.17)

*
g-g-— = - Fh / Fﬂ' where subscripts denote partial derivatives. But

[ 2
FH. < 0 for H' a max. Therefore ol % 0 as F?‘ ;-. 0. Now:

3
- _ 1 8var(w)
FR=-g—g— >0
o
S0 7y > 0.

B.2.2 Stochastic Weed-Free Vield

Consider again the profit functlon:
n=PY{1-Dl~-PH-F
yo h

let Yo= ?o-t T where T ~ N(O.ai). Then:

E(x) =PY[1-Dl -PH-F (B. 18)
y o h
o?(n) = ¢ P°(1 - D)? (B. 19)
y y
from (B.12)
s - - - ~ 7£ 2 .2 _ 2
mg=PYI[1-Dl-PH-F-5d P(1-D (B.20)

12
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Then to find L5 paximising herbicide rate

an
cE aD 2 aD
let F= —2f=-PY g =P + 2 Pj(i -Dgz =0 (B.21)

L
a8 > >
As in the previous section, i 0 as Fh z 0.

2 ab
Ea*u'yl’:(l D)gﬁ<0
80 the greater the degree of risk aversion, the lower the optimal

herbicide rate. Similarly it can be shown that F o2 < 0 and therefore
y

that the greater the variance of weed-free yleld the lower the
optimal herbicide rate.
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