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ABSTRACT 

The classical problem of agricultural productivity measurement has regained interest owing to 
recent price hikes in world food markets. At the same time, there is a new methodological debate 
on the appropriate identification strategies for addressing endogeneity and collinearity problems 
in production function estimation. We examine the plausibility of four established and innovative 
identification strategies for the case of agriculture and test a set of related estimators using farm-
level panel datasets from seven EU countries. The newly suggested control function and dynamic 
panel approaches provide attractive conceptual improvements over the received ‘within’ and 
duality models. Even so, empirical implementation of the conceptual sophistications built into 
these estimators does not always live up to expectations. This is particularly true for the dynamic 
panel estimator, which mostly failed to identify reasonable elasticities for the (quasi-) fixed 
factors. Less demanding proxy approaches represent an interesting alternative for agricultural 
applications. In our EU sample, we find very low shadow prices for labour, land and fixed capital 
across countries. The production elasticity of materials is high, so improving the availability of 
working capital is the most promising way to increase agricultural productivity. 
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Identifying Factor Productivity from Micro-data 
The case of EU agriculture 

Martin Petrick and Mathias Kloss* 

Factor Markets Working Paper No. 34/January 2013 

1. Introduction 

The analysis of factor productivity has been a recurrent theme in economics since its early 
days. Agricultural applications have driven many methodological innovations in this field – 
including the first formulations of marginal productivity theory by Johann Heinrich von 
Thünen in 19th century Germany, early empirical estimations of agricultural technology by 
Tolley et al. (1924) in the United States and the invention of fixed effects regression 
principles by Hoch (1955) and Mundlak (1961). One reason agriculture became such a 
breeding ground for new methodologies was no doubt the availability of microeconomic data, 
which motivated and enabled testing of the new approaches. After World War I, statistical 
agencies started to systematically collect farm data because there was a perceived societal 
need to learn more about a farming sector that was stuck in a deep economic crisis. In 
addition, as Chambers (1988) notes, many economists felt that agricultural technologies 
approximate the key assumptions of production theory – such as diminishing returns to 
factor use and the substitutability of inputs – particularly well. After all, many children’s 
books show vividly how the farmer combines land, labour, seed and fertiliser to obtain a good 
harvest. 

In recent years, exploding food prices on world markets have conspicuously signalled that 
global resources for agricultural production are indeed scarce (FAO, 2009). How farm 
productivity could be raised has recaptured the attention of the global media (e.g. Parker, 
2011) and food riots have been reported in several developing countries. Interestingly, at 
about the same time, a new debate among econometricians about very basic methodological 
issues in measuring productivity at the firm level has gained new momentum. The debate 
departs from a fundamental idea that has been prominent since the days of Cobb and 
Douglas (1928), namely that there is a continuous relationship between inputs and output – 
the production function. Taking this idea for granted, the old question has been raised about 
whether statistical methods exist that can identify how much the various factors actually 
contribute to the joint product. As was recognised early by Marschak and Andrews (1944), 
real world production does not occur in an experimental setting, and unobserved factors – 
e.g. managerial abilities or unexpected weather shocks – do affect its outcomes. How their 
influence could be separated from the more tangible inputs, such as land, labour or capital is 
at the heart of the current debate. It is of key importance for understanding how agricultural 
productivity could be increased. 

Basically two issues have been raised in the recent debate. The first takes input use as a 
control variable that is potentially decided upon simultaneously with other unobserved 
events or may depend on unobserved, omitted variables. This endogeneity problem, albeit a 
classical one, has again moved to centre stage after Olley and Pakes (1996) suggested a non-
parametric control function to proxy these unobserved factors. Bond and Söderbom (2005) 
as well as Ackerberg et al. (2007) raised the question of whether the typical identifying 
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assumptions underlying production function estimation are rich enough to isolate the 
productivities of different variable inputs at all. By addressing this collinearity problem, the 
authors claim that some sort of adjustment cost is necessary to induce an independent 
variation of factors in the first place. Among the most recent contributions to this debate is a 
paper by Gandhi et al. (2011), who try to solve both problems simultaneously – interestingly 
by referring to an empirical strategy that has been around for many decades, the share 
regression. 

In the present paper, we apply the various methodological approaches to an extensive panel 
dataset on European agriculture and scrutinise their arguments in this classical field of 
application. We review the central identifying assumptions maintained by six traditional and 
recent approaches to the estimation of production functions, apply them to our data and ask 
how plausible they are in an agricultural context. These approaches are 1) the calculation of 
factor shares in farm revenue, 2) ordinary least squares (OLS) as the ‘naïve’ estimation 
standard, 3) fixed effects regression, 4) the dynamic panel data estimator by Blundell and 
Bond (2000) as well as the control function approaches by 5) Olley and Pakes (1996) and 6) 
Levinsohn and Petrin (2003). All models are estimated under the assumption of a Cobb 
Douglas technology. For models (2) and (3), we also explore a Translog technology, so that in 
total eight models are estimated. Our study thus attempts to make methodological and 
empirical contributions to the literature. Our methodological contribution is that we provide 
the first comparative evaluation of a number of recently proposed production function 
estimators for agricultural data. Our empirical contribution is a unique and current set of 
estimated production elasticities for eight firm-level datasets at the EU country level. 

While there has been quite some research activity on new approaches to tackle the classical 
challenges of production function estimation, few researchers have engaged in comparative 
evaluation using real world data. Most developers have confined practical application of their 
estimators to datasets from highly specific contexts, if they provide applications at all. For 
example, Blundell and Bond (2000) work with a dataset on US manufacturing firms covering 
the 1980s, which had been the basis of other methodological investigations before. Levinsohn 
and Petrin (2003) use data from Chilean firms that were later also utilised by Ackerberg et al. 
(2006). Kasahara and Rodrigue (2008) take these Chilean data as the basis for various panel 
data estimators including dynamic panel and proxy approaches. There are certainly good 
reasons to control variation that is due to the dataset when evaluating innovative estimators. 
Even so, the ultimate test of their value added can be assessed only after application to 
datasets that are not only of methodological but also topical or policy interest. The present 
study is among the first to apply a whole set of recently discussed estimators to a dataset that 
is politically highly relevant. 

Our European database covers firm-level data from all EU member states that were collected 
following a harmonised procedure in all countries. This is one of the first micro studies of 
agricultural productivity that simultaneously uses firm-level data from several countries for 
comparative purposes. These extensive data allow us to come up with new, country-specific 
estimates of production elasticities and factor shadow prices in agriculture that are 
potentially robust to endogeneity and collinearity issues. We thus extend the results on 
capital productivity presented in a companion study focusing on the credit constraints of EU 
farms (Petrick and Kloss, 2012). While agriculture is a classical field of productivity 
estimation, there has been surprisingly little systematic analysis using the production 
function approach recently. Mundlak (2001) attributes this to the emergence and widespread 
acceptance of duality theory in agricultural economics from the 1970s onwards. This 
approach typically recovers the price elasticity of factor demand but not the production 
elasticities. As Mundlak (2001) notes and as we discuss below, the dual approach is based on 
restrictive theoretical assumptions and is far from being without methodological problems. 
One key expectation from duality was that it would allow a more flexible representation of 
technology, such as that based on the Translog functional form (Shumway, 1995). 
Interestingly, our results show that making the Cobb Douglas production function more 
flexible by adding quadratic and interaction terms does not add much insight. In the OLS 
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case, the results were highly implausible, whereas they differed little from the Cobb Douglas 
for the ‘within’ panel estimator. 

Our empirical estimates suggest that returns to labour, land and fixed capital are low 
throughout our European subsamples. This finding is in contrast to recent estimates by 
Mundlak et al. (2012), according to whom there are significant returns to land and fixed 
capital in a cross-country sample of developing and developed countries. On the other hand, 
our materials elasticity is quite high, above 0.7. This outcome is particularly prominent in the 
Levinsohn/Petrin and Blundell/Bond estimators. In the conceptual part, we argue that both 
estimators provide more plausible identification strategies than the established ‘within’ or 
duality approaches. While the one-period control function model of Levinsohn/Petrin is 
easier to implement empirically, the multiperiod adjustment process implied by the 
Blundell/Bond model is more compelling in an agricultural context. But Blundell/Bond failed 
to produce reasonable results for the fixed variables in most of our country subsamples. 
There is hence a trade-off between the theoretical plausibility and empirical robustness of the 
different identification strategies. 

In the following section 2, we discuss the key identification problems that have provoked 
much of the methodological debate in production function estimation as well as the four 
main assumptions invoked in the literature to address them. Section 3 describes the dataset. 
Section 4 presents the empirical results. Section 5 concludes. 

2. Identification problems in production function estimation and 
approaches to their solution 

2.1 A typology of production factors 

The process of agricultural production serves as a useful illustration of the differing nature of 
production factors. For the ensuing discussion, two characteristics of these factors are of 
particular importance:  

a) their variability or the ease with which they can be adjusted, and  
b) whether they are observed by the econometrician.  

Table 1 differentiates three categories of variability. Among the highly variable factors are 
intermediate inputs, such as seed, fertiliser or concentrate fodder. These factors are typically 
included in farm-level datasets and thus observed by the econometrician (type I factors). In 
economic parlance, they are also called ‘control variables’ because the decision-maker (the 
farmer) can manipulate their level to achieve his/her objectives. Other highly variable control 
variables may be hard to observe from the outside, such as work effort (type IV factors).  

Other important factors are much less variable and are subject to adjustment costs (type II 
and V factors, depending on whether they are observed). For example, land is often available 
in limited quantities only and subject to long-term rental agreements. Agriculture in Europe 
is typically organised in family farms on which labour is often highly immobile (Tocco et al., 
2012) and may be influenced significantly by life-cycle considerations of the farm family 
(Glauben et al., 2009). Agricultural credit markets suffer from informational asymmetries 
and may be characterised by rationing and high transaction costs (see e.g. Benjamin and 
Phimister, 2002; Petrick and Latruffe, 2006). Management has long been recognised as an 
important factor of production that is nevertheless difficult to measure (Mundlak, 1961). 

A final group includes factors that are completely fixed in the long run, such as the 
geographical location of the farm or the quality of its soils (type III and VI factors).  

All the less variable factors – types II, III, V and VI – are called ‘state variables’, as their value 
cannot be modified within a short-term planning horizon. 

As indicated in Table 1, there is an important distinction between the highly variable and 
unobserved factors, types IV and VII. Some of these also come as a surprise to the farmer. 
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They represent exogenous states (shocks) of the environment (type VII factors). How the 
farmer reacts to these shocks, however, will be endogenous (type IV factors). 

Table 1. A typology of production factors in agriculture 

 Highly variable Subject to 
adjustment costs 

Fixed 

Observed by the 
econometrician & 
farmer 

Type I 

Seed, fertiliser, 
chemicals, concentrate, 

livestock numbers 

Type II 

Land, labour, 
machinery, buildings 

Type III 

Geographical location 

Typically unobserved 
by the econometrician 
but known to the 
farmer 

Type IV 

Farmer’s effort, 
reaction to 

environmental shocks  

Type V 

Management abilities, 
human capital of the 

labour force, 
availability of a farm 

successor 

Type VI 

Soil quality, climatic 
conditions 

Unobserved by the 
econometrician & 
unanticipated by the 
farmer 

Type VII 

Weather events, 
rainfall, diseases, legal 

requirements 

– – 

Source: Authors. 

 

2.2 Two problems of identification 

To illustrate the problems involved, we start with a simple model of a farmer wishing to 
produce an aggregate output. Denote ݕ௜௧ the natural logarithm of farm i’s output Y at time t, 
Ait land use of this farm, Lit labour, Kit fixed capital and Mit materials or working capital. 
These four factors of production are observed by the econometrician. ߱௜௧ is an aggregate, 
farm-specific, time-varying factor that is anticipated by the farmer at the time of decision-
making about current production, but unobserved by the econometrician. Without further 
specification, it compounds the effects of factors categorised as types IV to VI in Table 1. ߝ௜௧ is 
a productivity shock not anticipated by the farmer (and not observed, thus type VII), or 
simply measurement error. Assuming a linear structure of the model and the availability of 
panel data containing the observed output and inputs, the econometrician’s problem is to 
recover farm productivity determined by the following equation: 

 
௜௧ݕ ൌ ݂ሺܣ௜௧, ,௜௧ܮ ,௜௧ܭ ௜௧ሻܯ ൅ ߱௜௧ ൅  ௜௧, (1)ߝ

where ݂ሺ. ሻ is the production function.  

Because ߱௜௧ will likely be correlated with the other input choices, estimation of (1) is subject 
to an endogeneity problem (Marschak and Andrews, 1944). The production elasticities of the 
observed factors are not identified because the compound error term ߱௜௧ ൅  ௜௧ is notߝ
identically and independently distributed (i.i.d.). Regressing output on observed input levels 
using OLS and choosing an appropriate functional form for ݂ሺ. ሻ will produce biased 
estimates. In particular, input coefficients will be upward biased if there is serial correlation 
in ߱௜௧. This effect will be stronger the easier it is to adjust input use (Levinsohn and Petrin, 
2003, p. 332). A typical OLS result may be that the coefficients of labour and materials are 
upward biased, while those of land and capital are downward biased. Much of the 
methodological literature on production function estimation is concerned with precisely this 
issue (see the instructive review in Griliches and Mairesse, 1998). 

According to the implicit theoretical setup so far, all observed factors are assumed to be 
control variables and are treated as being fully flexible (as if they all belong to type I). The 
typical assumption in the literature (e.g. Chambers, 1988) is then that output and all factors 
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are traded on perfectly competitive markets, such that on each of the markets all farmers face 
the same price for the traded good. If farmers maximise profits, defined as revenues from the 
sale of output minus the costs of all inputs, and ݂ሺ. ሻ is a monotonous and concave function, the 
canonical decision rule for allocating inputs is identical for all inputs and says that the 
marginal revenue product of each factor should equal its factor price. For example, for 
materials this decision rule is as follows: 

 
௒݌ �௙

�ெ
ൌ  ெ, (2)݌

with pY denoting the price of output and pM that of materials, respectively. Estimation of (1) 
requires the assumption that the technology represented by ݂ሺ. ሻ is identical for all farmers 
included in the estimating sample. If all farmers also face the same price on each of the 
output and input markets, there is nothing in the model that induces heterogeneous factor 
use across farms except for the unobserved ߱௜௧. This is the collinearity problem pointed out 
by Bond and Söderbom (2005) and Ackerberg et al. (2007).1 Factor use across firms varies 
only with the unobserved ߱௜௧, so that again the different production elasticities are not 
identified. 

We now review the main approaches found in the literature to deal with either of these 
identification problems. The discussion is guided by Table 2, which summarises the four 
approaches we distinguish. After introducing each approach, we ask how plausible the 
specific identifying assumption is in the context of agriculture. We then evaluate to what 
extent the two key identification problems presented before are addressed and how the 
resulting estimator can be applied in practice. 

Table 2. Identifying assumptions in production function estimation 

 (A)  
 is ࢚࢏࣓

additively 
separable & 

time invariant 

(B) 
Profit 

maximisation & 
perfect 

competition on 
product & 

factor markets 

(C) 
Heterogeneous 

frictions in 
factor 

adjustments 

(D) 
 evolves ࢚࢏࣓

monotonously 
with an 

observed 
characteristic of 

the firm 

If correct, does 
the assumption 
solve the 
endogeneity 
problem? 

Yes. Yes if prices can be 
used as 

instruments. 

Yes if adjustment 
costs are sufficiently 

heterogeneous 
across inputs. 

Yes. 

Does it solve the 
collinearity 
problem? 

Not without 
further 

assumptions. 

Yes if there is only 
one free input 
(Gandhi et al., 

2011). 

Yes if adjustment 
costs are sufficiently 

heterogeneous 
across inputs. 

Not without 
further 

assumptions 
(Ackerberg et al., 

2006). 

Practical 
implementation 

‘Within’ 
regression to 
sweep out the 
fixed effect. 

Share regression, 
approaches based 

on duality. 

Typically combined 
with assumption 
(A) in a dynamic, 

panel data 
regression model 

using first 
differences. 

Semiparametric 
control function 

approaches using 
investment or 
intermediate 

inputs as proxies. 

  

                                                        
1 A very detailed exposition is given by Ackerberg et al. (2006).  
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Table 2. cont’d 

Remaining 
problems 

Remaining 
variance may be 

too small to 
allow precise 

parameter 
estimation. 

Prices with 
sufficient variation 

may not be 
observed. 

Heterogeneous 
firm-specific 

prices may not be 
exogenous. 

Weak instruments, 
small variance of 

differenced 
variables. 

Zero observations 
for proxies (e.g. 

investment). 
Slowly changing 

unobserved effects 
are not captured. 

Plausibility in 
agriculture 

Limited 
plausibility, as 
farm- & time-
specific effects 
are likely, e.g. 
reactions to 

weather shocks. 

Limited 
plausibility, as 

market 
imperfections on 

labour, land & 
capital markets 

are widespread in 
agriculture. 

Plausible for land, 
labour, fixed 

capital, but less so 
for seed, fertiliser, 
plant protection, 

concentrate, energy. 

Plausible for 
annually 

fluctuating shocks, 
but less so for 

slowly changing 
unobservables, 
such as soil or 
management 

quality. 

Examples in the 
literature 

Widely used. 
See Mundlak 

(1961) and the 
overview in 
Griliches & 
Mairesse 
(1998). 

Widely used. See 
the overview in 
Mundlak (2001) 

and Bonnieux 
(1989) on French 

agriculture. 

Blundell & Bond 
(2000); Hempell 

(2005). No 
agricultural 

applications so far. 

Olley & Pakes 
(1996); Levinsohn 
& Petrin (2003); 

Kazukauskas et al. 
(2010) on Irish 

dairy farms. 

Source: Authors. 

 

2.3 Additively separable, time-invariant firm characteristics 

The key idea of this approach is that ߱௜௧ can be further decomposed into the following 
equation: 

 
߱௜௧ ൌ ௧ߛ ൅ ௜ߟ ൅  ௜௧, (3)ݒ

where ߛ௧ is a time-specific shock that is identical for all farms in t (likely a type VII event), ߟ௜ 
is a farm-specific fixed effect that does not vary over time (a type VI factor), and ݒ௜௧ is the 
remaining farm- and time-specific productivity shock (type VII). Think of ߛ௧ representing 
common weather or policy shocks and ߟ௜ capturing soil quality or time-invariant preferences 
of the manager. In a farming context, ݒ௜௧ may represent local weather conditions that vary 
between farms and years. If they are not anticipated by the manager, ݒ௜௧ is subsumed into ߝ௜௧. 
If the production function is linearly separable in the logs of observed and unobserved 
factors, a commonly used functional form is Cobb Douglas, so that the function can be 
written as ݕ௜௧ ൌ ஺ܽ௜௧ߙ ൅ ௅݈௜௧ߙ ൅ ௄݇௜௧ߙ ൅ ெ݉௜௧ߙ ൅ ௧ߛ ൅ ௜ߟ ൅  ௜௧, with lower case letters denotingߝ
logs, αX the coefficients to be estimated, and ܺ a shorthand for the observed production 
factors ܺ א ሼܣ, ,ܮ ,ܭ  ሽ. Using panel data, a ‘within’ transformation expresses all values asܯ
deviations from farm-specific means and thus eliminates ߟ௜ and all levels from this equation: 

 
௜௧ݕ െ ത௜ݕ ൌ ∑ ௜௧ݔ௑ሺߙ െ ҧ௜ሻ௑ݔ ൅ ௧ߛ ൅ ሺߝ௜௧ െ  ҧ௜ሻ, (4)ߝ

where ݔҧ௜ denotes farm-specific log means over time. The fixed effect is hence ‘swept out’ of 
the equation. Introduced by Hoch (1955) and Mundlak (1961) in a farming context to 
eliminate “management bias” from the equation, this model has found widespread 
application at different levels of aggregation. The effect of ߛ௧ is typically taken into account by 
including time dummies into the model. An alternative to ‘within’ is to estimate the model in 
first differences, as discussed by Wooldridge (2010, pp. 321-6).  
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Mundlak et al. (2012) present a recent application to agricultural productivity at the country 
level where the fixed and year effects alone explained 98.5% of output variation (p. 146). 
Even so, the question remains of whether it is legitimate to assume that ݒ௜௧ is an innovation 
that is orthogonal to observed factor use, such that all unobserved factors are indeed either 
time invariant or the same for all farms. Table 1 suggests that farm- and time-specific 
unobserved effects which the farmer still takes into account when making input decisions 
(type IV and V) are very likely to be relevant. Examples include annual fluctuations in rainfall 
or pest occurrence as well as patterns of livestock health. Furthermore, applications in 
practice have found that the within transformation removes (too) much variance from some 
of the variables, particularly those which display little variation over time (Griliches and 
Mairesse, 1998, pp. 180-5). In agriculture, input levels of the type II production factors of 
land, labour and fixed capital often vary only a little in time. As a consequence, the signal-to-
noise ratio with regard to these factors is reduced and the estimated coefficients are biased 
downwards (Griliches and Hausman, 1986). Finally, without further assumptions, the 
collinearity problem is not addressed at all by this approach. 

2.4 Profit maximisation and perfect competition 

This approach imposes further microeconomic theory upon the data, including its main 
assumptions of profit maximisation and perfect competition on product and input markets. A 

key result of this theory is the first-order condition (2), which multiplied through with 
ெ

௣ೊ௒
 

yields the following (for the case of materials): 

 

�௙
�ெ

ெ
௒

ൌ ௣ಾெ
௣ೊ௒

. (5) 

If one further assumes constant returns to scale, (5) says that the production elasticity of each 
input (left-hand side) is equal to its value share in revenue (right-hand side). All value shares 
add up to one. Given these assumptions, revenue shares of inputs are valid estimators of 
production elasticities. For the simple Cobb Douglas technology, the problem of estimating 
production elasticities has thus been ‘solved’ by the imposition of strong theoretical 
assumptions. Yet, production function estimates of elasticities in agriculture have often been 
found to differ from observed revenue shares (Mundlak, 2001). These differences may even 
be an object of investigation, for example in studies of credit rationing (Petrick, 2005; Petrick 
and Kloss, 2012). Such studies thus require productivity estimation independent of the 
revenue share. 

For more flexible functional forms, (5) has led to the widely applied share regression model. 
For example, if the production function is assumed to be Translog, thus also including 
quadratic and cross terms of the variable inputs in logs, the first order condition yields the 
following share regression (again for the case of materials): 

௜௧ݏ 
ெ ൌ ெߙ ൅ ெெ݉௜௧ߙ ൅ ெ஺ܽ௜௧ߙ ൅ ெ௅݈௜௧ߙ ൅ ெ௄݇௜௧ߙ ൅ ߱௜௧

ெ ൅ ௜௧ߝ
ெ,  (6) 

with ݏ௜௧
ெ ൌ ௣೔೟

ಾெ೔೟
௣೔೟

ೊ ௒೔೟
 the revenue share of materials of firm i at time t, ߙ௑ the direct and cross-

elasticities of the inputs involved, ߱௜௧
ெ the part of the unobserved productivity characteristic 

that affects ݏ௜௧
ெ, and ߝ௜௧

ெ an i.i.d. error term. Such an equation can be derived for all production 
factors, thus constituting a system of equations amenable to estimation by imposing the 
parameter restrictions derived from theory (Berndt and Christensen, 1973; see Bonnieux, 
1989 for an application to French agriculture).  

Note that (6) is still subject to the endogeneity and collinearity of factors. The way out of 
these problems typical of this approach is finding appropriate instruments for the input 
levels. The role of the instruments would be to distil that part out of m, a, l and k that is not 
correlated with ߱௜௧

ெ. In the given theoretical framework, the most natural candidates are 
factor prices, which were used to estimate systems of share equations like (6) by two- and 
three-stage least squares (Antle and Capalbo, 1988). Given the possibility to recover 
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technology parameters also from profit and cost functions by means of duality theory 
(Chambers, 1988), there is now a large body of empirical literature with agricultural 
applications of this approach (see the critical review in Mundlak, 2001).  

Despite the applications in the literature, the use of prices to solve the two identification 
problems must be questioned on both theoretical and empirical grounds. To qualify as 
instruments, prices must not be endogenous to the decision problem of the farmer. This 
condition is usually ensured by the assumption of perfectly competitive markets on which 
atomistic agents have no price-setting power. In agriculture, it may hold for a number of 
output markets, but is very unlikely to prevail on most factor markets. For example, farmland 
markets are known to be characterised by spatial oligopolies and strong government 
regulation in many European countries (Huettel and Margarian, 2009; Ciaian et al., 2012). 
As noted before, agricultural labour is usually very immobile owing to life-cycle 
considerations and specific human capital. Agricultural credit may be rooted in a rationing 
regime that depends on the credit history of the farmer. Hence, factor prices may not be 
exogenous and may depend on the past and current decisions of the farmer. Under such 
conditions, the theoretical model underlying this approach is clearly too simplistic to allow 
straightforward identification of the production function.2 

On the other hand, if factor markets worked at least approximately as postulated by the 
theoretical ideal, there should be little price variation across farms, and thus the value of 
prices for solving the endogeneity and collinearity problems is doubtful. In the first place, 
this is a theoretical argument – on perfect markets, there is no price variation across firms 
and so the different flexible factors are not identified by the data generation process. In fact, 
empirical applications have shown that price variation is indeed often small and may be due 
to quality differentials (Griliches and Mairesse, 1998, p. 189). With regard to agricultural 
labour or land, it may be hard to find appropriate price series at all. 

2.5 Heterogeneous frictions in factor adjustment 

If prices are problematic instruments, another option is to look for a different source of 
exogenous variation that has explanatory power for productivity analysis. One such source 
now routinely employed in the literature on dynamic panel data modelling entails past 
decisions on factor use (Arellano and Bond, 1991; Blundell and Bond, 1998). This literature 
argues that the current variation in input use is caused by lagged adjustment to past 
productivity shocks. It thus introduces the history of input use as a source of identification. 
Such identification is plausible if modifications of input levels are subject to adjustment costs 
(Bond and Söderbom, 2005). This approach effectively turns observed input levels into state 
variables (type II) and makes them subject to an intertemporal optimisation problem. One 
way to account for costly adjustment is to allow serial correlation of the unobserved 
productivity characteristic of the firm, so that it could be written as follows: 

௜௧ݒ  ൌ ௜௧ିଵݒߩ ൅ ݁௜௧, with |ߩ| ൏ 1, (7) 

where ρ denotes the autoregressive parameter and eit an independent mean zero innovation. 
Substituting (7) and (3) into (1), Blundell and Bond (2000) suggest a dynamic production 
function specification that can be estimated with a dynamic panel data estimator: 

௜௧ݕ  ൌ ∑ ሺߙ௑ݔ௜௧ െ ௜௧ିଵሻݔߩ௑ߙ ൅ ௜௧ିଵݕߩ ൅ ሺߛ௧ െ ௧ିଵሻ௑ߛߩ ൅ ሺ1 െ ௜ߟሻߩ ൅ ௜௧ߝ
כ . (8) 

  

                                                        
2 An important step to relax the rigid assumptions of this approach was the introduction of dynamic 
duality in studies of agricultural production (e.g. Thijssen, 1994; Sckokai and Moro, 2009). 
Conceptually, these studies build a bridge to the approaches described in subsequent sections. The 
empirical interest was often no longer on recovering factor productivities, however. 
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Alternatively, this model can be written as follows: 

௜௧ݕ  ൌ ∑ ଵ௑ߨ
௑ ௜௧ݔ ൅ ∑ ଶ௑ߨ

௑ ௜௧ିଵݔ ൅ ௜௧ିଵݕଷߨ ൅ ௧ߛ
כ ൅ ௜ߟ

כ ൅ ௜௧ߝ
כ , (9) 

subject to the common factor restrictions that ߨଶ௑ ൌ െߨଵ௑ߨଷ for all X.  

Blundell and Bond (2000) use lagged levels and differences of inputs as instruments in a 
general methods of moments (GMM) framework to estimate (8). If the ߟ௜ are removed by 
first differencing (FD), this estimator allows the consistent recovery of all input elasticities in 
(1) as well as ρ. Blundell and Bond (2000) suggest the method of minimum distance 
(Wooldridge, 2010, pp. 545-7) to test whether the parameters estimated by the unrestricted 
model (8) conform with the restrictions imposed by (9). 

Note that the within transformation (section 2.3) assumes strict exogeneity of inputs, which 
means that ωit must not be transmitted to any future period (contrary to what is assumed in 
(7)). First differencing to eliminate fixed effects only assumes that input levels are 
sequentially exogenous, i.e. transmission of ωit to the next but one and subsequent periods is 
allowed (Chamberlain, 1982; Wooldridge, 2010, pp. 321-6). FD is thus the typical approach 
to eliminate time-invariant heterogeneity in GMM applications, as it allows input levels 
lagged more than two periods to be used as instruments for contemporaneous differences 
(Arellano and Bond, 1991). Of course, these instruments will only have power if there actually 
is such a transmission (e.g. motivated by adjustment costs). To increase the power of the 
GMM approach, Blundell and Bond (1998) have shown that in addition to past levels, also 
lagged differences of inputs can be used as instruments if their variance is assumed to be 
stationary. This leads to the systems GMM estimator for production functions presented in 
Blundell and Bond (2000) and applied by Hempell (2005). Hempell uses data on German 
service firms from 1994 to 1999. In the empirical application of Blundell and Bond (2000), 
their preferred systems estimator produces a lower employment coefficient and a higher 
capital coefficient than OLS or ‘within’ estimators, thus correcting the expected bias. 

If factor levels can suitably be instrumented by this approach, it addresses both the 
endogeneity and the collinearity problems. Contrary to the duality approach presented in 
section 2.4, it is much more plausible that the instruments proposed here are actually valid in 
an agricultural context. There are important production factors in agriculture that are subject 
to adjustment costs (or ‘transaction costs’; type II variables in Table 1) and such costs should 
be an element in any plausible theory of agricultural factor markets. As the nature of these 
costs is likely to differ among factors (see section 2.1), it is also plausible that different factors 
of production display different dynamic paths of adjustment. This is a favourable condition 
for identification (Bond and Söderbom, 2005). It is only with regard to some intermediate 
inputs (e.g. seed, fertiliser, plant protection, concentrate or energy) that factor use appears to 
be more flexible, such that the assumption of adjustment costs may be harder to justify (type 
I factors). In sum, this estimator is a promising candidate for agricultural applications. 

2.6 Monotonous coevolution of unobserved productivity shocks with 
observed firm characteristics 

The final method to be discussed here avoids the main disadvantage of any fixed effects 
approach to unobserved heterogeneity, which is the typically low variance of the transformed 
variables. At the same time, it does not rely on the strong a priori assumptions about the 
market structure of duality theory to identify the productivity parameters of interest. It rather 
attempts to proxy ߱௜௧ (as a compound type IV-to-VI production factor) by a non-parametric 
control function, which itself contains only observed firm characteristics. Olley and Pakes 
(1996) were the first to suggest log investment (݅௜௧) as an observed characteristic driven by 
߱௜௧: 

 ݅௜௧ ൌ ݅௧ሺ߱௜௧, ݇௜௧ሻ, (10) 

where ݇௜௧ is the pre-determined level of capital use at time t. The latter is assumed to evolve 
according to ݇௜௧ାଵ ൌ ሺ1 െ ሻ݇௜௧ߜ ൅ ݅௜௧, with ߜ the depreciation rate.  
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The function ݅௧ሺ. ሻ can vary over time and is not parametrically restricted except that it needs 
to be monotonous in ߱௜௧. This latter trait allows inversion of this function, so that 

 ߱௜௧ ൌ ℎ௧ሺ݅௜௧, ݇௜௧ሻ,  

where ℎ௧ is now potentially observable and acts as a proxy for ߱௜௧. Furthermore, it is assumed 
that unobserved productivity follows a first-order Markov process: 

 ߱௜௧ ൌ ሾ߱௜௧|߱௜௧ିଵሿܧ ൅   ,௜௧ߦ

where ߦ௜௧ is an innovation (a type VII factor) uncorrelated with ݇௜௧, but possibly correlated 
with the type I factors in the production function. Because ݇௜௧ is a type II factor, the moment 
condition ܧሾ ݇௜௧ߦ௜௧ሿ ൌ 0 can be used to identify ߙ௄. 

Given this setup, estimation proceeds in two stages. The basic idea is to jointly control for the 
influence of k and ω in the first stage and to recover the true coefficient of k as well as ω in 
the second. Referring again to our Cobb Douglas example, all observed factors except capital 
are assumed to be fully variable type I factors. Their elasticities are determined in the first 
stage by substituting ℎሺ. ሻ into the production function and estimating the following: 

௜௧ݕ  ൌ ஺ܽ௜௧ߙ ൅ ௅݈௜௧ߙ ൅ ெ݉௜௧ߙ ൅ ߶௧ሺ݅௜௧, ݇௜௧ሻ ൅  ௜௧, (11)ߝ

where ߶௧ ൌ ௄݇௜௧ߙ ൅ ℎ௧ሺ݅௜௧, ݇௜௧ሻ. In practice, ߶௧ is approximated by a higher order polynomial 
of i and k, which controls for ߱௜௧. As shown in (11), ߶௧ is assumed to be additively separable 
from the remaining variable inputs. Flexible functional forms involving interactions of all 
variable and fixed inputs (such as the Translog) thus cannot be implemented with this 
procedure. 

In the second stage, ߙ௄ is determined in a series of steps (see e.g. Petrin et al., 2004). First, 
using the parameters of ߶௧ and a candidate value for ߙ௄, a prediction ෝ߱௜௧ is computed for all 
periods. Next, ෝ߱௜௧ is regressed on its lagged values to obtain a consistent predictor of that part 
of ω that is free of the innovation ξ. Finally, using the parameters of the variable factors from 
the first stage together with the prediction of the ‘clean’ ߱௜௧ and the moment condition 
௜௧ሿߦሾ ݇௜௧ܧ ൌ 0, a consistent estimate of ߙ௄ can be obtained by minimum distance.3 In their 
original application to the US telecommunications equipment industry, Olley and Pakes 
(1996) show how this procedure yields lower labour coefficients than OLS and higher capital 
coefficients than ‘within’. In the only application to agriculture known to us, Kazukauskas et 
al. (2010) found for Irish dairy farms that the materials coefficient estimated with an 
Olley/Pakes procedure was lower than the OLS result. 

One problem that arises from using investment as a proxy is zero observations for certain 
years and firms. Levinsohn and Petrin (2003) therefore suggested materials instead of 
investment as a proxy of ߱௜௧ in the previous algorithm. Again, the assumption is that 
materials evolve monotonously with the unobserved productivity characteristic, so that the 
effect of the latter can be inverted out. Materials is assumedly a type I factor and thus part of 
the production function. In the Levinsohn/Petrin approach, however, its elasticity cannot be 
estimated in the first stage, as it is now part of ℎሺ. ሻ. Therefore, the additional moment 
condition ܧሾ ݉௜௧ିଵߦ௜௧ሿ ൌ 0 is postulated to obtain ߙெ in the second stage. 

If the control function fully captures the influence of ߱௜௧, it solves the endogeneity problem 
and provides a useful alternative to the fixed effects approaches described before. Yet in 
agriculture, the assumptions on monotonicity and dynamic evolution of the productivity 
shock must be considered with caution. A key question is what exactly ߱௜௧ is representing 
and whether investment or material use are good proxies for it. If ߱௜௧ stands for annually 
fluctuating, unobserved factors (type IV), such as management effort or reaction to 

                                                        
3 This is the algorithm used in the literature subsequent to Olley and Pakes (1996). In the original 
paper, it was combined with an exit and entry mechanism for firms, which we ignore to simplify the 
exposition. 
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environmental conditions, there may be cases where the ‘right behaviour’ of the farmer (i.e. 
positive ߱௜௧) does not lead to more investment. The same is true for materials. The 
productivity-enhancing reaction to environmental shocks in crop production may sometimes 
be less input use (fertiliser, chemicals) rather than more. In all these cases, neither 
investment nor materials will be good proxies of ߱௜௧. Furthermore, the ‘memory-less’ first-
order Markov process appears unconvincing if ߱௜௧ actually represents unobserved type V 
factors that are subject to adjustment costs. They evolve slowly and will typically have 
implications for the intertemporal optimisation problem, so that also ݇௜௧ is affected by them 
and (10) is misspecified. Investment may not be a good proxy for ߱௜௧ if there are other 
important determinants of it beyond ݇௜௧. In a farming context, this is likely to be the case, 
because investment decisions are usually influenced by long-term business strategies or the 
availability of a farm successor (or both). 

Another problem with the procedure suggested by Olley/Pakes and Levinsohn/Petrin is that 
it does not solve the collinearity problem. As discussed at length by Ackerberg et al. (2006), 
unless one is willing to make very unintuitive assumptions on measurement error or timing, 
there is no data generation process that separately identifies the coefficients of the type I 
factors in either of the two approaches. Ackerberg et al. therefore suggest giving up 
estimation of these coefficients in the first stage altogether, and invoke additional timing 
assumptions that justify moment conditions for estimating these coefficients in the second 
stage. In the framework of a Translog specification, Gandhi et al. (2011) propose to estimate 
the coefficient for one free input from a share regression akin to equation (6) and then to 
proceed in a similar way as described in this section to recover the other elasticities. 

Notice that the assumption of costly factor adjustment is a cornerstone of both the dynamic 
panel data approach described in section 2.5 and the present one. In both cases, this 
assumption provides moment conditions necessary for consistent estimation of the 
parameters. The main difference is that the former approach allows time-invariant fixed 
effects, whereas the latter does not. The former imposes a linear structure on the dynamic 
process, while it can be arbitrary in the latter. Even so, factor adjustment is assumed to occur 
in a single period in Olley/Pakes and followers, whereas the process covers many periods in 
the dynamic panel data models. In the context of agricultural applications, this may be one 
key advantage of the dynamic panel data approach.4 

2.7 Interim evaluation of estimation approaches 

The previous discussion has displayed the variety of assumptions invoked for addressing the 
endogeneity and collinearity problems inherent to production function estimation. In our 
opinion, the assumptions underlying ‘within’ regression and the duality approach are fairly 
strong and implausible for the case of agriculture. Perhaps not surprisingly, they have often 
not performed well in estimation practice. This insight shifts our attention to the promising 
new approaches using heterogeneous frictions in factor adjustment. We regard the presence 
of adjustment costs as particularly relevant for the production factors that are of key interest 
in agricultural applications. They also provide an interesting link to more sophisticated 
theories of business structures in agriculture, which usually embody some form of 
adjustment frictions in agricultural factor use (such as Allen and Lueck, 2002 or Pollak, 
1985). So far, there are almost no applications to agricultural data of these new estimators. 
The following sections seek to fill this void. 

3. Data 

The data used in this study are mostly identical to those used in Petrick and Kloss (2012). The 
EU’s Farm Accountancy Data Network (FADN) provides a stratified farm-level dataset that 
holds accountancy data for 25 of the 27 EU member states. The stratification criteria are 

                                                        
4 Other subtle differences between the two approaches are discussed in Ackerberg et al. (2006). 
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region, economic size and type of farming. The farm universe consists of all farms with more 
than one hectare or those with less than one hectare that provide the market with a specified 
amount of output. From this universe all non-commercial farms are excluded in order to 
arrive at the field of observation. To be classified as a commercial farm, a farm must exceed a 
certain economic size. It is measured in economic size units (ESUs). One ESU represents a 
certain amount in euros and is periodically adjusted for inflation. To determine the economic 
size of farms, the concept of standard gross margin is used. In addition, farms are classified 
by type of farming.  

In the present study, we only use field crop farms (TF1), to justify the assumption of a 
homogenous state of technology across farms. As in Petrick and Kloss (2012), we produce 
separate results for the following countries: 

• Denmark (DK),  

• France (FR),  

• Germany East (DEE), 

• Germany West (DEW),  

• Italy (IT),  

• Poland (PL),  

• Slovakia (SK), and the  

• United Kingdom (UK). 

The raw data provided by FADN were arranged in a way that panel data estimators can be 
applied. For every country and sector in the study, we created a panel dataset covering the 
years from 2001 up to 2008. For Poland and Slovakia, FADN data were collected for the first 
time in 2004. Therefore, these panels only cover five years. As we use the opening valuation 
of capital and this is taken from the previous year of observation, the panel size for Poland 
and Slovakia is effectively reduced to four years. A small number of duplicates in the data 
were dropped. In total, 19,722 observations were included in the EU-wide sample. 

The variables and their measurement are readily available in the codebooks provided by 
FADN. Output is measured as the total farm output in euros. Labour is measured by the time 
worked in hours by total labour input on the farm, including both hired and family labour. 
The total utilised agricultural area is our land input in ha. It includes owned and rented land, 
and land in sharecropping. 

A persistent issue in estimating production functions has been the specification of the capital 
variable. Typically, some simple measures of input quantities (such as fertilisers or 
pesticides) and machinery use (such as fuel expenses or tractor hours) are used in cross-
sectional studies. In this study, the material or working capital input is proxied by total 
intermediate consumption in euros. It consists of total specific costs and overheads arising 
from production in the accounting year. Among others, it includes feed, fuel, lubricants, 
water, electricity and seed. Other than in Petrick and Kloss (2012), where we used annual 
depreciation as a capital proxy, but consistent with most of the recent literature on 
production function estimation with firm-level data (such as Olley and Pakes, 1996; Blundell 
and Bond, 2000; Levinsohn and Petrin, 2003), we approximate fixed capital inputs by using 
the opening valuation of assets. In this case, we took the asset value of machinery and 
buildings from the FADN data. 

To calculate revenue shares, we needed factor prices for labour, land and capital. These were 
taken from the actually paid wage to hired farm workers, the actually paid rent per hectare of 
rented land and the actually paid interest per debt capital. As there were many missing 
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values, we calculated median factor prices per region (variable A1) and imputed these to all 
farms in that region. Table 3 summarises the variable definitions and gives the actual FADN 
codes. 

Table 3. Selection of variables 

FADN code Variable description 

Outputs  

SE131 Total output (€) 

Inputs  

SE011 Labour input (hours) 

SE025 Total utilised agricultural area (ha) = land 

SE275 Total intermediate consumption (€) = materials 

L.SE450 + L.SE455 Opening valuation of machinery and buildings (€) = fixed capital 

SE516 Gross investment (€) 

Factor prices  

SE370/SE021 Wage per hour (€) 

SE375/SE030 Land rent per ha (€) 

SE380/SE485*100 Interest on capital (%) 

Note: L. denotes the one-year lag. 

Source: Authors, FADN data. 

All monetary values are deflated to real values in 2005 prices using respective price indices. 
Price indices were extracted from the Eurostat online database and merged with the panels. 
Output was deflated by the agricultural output price index. Fixed capital and investment were 
deflated by the agricultural input price index for goods and services contributing to 
agricultural investment, and materials by the agricultural input price index for goods and 
services currently consumed in agriculture. Revenue shares were all calculated in nominal 
terms. 

Outliers were identified on the basis of the fixed capital productivity per farm (real 
SE131/(real (L.SE450 + L.SE455))). Observations were dropped for the production function 
estimation if their value was beyond the median ± 1.5 of the interquartile range (IQR). 
Furthermore, we only included farms that had some minimum panel representation in the 
data. Farms had to be present in the data for at least four years in a row; in the case of 
Slovakia, they had to be present for at least three years. Descriptive statistics, including the 
data patterns of the panels, are given in the appendix. 

4. Results 

For this study, we estimated eight models per country as summarised inTable 4. For Poland 
and Slovakia, the dynamic panel data model could not be estimated due to a lack of data. The 
‘within’ Translog was obtained by interacting the group-wise demeaned logs of factors and 
using an appropriate degree of freedom correction. Other than by simply calling a panel 
estimation command with the interacted variables in logs, this procedure ensures that levels 
are effectively eliminated from the regression.  
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Table 4. Models estimated 

 DK FR DEE DEW IT PL SK UK 

Output shares X X X X X X X X 

OLS Cobb Douglas X X X X X X X X 

OLS Translog X X X X X X X X 

‘Within’ Cobb Douglas X X X X X X X X 

‘Within’ Translog X X X X X X X X 

Olley/Pakes Cobb Douglas X X X X X X X X 

Levinsohn/Petrin Cobb Douglas X X X X X X X X 

Blundell/Bond Cobb Douglas X X X X X - - X 

Source: Authors. 

Table 5 in the next section displays a summary evaluation of the estimators with regard to the 
estimated production elasticities and returns to scale. The performance of the Translog 
specifications and the dynamic panel data model is given particular attention. Generally, the 
interest was to detect systematic differences across estimators and countries, and to assess 
their practical implementation. Detailed results tables are presented in the appendix, which 
includes an overview table for each country containing the results for the first seven models, 
plus an additional table for each country that includes more in-depth diagnostic results for 
the Blundell/Bond model. 

All estimations were performed with Stata 12. For the Olley/Pakes and Levinsohn/Petrin 
estimators we employed the user-written routine levpet (Petrin et al., 2004). The 
Blundell/Bond estimator was implemented with xtabond2 by Roodman (2009) using the 
h(2) option, and combined with Söderbom’s (2009) md_ar1 minimum distance estimator. 

4.1 Evaluation of estimators 

As a general tendency, factor elasticities were found to be low for labour, land and capital, 
and high for materials (Table 5 and Table 6). Estimates for the first three of these factors are 
in the range of 0.2 and lower, sometimes not significantly different from zero or even 
significantly negative. The production elasticity of materials is typically between 0.7 and 1.0. 

The estimates support the conventional wisdom that OLS tends to be upward biased for 
particularly variable factors. In the present data, this primarily applies to materials, the OLS 
estimate of which is (except for Denmark) higher than its revenue share. It may be taken as 
evidence for the existence of serially correlated, unobservable factors (Olley and Pakes, 1996, 
p. 1274).  

The opposite bias is found for capital in the ‘within’ estimator, which is typically below the 
revenue share. This tendency is also in line with previous studies and can be attributed to the 
low variance of capital over time (Griliches and Hausman, 1986). 

The Olley/Pakes estimator does not commonly produce a lower elasticity for materials than 
OLS. Levinsohn/Petrin does this in some cases (West Germany, Italy and Poland). 
Olley/Pakes and OLS estimates are typically very similar. Estimating the Olley/Pakes model 
always led to a loss of observations due to missing investment data. This was particularly 
severe in the cases of Italy and Poland. These tendencies are basically in line with the findings 
of Kasahara and Rodrigue (2008) for a Chilean plant-level dataset. The Levinsohn/Petrin 
model may thus be taken as a plausible alternative to the received estimators if one is willing 
to accept the theoretical problems in identification of labour and land (which the other 
estimators except for the Blundell/Bond share).  
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Estimated elasticities of scale fluctuate around 1.0, with higher values for Denmark and the 
UK. Given the previous findings on production elasticities, OLS estimates tend to be higher 
than 1.0 while ‘within’ tend to be lower. Overall, the scale elasticity in European crop farming 
appears to be close to one. 

We report the production elasticities estimated by the Levinsohn/Petrin procedure for all 
subsamples in Table 6 and compare them with two rather distinct benchmark studies. Heady 
and Dillon (1961) is an early collection of OLS Cobb Douglas production function estimates. 
It is based on farm-level data from 32 countries all over the world, with a focus on North 
America, Australia and India, and represents one of the most comprehensive collections of 
production elasticity estimates ever published (p. 630). Table 6 simply reports the overall 
mean elasticities of all 32 studies. It should be noted that these studies display considerable 
variation among themselves (see the extensive discussion in Heady and Dillon, 1961, pp. 585-
643). Mundlak et al. (2012) is a recent cross-country regression of a Cobb Douglas 
production function based on the ‘within’ estimator. The authors use data from 30 
developing and developed countries for 1972–2000. Without aiming at a substantial 
interpretation of the differences between these varying studies, Table 6 nevertheless serves to 
illustrate a number of interesting tendencies: 

• A comparatively low production elasticity of labour prevails throughout the EU samples 
and was also found by Heady and Dillon as well as Mundlak et al. 

• The production elasticity of land is much lower in the EU than in the benchmark studies. 

• The production elasticity of materials is much higher in the EU than in the benchmark 
studies. 

• The production elasticity of fixed capital is much lower in the EU than in Mundlak et al. 
(2012). 

• Returns-to-scale estimates fluctuate at around 1.0 throughout. 

• The Mundlak et al. study reveals remarkably low elasticities for labour and materials. The 
low materials coefficient can be explained by the fact that the dependent variable in their 
model is value added. Despite the use of the ‘within’ approach, the capital elasticity is 
surprisingly high. 

Returning to the comparison of estimators for the EU samples, the results based on the 
Translog specification display remarkably uniform features across countries. The OLS 
Translog produced unreasonable results throughout, e.g. reflected in the coexistence of 
negative production elasticities for some factors and elasticities bigger than one for others (at 
sample means). The ‘within’ Translog elasticities, on the other hand, were at sample means 
typically close to the ‘within’ Cobb Douglas, and the interaction terms of the Translog were 
often not jointly different from zero.  

The performance of the Blundell/Bond estimator was examined in some detail for the six 
longer samples. We present the results for the unrestricted and the restricted models along 
with Arellano-Bond tests for serial correlation of error terms. If the model is correctly 
specified, the test should reject autocorrelation of order one but not of order two (Arellano 
and Bond, 1991). We also apply Hansen’s over-identification (OID) test for instrument 
validity (Hansen, 1982). While serial correlation of the error terms was never a problem for 
the models and the common factor restriction was never rejected, the Hansen OID test of 
instrument validity was not passed in three cases.  
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Table 5. Summary evaluation of estimator performance 

 DK FR DEE DEW IT PL SK UK 

Factor 
elasticities  

All OLS below 
shares; 

materials 
below shares 
throughout 

CD; capital=0 
in ‘within’ & 

OP  

Land<0 in OLS, OP, 
LP, BB; materials 
above shares in 

OLS, OP, LP, BB; 
capital<0.1 in 

shares, ‘within’, OP, 
BB 

Labour=0 
throughout; 

land<0 in OLS, 
OP, LP; 

materials≥1.0 in 
OLS, OP, LP; 
capital≈0 in 

‘within’, OP, LP, 
BB 

Materials above 
shares in OLS & OP, 
lower in ‘within’ & 
BB; capital≈0 in 
‘within’, OP, LP, 

higher in BB 

Land≤0 in OLS, 
OP, LP, BB; 

materials above 
shares in OLS, 

OP, BB; 
capital<0.1 in 
OLS, =0 in all 

other CD 

Land=0 in 
OLS, OP, LP; 

materials 
above shares in 

OLS, OP, LP, 
lower in 
‘within’; 

capital<0.1 in 
shares, 

‘within’, OP. 

Labour≤0 
throughout; 

land varying; 
materials 

above shares 
in OLS, OP, 
LP, lower in 

‘within’; 
capital=0 in 
‘within’, OP, 

LP 

Land<0.1 in 
OLS, OP, LP; 

materials above 
shares in OLS, 

OP, LP; 
capital≤0.1 
throughout 

Returns to 
scale 

Shares add up 
to 2.18; OLS, 
OP, LP lower 

but still>1; 
‘within’ close 
to 1; 1.2 in BB  

Close to 1.0 
throughout 

Close to 1.0 in 
OLS, ‘within’, OP, 

LP; 0.9 in BB 

1.1 in OLS, <1 in 
‘within’, OP, LP, BB 

Shares add up 
to 1.71; OLS, OP 
≈1.1; ‘within’, 

LP <0.9; 
BB=0.5 

OLS & LP >1; 
‘within’, OP <1 

OLS, LP <1; 
‘within’, 
OP<0.8 

OLS, ‘within’, 
OP, LP≈1.2; 

BB=0.5 

Performance 
of Translog  

OLS 
unreasonable; 
‘within’ close 

to CD  

OLS unreasonable; 
‘within’ close to CD  

OLS 
unreasonable; 

‘within’ close to 
CD  

OLS unreasonable; 
‘within’ close to CD; 
interactions not sig.  

OLS 
unreasonable; 

‘within’ close to 
CD  

OLS 
unreasonable; 

‘within’ close to 
CD; 

interactions 
not sig.  

OLS 
unreasonable; 
‘within’ close 

to CD; 
interactions 

not sig.  

OLS 
unreasonable; 

‘within’ close to 
CD; interactions 

not sig.  

Blundell/ 
Bond 
estimator 

Specification 
tests ok; 

output highly 
persistent; 

levels better 
instrumented 

than diff. 

OID not passed; 
land, mat., capital, 

output highly 
persistent; levels 

better instrumented 
than diff. 

Specification tests 
ok; land, mat., 
output highly 

persistent; levels 
better 

instrumented 
than diff. 

OID not passed; 
labour, land, mat. 
highly persistent; 

capital, output 
explosive; levels 

better instrumented 
than diff. 

OID not passed; 
labour, capital 

highly 
persistent; land 

& output 
explosive; poor 

instrumentation 

- - Specification 
tests ok; labour, 

land, capital 
highly 

persistent; mat. 
& output 

explosive; poor 
instrumentation 

Data issues - - - - Few 
observations for 

investment 

Few 
observations 

for investment 

Small sample - 

Notes: BB: Blundell/Bond, CD: Cobb Douglas, LP: Levinsohn/Petrin, OID: over-identification test, OLS: ordinary least squares, OP: Olley/Pakes. 

Source: Authors. 
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Table 6. Production elasticities in comparison 

 DK FR DEE DEW IT PL SK UK Heady 
Dillon 
(1961) 

Mundlak 
et al. 

(2012) 

Labour 0.45 0.18 0.04# 0.23 0.30 0.21 -0.10# 0.18 0.21 0.01# 

Land 0.18 -0.05 -0.13 -0.06 -0.05 0.01# -0.15# 0.08# 0.38 0.44 

Materials 0.63 0.83 1.00 0.64 0.55 0.70 1.00 0.83 0.39 0.10 

Capital 0.12 0.11 0.15# 0.13 0.02# 0.13 0.17# 0.11 - 0.46 

Ret. to scale 1.38 1.06 1.06 0.94 0.82 1.05 0.91 1.20 0.98 1.00* 

* Imposed on the model  

# Not significantly different from zero at conventional confidence levels 

Notes: Results are for field crop farms in EU countries are based on the Levinsohn/Petrin estimator. Heady 
and Dillon (1961) represents the mean elasticities from a sample of 32 cross-sectional Cobb Douglas 
estimates originating from various countries (their table 17.15). Mundlak et al. (2012) is based on a cross-
country regression of 30 countries for 1972–2000, using value added as a dependent variable and the 
‘within’ estimator (their table 2, first column). 

Source: Authors. 

To allow further diagnosis, simple autoregressive models of order one (AR(1)) were estimated 
separately for all factors and output, following Blundell and Bond (2000). Labour and land 
were found to be highly persistent, which makes dynamic panel data estimation a natural 
option. Moreover, we regressed the differences of the latest available year on the lagged levels 
of all available previous years and the latest available levels on all available lagged differences 
of previous years. The reported p-values and coefficients of determination allow an insight 
into the explanatory power of the instrument sets. Generally, the instrument performance 
was better for levels (instrumented by differences) than for differences (instrumented by 
levels). System GMM approaches that use not only differences but also levels for 
instrumentation (Blundell and Bond, 1998) are thus warranted. Even so, the elasticities of 
the persistent factors of labour, land and capital often could not be identified. Parameters 
were very sensitive to the selection of the sample and the precise specification of the 
estimator. Occasionally, dynamic factor evolution apparently followed an explosive process, 
as the AR(1) coefficient was estimated to be bigger than one. On the other hand, the estimates 
for materials appear very reasonable throughout, as they were typically lying somewhere 
between the OLS and ‘within’ results. It is here where the Blundell/Bond estimator can likely 
claim some superiority.  

There are some noteworthy findings for Denmark compared with the other countries. 
Denmark was the only country where materials elasticity was lower than the materials’ 
revenue share. Shares add up to the extremely high value of 2.18 (which is actually 
inconsistent with the interpretation as shares). This outcome may be an artefact of imputed 
factor prices that are systematically higher than those for other countries. The unbalanced 
panel pattern of Denmark made it difficult to perform the diagnostic regressions on the 
explanatory power of the lagged instruments in the Blundell/Bond approach. Even so, 
estimation of the persistent factors of labour, land and capital produced more satisfying 
results for Denmark than for the other countries. 

4.2 Distribution of shadow prices 

To ease the economic interpretation of the findings, we computed farm-individual shadow 
prices for all the farms used in the estimations. To this end, we multiplied the production 
elasticities obtained from the Levinsohn/Petrin estimator (Table 6) with the farm-specific 
(average) factor productivities. For the two capital variables, net returns equal to the 
marginal value product minus one were calculated (Petrick and Kloss, 2012, p. 2). The 
distribution of the shadow prices for the four factors and the eight subsamples is illustrated 
in Figures 1-4 by using box plots. In a box plot, the line dividing the box into two equal parts 
represents the median, while the first and third quartiles of the distribution define the lower 
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and upper limits of the box. The lower and upper whiskers are limited by the adjacent values 
defined as first (third) quartiles minus (plus) 1.5 times the IQR.  

The findings from the box plots are not too surprising given the results presented in the 
previous section. The shadow prices of the factors of labour, land and fixed capital tend to be 
quite low. The median shadow wage in agriculture is below €9/hour in France, West 
Germany and the UK; in East Germany, Italy and Poland it is below €2/hour and in Slovakia 
even negative. Denmark stands out with a value of almost €20/ha. Shadow land rents are 
only minimally different from zero throughout. Shadow prices of fixed capital are negative in 
all subsamples, with medians per country in the range of -85 to -100%. There is considerable 
variation for some of the subsamples, and outside values beyond the adjacent values were not 
displayed. 

The box plots on the shadow interest rate of materials deserve a closer look. It is here where 
median rates are in a range above typical interest rates for external capital, notably in France, 
East Germany, Italy, Slovakia and the UK. Given the wide variation of outcomes, there are 
many farms displaying shadow rates well above typical market interest rates in all countries. 
This finding hints at the existence of funding constraints with regard to working capital. It 
qualifies our conclusion in Petrick and Kloss (2012), according to which there was little 
evidence of credit rationing with regard to working capital in EU agriculture. A closer 
inspection of the reasons for the different findings reveals that our earlier study used the 
‘within’ estimator, whereas the results here are based on Levinsohn/Petrin. As shown in the 
results tables in the appendix, the production elasticity from the ‘within’ estimator is lower 
than the Levinsohn/Petrin model in all subsamples, which is likely to be the immediate cause 
of the lower shadow prices reported in Petrick and Kloss (2012). Higher materials coefficients 
are also supported by the Blundell/Bond estimates, as far as they are available.  

Figure 1. Shadow wage: Distributions per country 

 
Note: Farm-specific predictions based on the Levinsohn/Petrin Cobb Douglas model. 

Source: Authors based on FADN data. 

-1
0

0
10

20
30

40
50

60
S

ha
do

w
 w

ag
e 

(E
U

R
/h

ou
r)

DK FR DEE DEW IT PL SK UK
excludes outside values



IDENTIFYING FACTOR PRODUCTIVITY FROM MICRO-DATA: THE CASE OF EU AGRICULTURE | 19 

Figure 2. Shadow land rent: Distributions per country 

 
Note: Farm-specific predictions based on the Levinsohn/Petrin Cobb Douglas model. 

Source: Authors based on FADN data. 

Figure 3. Shadow interest rate of materials: Distributions per country 

 
Note: Farm-specific predictions based on the Levinsohn/Petrin Cobb Douglas model. 

Source: Authors based on FADN data. 
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Figure 4. Shadow interest rate of fixed capital: Distributions per country 

 
Note: Farm-specific predictions based on the Levinsohn/Petrin Cobb Douglas model. 

Source: Authors based on FADN data. 

5. Conclusions 

The aim of this study has been to provide a comparison of innovative production function 
estimators and to apply them to a recent firm-level dataset representing the agricultural 
sector of seven EU countries. The starting point of our analysis has been the recently revived 
debate in the literature on how the classical identification problems of endogeneity and 
collinearity could be addressed. By introducing a typology of production factors in 
agriculture, we argue that their adjustment flexibility over time and whether the 
econometrician observes them are of crucial importance for the choice of an appropriate 
estimator. 

On theoretical grounds, we show that the assumptions underlying ‘within’ (fixed effects) 
regression and the duality approach are fairly strong and implausible for the case of 
agriculture. ‘Within’ approaches neglect the potentially important unobserved factors that 
vary over time. Duality relies on the short-term profit maximisation of agents and perfect 
competition on output and factor markets. In agriculture, these conditions are unlikely to be 
met. Perhaps not surprisingly, these approaches often have not performed well in estimation 
practice.  

This insight shifted our attention to more innovative approaches using heterogeneous 
frictions in factor adjustment for identification. In light of the comprehensive literature on 
adjustment frictions on rural land, labour and capital markets, we regard the presence of 
adjustment costs as particularly relevant for the production factors that are of key interest in 
agricultural applications. Olley and Pakes (1996), Blundell and Bond (2000) and Levinsohn 
and Petrin (2003) all base their identification strategy on adjustment frictions in factor 
allocation, which seems to be an a priori plausible approach. The main difference is that 
Blundell/Bond allow time-invariant fixed effects, whereas Olley/Pakes and Levinsohn/Petrin 
do not. The former impose a linear structure on the dynamic process, while it can be arbitrary 
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in the latter. Even so, factor adjustment is assumed to occur in a single period in the proxy 
approaches, whereas the process potentially covers many periods in the dynamic panel data 
models. In agricultural applications, this is a conceptual advantage of the Blundell/Bond 
approach. Adjustments of land, labour and capital are typically of an intertemporal nature, 
which is not appropriately covered by a one-year lag. Furthermore, Olley/Pakes and 
Levinsohn/Petrin do not satisfactorily address the problem of collinearity in production 
function estimation. These approaches regard labour and land as fully flexible production 
factors for which there is no source of identifying variance across observations (Ackerberg et 
al., 2006). 

In the empirical section, we provide results for revenue shares, OLS Cobb Douglas and 
Translog, ‘within’ Cobb Douglas and Translog, as well as Olley/Pakes, Levinsohn/Petrin and 
Blundell/Bond Cobb Douglas models. Each model was estimated separately for panels of 
field crop farms in Denmark, France, East and West Germany, Italy, Poland, Slovakia and the 
UK. Owing to a lack of data, the Blundell/Bond model could not be implemented for Poland 
or Slovakia. We also provide shadow price calculations for all four factors per country, based 
on the Levinsohn/Petrin estimates. 

Compared with the revenue shares, OLS and ‘within’ display the biases expected from the 
literature. OLS typically overestimated the variable factor materials, while ‘within’ 
underestimated the relatively fixed factor of capital. Extending the received Cobb Douglas 
specification to a Translog generally did not provide illuminating insights. Either the results 
were obviously implausible or little different from Cobb Douglas. 

Olley/Pakes tended to be close to OLS and thus did not address the biases. Moreover, it 
suffered from missing investment data. Levinsohn/Petrin produced more plausible results 
and may be taken as an easy-to-implement alternative to the received estimators. Given the 
conceptual problems in identifying the supposedly flexible inputs of labour and land, which 
the other estimators except for Blundell/Bond share, this is certainly only a second-best 
choice. 

The Blundell/Bond estimator could be implemented with sufficiently long panels, but did not 
always perform satisfactorily. The combined first-difference and instrumental variable 
approach of this estimator goes a long way in trying to get rid of all the factors perturbing an 
unbiased estimation of productivity. Its assumptions on adjustment costs are theoretically 
very plausible and could be empirically supported for labour, land and capital. Yet, there is 
evidence that in agriculture this approach overshoots the mark. This is because adjustment 
costs are so high and factor evolution is so persistent that, despite using the systems GMM 
approach of Blundell and Bond (1998), there is often too little variance left for identification. 
It is only with regard to materials that this estimator appeared to produce reasonable 
estimates. 

Our estimates show a consistent picture of very low production elasticities for labour, land 
and fixed capital, whereas the elasticity of materials is above 0.7 throughout. As a 
consequence, shadow prices for the three fixed factors are also very low. The median shadow 
wage in agriculture is below €9/hour in France, West Germany and the UK; in East Germany, 
Italy and Poland it is below €2/hour and in Slovakia even negative. Shadow land rents are 
typically close to zero. The net return on fixed capital is in the range of -80 to -100%. This 
finding suggests an excess capacity of fixed production factors in EU agriculture. A further 
outflow of factors may be necessary to bring returns up to factor remuneration in other 
sectors. 

The Levinsohn/Petrin estimates used to calculate these figures shed a different light on the 
shadow price of working capital (materials). Other than in the computations based on a 
‘within’ estimator presented in Petrick and Kloss (2012), the shadow return on working 
capital is often above typical market interest rates for capital. The higher elasticity for 
materials is also supported by the Blundell/Bond estimates. This finding suggests that credit 
rationing is an issue on agricultural finance markets in the EU, particularly with regard to 
short-term lending. In other words, improving the availability of working capital is the most 
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promising way to increase agricultural productivity, whereas land, labour and fixed capital 
are not among the bottleneck factors of EU arable farming. 

Summing up the methodological insights of this analysis, the recently suggested approaches 
to the estimation of production functions provide attractive conceptual improvements over 
the received ‘within’ and duality models. Using adjustment costs for the identification of 
factor use seems particularly plausible in a sector like agriculture, in which long-lasting 
adjustment frictions in land, labour and capital have been recognised for a long time. Even 
so, empirical implementation of the conceptual sophistications built into these estimators 
does not always live up to expectations. This is particularly true for the dynamic panel 
estimator suggested by Blundell and Bond (2000), which mostly failed to identify reasonable 
elasticities for the (quasi-) fixed factors. Less demanding proxy approaches, such those 
related to Levinsohn and Petrin (2003), represent an interesting alternative for agricultural 
applications. 
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Appendix: Data & results tables 

Table A1. Descriptive statistics 

 Denmark  France  Germany (East) 
 Mean SD Min Max  Mean SD Min Max  Mean SD Min Max 

Output (ths €) 183.3 278.2 3.1 2733.4  158.4 115.9 5.2 1574.7  550.2 1020.0 5.5 9242.1 

Labour (ths hours) 2.8 3.9 0.1 49.0  3.1 2.3 1.2 38.2  15.4 29.6 2.2 268.1 

Land (ha) 123.4 174.0 3.3 1760.0  144.9 83.2 3.6 647.4  540.9 648.3 2.3 5155.9 

Materials (ths €) 109.4 167.2 6.9 1844.0  104.8 64.5 5.7 698.9  385.6 686.5 15.8 6534.7 

Capital (ths €) 868.1 1431.4 42.3 21381.0  158.8 127.3 2.8 1379.8  509.6 725.4 14.7 6591.7 

Investment (ths €) 62.9 372.6 -4840.9 5688.0  36.0 58.6 -697.3 903.9  98.4 175.5 -945.8 1615.4 

Wage (€/hour) 17.4 0.0 17.4 17.4  10.6 0.6 9.3 14.1  9.3 0.9 8.1 10.4 

Land rent (€/ha) 370.7 0.0 370.7 370.7  137.4 36.7 99.9 949.7  144.5 35.0 89.2 179.3 

Interest on capital (%) 5.8 0.0 5.8 5.8  3.6 0.4 2.9 4.5  3.8 0.3 3.4 4.5 

No. of observations* 818  5330  1448 

No. of farms 209  1031  292 

      

 Pattern Frequency  Pattern Frequency  Pattern Frequency 

 ...1111. 6  ....1111 237  ....1111 48 

 ...11111 8  ...1111. 36  ...1111. 18 

 ..1111.. 93  ...11111 176  ...11111 16 

 .1111... 39  ..1111.. 69  ..1111.. 39 

 .11111.. 108  ..11111. 76  ..11111. 140 

 .1111111 6  ..111111 370  ..111111 90 

 1111.... 120  .1111... 48  .1111... 33 

 11111... 112  .11111.. 68  .11111.. 12 

 111111.. 320  .111111. 40  .111111. 25 

 1111111. 6  .1111111 384  .1111111 84 

    1111.... 321  1111.... 18 

    11111... 360  11111... 172 

    111111.. 370  111111.. 45 

    1111111. 318  1111111. 330 

    11111111 2457  11111111 378 

* Except for investment  
Source: Authors based on FADN data. 



IDENTIFYING FACTOR PRODUCTIVITY FROM MICRO-DATA: THE CASE OF EU AGRICULTURE | 27 

Table A1. Descriptive statistics cont’d 

 Germany (West)  Italy  Poland 

 Mean SD Min Max  Mean SD Min Max  Mean SD Min Max 

Output (ths €) 152.7 140.0 12.8 2114.7  61.4 124.8 0.8 2165.2  40.1 50.5 0.9 904.6 

Labour (ths hours) 4.1 3.4 1.1 93.9  3.6 4.5 0.0 98.7  4.5 3.1 0.6 43.2 

Land (ha) 93.6 61.1 0.5 429.5  44.6 74.9 0.6 723.3  49.0 62.7 1.6 666.1 

Materials (ths €) 97.4 74.5 11.4 789.5  28.3 59.9 0.5 1102.5  23.5 29.8 1.4 500.5 

Capital (ths €) 152.5 125.6 11.1 1008.0  121.4 227.3 2.7 4360.4  81.3 81.9 4.5 999.6 

Investment (ths €) 33.4 90.9 -369.1 2806.1  35.0 122.2 -1725.7 1687.6  12.6 30.2 -393.9 234.7 

Wage (€ per hour) 7.6 0.9 6.3 10.5  7.4 1.5 5.0 11.5  1.4 0.1 1.3 1.5 

Land rent (€ per ha) 254.3 57.6 63.4 314.3  184.9 96.1 61.1 500.0  37.0 7.7 21.2 44.0 

Interest on capital (%) 4.2 0.4 3.4 4.9  6.2 2.2 3.0 13.3  2.5 0.0 2.4 2.5 

No. of observations* 3030  5053  3090 

No. of farms 573  1362  1030 

      

 Pattern Frequency  Pattern Frequency  Pattern Frequency 

 ....1111 165  ....1111 282  1111 3090 

 ...1111. 15  ...1111. 1,230    

 ...11111 112  ...11111 2,668    

 ..1111.. 18  ..1111.. 33    

 ..11111. 16  ..11111. 40    

 ..111111 215  ..111111 80    

 .1111... 48  .1111... 15    

 .11111.. 68  .11111.. 20    

 .111111. 40  .111111. 20    

 .1111111 462  .1111111 42    

 1111.... 96  1111.... 111    

 11111... 152  11111... 108    

 111111.. 145  111111.. 150    

 1111111. 162  1111111. 114    

 11111111 1316  11111111 140    

* Except for investment  

Source: Authors based on FADN data. 
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Table A1. Descriptive statistics cont’d 

 Slovakia  United Kingdom 
 Mean SD Min Max  Mean SD Min Max 

Output (ths €) 531.4 538.2 11.5 2228.1  281.0 342.3 8.7 3548.6 

Labour (ths hours) 37.6 39.0 1.3 176.7  6.2 5.2 0.3 51.8 

Land (ha) 776.3 735.7 30.2 3299.6  249.3 182.2 17.8 1178.5 

Materials (ths €) 403.0 378.3 9.6 1709.7  183.1 169.3 12.6 1606.1 

Capital (ths €) 836.0 1129.2 8.1 5869.2  236.6 214.7 10.0 1522.9 

Investment (ths €) 97.0 196.8 -689.9 1743.0  69.1 165.9 -513.8 2496.2 

Wage (€ per hour) 3.1 0.0 3.1 3.1  10.9 0.3 9.1 11.2 

Land rent (€ per ha) 32.6 0.0 32.6 32.6  197.4 13.7 172.9 206.9 

Interest on capital (%) 9.9 0.0 9.9 9.9  4.7 0.3 4.2 5.2 

No. of observations* 146  807 

No. of farms 56  189 

    
 Pattern Frequency  Pattern Frequency 

 .111 24  ....1111 102 

 111. 20  ...1111. 24 

 1111 102  ...11111 116 

    ..1111.. 30 

    ..11111. 28 

    ..111111 85 

    .1111... 42 

    .11111.. 56 

    .111111. 45 

    .1111111 138 

    1111.... 9 

    11111... 16 

    111111.. 5 

    1111111. 6 

    11111111 105 

* Except for investment  

Source: Authors based on FADN data.
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Table A2. Results of production function estimations, Denmark 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.479*** 0.318 0.461*** 0.035 0.958*** 0.265 0.205*** 0.048 0.203*** 0.029 0.472*** 0.033 0.453*** 0.042 

Land 0.411*** 0.230 0.191*** 0.033 0.802** 0.369 0.254*** 0.073 0.252*** 0.045 0.132** 0.064 0.184*** 0.060 

Materials 0.820*** 0.438 0.587*** 0.033 0.237 0.346 0.582*** 0.054 0.580*** 0.031 0.586*** 0.049 0.626*** 0.115 

Capital 0.470*** 0.368 0.136*** 0.025 1.120*** 0.301 -0.033 0.040 0.001 0.023 -0.001 0.065 0.118** 0.056 

N 818 818 818 818 818 659 818 

Elasticity of scale 1.375*** 0.015   1.008*** 0.078   1.189*** 0.062 1.381*** 0.279 

p-value const. ret. to scale <0.001  0.919  0.036 0.051 

R² 0.950 0.957 0.598 0.599   

p-value coeff. jointly zero <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

p-value interact. terms jtly zero  <0.001  0.037   
 

Table A3. Results of production function estimations, France 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.245*** 0.002 0.161*** 0.008 -0.206 0.210 0.105*** 0.030 0.101*** 0.014 0.166*** 0.014 0.175*** 0.010 

Land 0.134*** 0.064 -0.040*** 0.009 0.145 0.129 0.265*** 0.064 0.274*** 0.029 -0.051*** 0.013 -0.052*** 0.013 

Materials 0.695*** 0.211 0.874*** 0.013 1.477*** 0.226 0.629*** 0.042 0.585*** 0.018 0.852*** 0.018 0.827*** 0.057 

Capital 0.037*** 0.025 0.142*** 0.007 0.109 0.143 0.037*** 0.012 0.032*** 0.006 0.062*** 0.016 0.106*** 0.013 

N 5330 5330 5330 5330 5330 4696 5330 

Elasticity of scale 1.137*** 0.008   1.036*** 0.054   1.030*** 0.029 1.055*** 0.0642 

p-value const. ret. to scale <0.001  0.508  0.245 0.367 

R² 0.877 0.882 0.507 0.494   

p-value coeff. jointly zero <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

p-val. interact. terms jtly zero  0.016  0.003   

*** (**, *) significant at the 1% (5%, 10%) level, based on standard errors robust to clustering in groups   

Notes: Year dummies are included in all models. Standard errors in Olley/Pakes and Levinsohn/Petrin are based on bootstrapping with 20 replications. 

Source: Authors. 
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Table A4. Results of production function estimations, Germany (East) 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.337*** 0.305 -0.009 0.021 -0.039 0.194 0.030 0.031 0.023 0.015 0.043 0.045 0.043 0.042 

Land 0.209*** 0.130 -0.111*** 0.029 1.38*** 0.189 0.378*** 0.063 0.433*** 0.031 -0.125*** 0.045 -0.131*** 0.045 

Materials 0.796*** 0.297 1.088*** 0.028 0.260 0.301 0.596*** 0.054 0.607*** 0.028 1.077*** 0.038 1.000*** 0.087 

Capital 0.054*** 0.042 0.109*** 0.017 0.403 0.285 0.008 0.024 -0.031*** 0.011 -0.052 0.047 0.152 0.139 

N 1448 1448 1448 1448 1448 1300 1448 

Elasticity of scale 1.076*** 0.008   1.011*** 0.067   0.943*** 0.075 1.06*** 0.186 

p-value const. ret. to scale <0.001  0.868  0.186 0.738 

R² 0.950 0.956 0.525 0.509   

p-value coeff. jointly zero <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

p-val. interact. terms jtly zero  <0.001  <0.001   
 

Table A5. Results of production function estimations, Germany (West) 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.259*** 0.167 0.210*** 0.012 -0.755** 0.331 0.093*** 0.027 0.090*** 0.013 0.207*** 0.021 0.226*** 0.021 

Land 0.178*** 0.103 -0.052*** 0.010 1.106*** 0.198 0.252*** 0.051 0.265*** 0.023 -0.053*** 0.021 -0.055*** 0.020 

Materials 0.681*** 0.199 0.871*** 0.014 1.266*** 0.253 0.499*** 0.029 0.499*** 0.014 0.864*** 0.024 0.643*** 0.076 

Capital 0.046*** 0.031 0.120*** 0.010 0.154 0.243 0.044*** 0.015 0.039*** 0.007 -0.041 0.034 0.130* 0.068 

N 3030 3030 3030 3030 3030 2426 3030 

Elasticity of scale 1.148*** 0.012   0.889*** 0.061   0.977*** 0.029 0.944*** 0.063 

p-value const. ret. to scale <0.001  3.3, 0.070  0.446 0.619 

R² 0.861 0.869 0.327 0.329   

p-value coeff. jointly zero <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

p-val. interact. terms jtly zero  <0.001  0.269   

*** (**, *) significant at the 1% (5%, 10%) level, based on standard errors robust to clustering in groups   

Notes: Year dummies are included in all models. Standard errors in Olley/Pakes and Levinsohn/Petrin are based on bootstrapping with 20 replications. 

Source: Authors. 



IDENTIFYING FACTOR PRODUCTIVITY FROM MICRO-DATA: THE CASE OF EU AGRICULTURE | 31 

Table A6. Results of production function estimations, Italy 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.874*** 0.930 0.318*** 0.012 -0.307** 0.151 0.097*** 0.019 0.103*** 0.012 0.283*** 0.025 0.296*** 0.016 

Land 0.155*** 0.184 -0.036*** 0.009 0.127 0.119 0.314*** 0.052 0.299*** 0.028 -0.025 0.024 -0.046*** 0.013 

Materials 0.494*** 0.271 0.712*** 0.012 1.130*** 0.154 0.497*** 0.027 0.499*** 0.016 0.778*** 0.021 0.551*** 0.080 

Capital 0.190*** 0.252 0.093*** 0.009 -0.098 0.146 -0.024 0.027 -0.047*** 0.016 0.062 0.053 0.015 0.037 

N 5053 5053 5053 5053 5053 1413 5053 

Elasticity of scale 1.087*** 0.009   .884*** 0.056   1.098*** 0.067 0.816*** 0.073 

p-value const. ret. to scale <0.001  0.038  0.066 0.072 

R² 0.846 0.857 0.348 0.350   

p-value coeff. jointly zero <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

p-val. interact. terms jtly zero  <0.001  0.036   

Table A7. Results of production function estimations, Poland 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.252*** 0.217 0.208*** 0.014 -1.026*** 0.332 0.151*** 0.041 0.150*** 0.029 0.229*** 0.017 0.212*** 0.019 

Land 0.044*** 0.028 0.008 0.012 0.590** 0.282 0.345*** 0.062 0.348*** 0.046 0.016 0.011 0.011 0.014 

Materials 0.585*** 0.199 0.740*** 0.017 1.842*** 0.375 0.378*** 0.030 0.378*** 0.021 0.680*** 0.020 0.695*** 0.045 

Capital 0.058*** 0.036 0.214*** 0.012 -0.900*** 0.344 -0.007 0.036 -0.007*** 0.026 -0.123** 0.053 0.127** 0.056 

N 3090 3090 3090 3090 3090 1916 3090 

Elasticity of scale 1.171*** 0.012   0.867*** 0.078   0.803*** 0.103 1.045*** 0.058 

p-value const. ret. to scale <0.001  0.087  0.001 0.580 

R² 0.901 0.905 0.237 0.239   

p-value coeff. jointly zero <0.001 <0.001 <0.001 0.001 <0.001 <0.001 

p-val. interact. terms jtly zero  0.227  0.368   

*** (**, *) significant at the 1% (5%, 10%) level, based on standard errors robust to clustering in groups  

Notes: Year dummies are included in all models. Standard errors in Olley/Pakes and Levinsohn/Petrin are based on bootstrapping with 20 replications. 

Source: Authors. 
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Table A8. Results of production function estimations, Slovakia 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.277*** 0.346 -0.032 0.056 -0.525 0.527 -0.230* 0.127 -0.170* 0.097 -0.111 0.143 -0.104 0.076 

Land 0.069*** 0.084 -0.165** 0.081 0.550 0.800 0.537*** 0.101 0.472*** 0.102 -0.164 0.174 -0.150 0.133 

Materials 0.892*** 0.390 1.009*** 0.086 0.639 0.850 0.439*** 0.118 0.447*** 0.116 1.067*** 0.154 1.000*** 0.150 

Capital 0.141*** 0.115 0.149*** 0.041 0.955 1.006 0.025 0.064 0.006 0.055 -0.017 0.135 0.166 0.115 

N 146 146 146 146 146 123 146 

Elasticity of scale 0.961*** 0.028   0.771*** 0.173   0.775*** 0.137 0.911*** 0.125 

p-value const. ret. to scale 0.168  0.193  0.092 0.652 

R² 0.939 0.951 0.594 0.601   

p-value coeff. jointly zero <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

p-val. interact. terms jtly zero  0.530  0.458   
 

Table A9. Results of production function estimations, UK 

 Output shares OLS  
Cobb Douglas 

OLS  
Translog 

‘Within’  
Cobb Douglas 

‘Within’  
Translog 

Olley/Pakes  
Cobb Douglas 

Levinsohn/Petrin  
Cobb Douglas 

 Mean SD Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.297*** 0.187 0.196*** 0.021 0.169 0.211 0.237*** 0.055 0.203*** 0.028 0.211*** 0.035 0.179*** 0.036 

Land 0.204*** 0.097 0.082*** 0.028 1.647*** 0.319 0.347*** 0.096 0.363*** 0.050 0.085 0.064 0.076 0.046 

Materials 0.741*** 0.251 0.827*** 0.030 -0.182 0.363 0.629*** 0.072 0.562*** 0.040 0.797*** 0.063 0.828* 0.139 

Capital 0.043*** 0.030 0.065*** 0.020 0.042 0.281 0.014*** 0.029 -0.019 0.016 0.065 0.042 0.113*** 0.064 

N 807 807 807 807 807 703 807 

Elasticity of scale 1.170*** 0.015   1.226*** 0.085   1.158*** 0.060 1.197*** 0.101 

p-value const. ret. to scale <0.001  0.008  0.006 0.167 

R² 0.910 0.915 0.589 0.579   

p-value coeff. jointly zero <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

p-val. interact. terms jtly zero  0.397  <0.001   

*** (**, *) significant at the 1% (5%, 10%) level, based on standard errors robust to clustering in groups   

Notes: Year dummies are included in all models. Standard errors in Olley/Pakes and Levinsohn/Petrin are based on bootstrapping with 20 replications. 

Source: Authors. 
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Table A10. Results of the Blundell/Bond Cobb Douglas estimator, Denmark 

 Production function  
estimates 

 Diagnosis of model specification 

   Labour Land Materials Capital Output 

Unrestricted model Coeff SE   Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.331* 0.198  AR(1) model 0.454* 0.25 0.532 0.32 0.476 0.52 0.36 0.5 0.884*** 0.28 

- lagged -0.120 0.161  Instruments differences      

Land 0.252* 0.153  p-value coeff. jointly zero  <0.001 0.987 0.376 0.172 0.601 

- lagged 0.023 0.144  R² 0.305 <0.001 0.022 0.038 0.011 

Materials 0.538*** 0.153  Instruments levels      

- lagged -0.151 0.179  p-value coeff. jointly zero  0.005 0.738 0.283 0.039 0.06 

Capital 0.118 0.143  R² 0.111 0.007 0.028 0.069 0.061 

- lagged 0.173** 0.084   
*** (**, *) significant at the 1% (5%, 10%) level  
Notes: Year dummies are included in the production function and AR(1) models. In production function and AR(1) 
models, lags of order two back to the maximum possible are used as GMM-type instruments for the lagged 
dependent variable in the differenced equation using the two-step procedure. Lagged differences are used as 
GMM-type instruments for the lagged dependent variable in the level equation. First differences of year dummies 
are used as standard instruments in the production function. Standard errors are adjusted using the Windmeijer 
(2005) procedure. The minimum distance estimation stems from Söderbom (2009). ‘Instruments differences’  
based on regression of the first difference for year=2006 on lagged levels three and four years back. ‘Instruments 
levels’ based on regression of the lagged level for year=2006 on lagged first differences two and three years back, 
using OLS.  

Output lagged 0.071 0.124  

p-val. coeff. jointly zero <0.001  

Arellano-Bond test (1) <0.001  

Arellano-Bond test (2) 0.620  

Hansen OID test 0.135  

Restricted model    

Labour 0.353** 0.151  

Land 0.234* 0.134  

Materials 0.536*** 0.151  

Capital 0.112** 0.053  

ρ 0.137*** 0.023  

Elasticity of scale 1.239*** 0.176  

Common factors 0.988  

Source: Authors. 
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Table A11. Results of the Blundell/Bond Cobb Douglas estimator, France 

 Production function 
estimates 

 Diagnosis of model specification 

   Labour Land Materials Capital Output 

Unrestricted model Coeff SE   Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.056 0.120  AR(1) model -0.062 0.34 0.887*** 0.25 0.955*** 0.2 0.859*** 0.11 0.964*** 0.25 

- lagged -0.025 0.099  Instruments differences      

Land -0.025 0.167  p-value coeff. jointly zero  0.640 0.399 0.582 0.035 0.108 

- lagged -0.144 0.157  R² 0.010 0.015 0.011 0.034 0.026 

Materials 0.984*** 0.151  Instruments levels      

- lagged 0.049 0.147  p-value coeff. jointly zero  <0.001 0.272 0.007 <0.001 <0.001 

Capital -0.031 0.073  R² 0.119 0.018 0.045 0.176 0.096 

- lagged 0.116** 0.056   
*** (**, *) significant at the 1% (5%, 10%) level  
Notes: Year dummies are included in the production function and AR(1) models. In production function and AR(1) 
models, lags of order two back to the maximum possible are used as GMM-type instruments for the lagged 
dependent variable in the differenced equation using the two-step procedure. Lagged differences are used as GMM-
type instruments for the lagged dependent variable in the level equation. First differences of year dummies are used 
as standard instruments in the production function. Standard errors are adjusted using the Windmeijer (2005) 
procedure. The minimum distance estimation stems from Söderbom (2009). ‘Instruments differences’ based on 
regression of the first difference for year=2008 on lagged levels three to seven years back. ‘Instruments levels’ based 
on regression of the lagged level for year=2008 on lagged first differences two to six years back, using OLS.  

Output lagged 0.098 0.081  

p-val. coeff. jointly zero <0.001  

Arellano-Bond test (1) <0.001  

Arellano-Bond test (2) 0.226  

Hansen OID test <0.001  

Restricted model    

Labour 0.083 0.064  

Land -0.007 0.106  

Materials 0.940*** 0.106  

Capital -0.049 0.066  

ρ 0.193*** 0.037  

Elasticity of scale 0.983*** 0.131  

Common factors 0.766  

Source: Authors. 
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Table A12. Results of the Blundell/Bond Cobb Douglas estimator, Germany (East) 

 Production function  
estimates 

 Diagnosis of model specification 

   Labour Land Materials Capital Output 

Unrestricted model Coeff SE   Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  -0.006 0.095  AR(1) model 0.978*** 0.025 0.934*** 0.079 0.937*** 0.212 0.290 0.560 1.282*** 0.357 

- lagged 0.027 0.087  Instruments differences      

Land 0.141 0.174  p-value coeff. jointly zero  0.111 0.350 0.544 0.076 0.207 

- lagged -0.225 0.150  R² 0.165 0.107 0.078 0.183 0.135 

Materials 0.711*** 0.110  Instruments levels      

- lagged 0.181 0.137  p-value coeff. jointly zero  <0.001 0.412 0.966 0.645 0.001 

Capital 0.027 0.104  R² 0.567 0.097 0.019 0.066 0.358 

- lagged -0.038 0.079   
*** (**, *) significant at the 1% (5%, 10%) level 
Notes: Year dummies are included in the production function and AR(1) models. In production function and AR(1) 
models, lags of order two back to the maximum possible are used as GMM-type instruments for the lagged 
dependent variable in the differenced equation using the two-step procedure. Lagged differences are used as GMM-
type instruments for the lagged dependent variable in the level equation. First differences of year dummies are used 
as standard instruments in the production function. Standard errors are adjusted using the Windmeijer (2005) 
procedure. The minimum distance estimation stems from Söderbom (2009). ‘Instruments differences’ based on 
regression of the first difference for year=2008 on lagged levels three to seven years back. ‘Instruments levels’ 
based on regression of the lagged level for year=2008 on lagged first differences two to six years back, using OLS.  

Output lagged 0.169** 0.069  

p-val. coeff. jointly zero <0.001  

Arellano-Bond test (1) <0.001  

Arellano-Bond test (2) 0.232  

Hansen OID test 0.143  

Restricted model    

Labour 0.001 0.079  

Land 0.123 0.110  

Materials 0.738*** 0.101  

Capital 0.054 0.084  

ρ 0.269*** 0.034  

Elasticity of scale 0.873*** 0.227  

Common factors 0.571  

Source: Authors. 
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Table A13. Results of the Blundell/Bond Cobb Douglas estimator, Germany (West) 

 Production function  
estimates 

 Diagnosis of model specification 

   Labour Land Materials Capital Output 

Unrestricted model Coeff SE   Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.119 0.123  AR(1) model 0.860*** 0.117 0.929*** 0.042 0.886*** 0.091 1.042*** 0.058 1.213*** 0.109 

- lagged 0.026 0.112  Instruments differences      

Land -0.025 0.210  p-value coeff. jointly zero  0.171 0.386 0.513 0.556 0.760 

- lagged -0.032 0.179  R² 0.041 0.028 0.023 0.021 0.014 

Materials 0.617*** 0.091  Instruments levels      

- lagged 0.275** 0.125  p-value coeff. jointly zero  <0.001 <0.001 <0.001 <0.001 <0.001 

Capital 0.121 0.106  R² 0.281 0.179 0.1835 0.232 0.171 

- lagged -0.002 0.100   
*** (**, *) significant at the 1% (5%, 10%) level   
Notes: Year dummies are included in the production function and AR(1) models. In production function and AR(1) 
models, lags of order two back to the maximum possible are used as GMM-type instruments for the lagged dependent 
variable in the differenced equation using the two-step procedure. Lagged differences are used as GMM-type 
instruments for the lagged dependent variable in the level equation. First differences of year dummies are used as 
standard instruments in the production function. Standard errors are adjusted using the Windmeijer (2005) 
procedure. The minimum distance estimation stems from Söderbom (2009). ‘Instruments differences’ based on 
regression of the first difference for year=2008 on lagged levels three to seven years back. ‘Instruments levels’ based 
on regression of the lagged level for year=2008 on lagged first differences two to six years back, using OLS.  

Output lagged 0.053 0.097  

p-val. coeff. jointly zero <0.001  

Arellano-Bond test (1) <0.001  

Arellano-Bond test (2) 0.068  

Hansen OID test <0.001  

Restricted model    

Labour 0.115 0.095  

Land -0.022 0.079  

Materials 0.605*** 0.082  

Capital 0.130* 0.050  

ρ 0.101*** 0.013  

Elasticity of scale 0.831*** 0.243  

Common factors 0.989  

Source: Authors. 

 



IDENTIFYING FACTOR PRODUCTIVITY FROM MICRO-DATA: THE CASE OF EU AGRICULTURE | 37 

Table A14. Results of the Blundell/Bond Cobb Douglas estimator, Italy 

 Production function  
estimates 

 Diagnosis of model specification 

   Labour Land Materials Capital Output 

Unrestricted model Coeff SE   Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  -0.086 0.059  AR(1) model 0.726*** 0.202 1.007*** 0.053 0.525 0.330 0.985*** 0.023 1.242** 0.50 

- lagged 0.308*** 0.086  Instruments differences      

Land -0.237 0.182  p-value coeff. jointly zero  0.086 0.839 0.206 0.617 0.873 

- lagged 0.035 0.176  R² 0.466 0.126 0.374 0.205 0.111 

Materials 0.727*** 0.105  Instruments levels      

- lagged 0.000 0.092  p-value coeff. jointly zero  0.1753 0.275 0.546 0.007 0.712 

Capital 0.077 0.107  R² 0.393 0.337 0.230 0.651 0.173 

- lagged -0.015 0.084   
*** (**, *) significant at the 1% (5%, 10%) level   
Notes: Year dummies are included in the production function and AR(1) models. In production function and AR(1) 
models, lags of order two back to the maximum possible are used as GMM-type instruments for the lagged 
dependent variable in the differenced equation using the two-step procedure. Lagged differences are used as GMM-
type instruments for the lagged dependent variable in the level equation. First differences of year dummies are used 
as standard instruments in the production function. Standard errors are adjusted using the Windmeijer (2005) 
procedure. The minimum distance estimation stems from Söderbom (2009). ‘Instruments differences’ based on 
regression of the first difference for year=2008 on lagged levels three to seven years back. ‘Instruments levels’ 
based on regression of the lagged level for year=2008 on lagged first differences two to six years back, using OLS.  

Output lagged 0.134*** 0.059  

p-val. coeff. jointly zero <0.001  

Arellano-Bond test (1) <0.001  

Arellano-Bond test (2) 0.599  

Hansen OID test <0.001  

Restricted model    

Labour -0.069 0.058  

Land -0.211*** 0.076  

Materials 0.664*** 0.081  

Capital 0.116 0.075  

ρ 0.235*** 0.027  

Elasticity of scale 0.482** 0.198  

Common factors 0.428  

Source: Authors. 
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Table A15. Results of the Blundell/Bond Cobb Douglas estimator, UK 

 Production function  
estimates 

 Diagnosis of model specification 

   Labour Land Materials Capital Output 

Unrestricted model Coeff SE   Coeff SE Coeff SE Coeff SE Coeff SE Coeff SE 

Labour  0.318*** 0.074  AR(1) model 0.812*** 0.255 0.929*** 0.062 1.344*** 0.328 0.902*** 0.130 1.194*** 0.232 

- lagged -0.193** 0.085  Instruments differences      

Land 0.483** 0.233  p-value coeff. jointly zero  0.379 0.646 0.015 0.653 0.355 

- lagged -0.247 0.217  R² 0.402 0.276 0.747 0.273 0.414 

Materials 0.727*** 0.117  Instruments levels      

- lagged -0.025 0.161  p-value coeff. jointly zero  0.186 0.206 0.719 0.194 0.152 

Capital 0.059 0.062  R² 0.516 0.502 0.241 0.511 0.543 

- lagged -0.037 0.060   
*** (**, *) significant at the 1% (5%, 10%) level   
Notes: Year dummies are included in the production function and AR(1) models. In production function and AR(1) 
models, lags of order two back to the maximum possible are used as GMM-type instruments for the lagged 
dependent variable in the differenced equation using the two-step procedure. Lagged differences are used as GMM-
type instruments for the lagged dependent variable in the level equation. First differences of year dummies are used 
as standard instruments in the production function. Standard errors are adjusted using the Windmeijer (2005) 
procedure. The minimum distance estimation stems from Söderbom (2009). ‘Instruments differences’ based on 
regression of the first difference for year=2008 on lagged levels three to seven years back. ‘Instruments levels’ 
based on regression of the lagged level for year=2008 on lagged first differences two to six years back, using OLS.  

Output lagged 0.107 0.093  

p-val. coeff. jointly zero <0.001  

Arellano-Bond test (1) <0.001  

Arellano-Bond test (2) 0.648  

Hansen OID test 0.916  

Restricted model    

Labour 0.313*** 0.070  

Land 0.471*** 0.109  

Materials 0.684*** 0.081  

Capital 0.049 0.050  

ρ 0.187*** 0.029  

Elasticity of scale 1.586 0.196  

Common factors 0.920  

Source: Authors. 
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