
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


A Spatial Probit Modeling Approach to

Account for Spatial Spillover Effects in

Dichotomous Choice Contingent

Valuation Surveys

John B. Loomis and Julie M. Mueller

We present a demonstration of a Bayesian spatial probit model for a dichotomous choice
contingent valuation method willingness-to-pay (WTP) questions. If voting behavior is spa-
tially correlated, spatial interdependence exists within the data, and standard probit models will
result in biased and inconsistent estimated nonbid coefficients. Adjusting sample WTP to
population WTP requires unbiased estimates of the nonbid coefficients, and we find a $17
difference in population WTP per household in a standard vs. spatial model. We conclude that
failure to correctly model spatial dependence can lead to differences in WTP estimates with
potentially important policy ramifications.
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Distance to an environmental amenity influ-

ences an individual’s use value, yet few studies

have examined how nonuse or passive use

values vary with distance. Many contingent

valuation method (CV) studies apply the

dichotomous-choice elicitation format as rec-

ommended by Carson et al. (2003) to value

environmental amenities. The dichotomous-

choice CV method involves sampling a large

number of respondents asking if they would

vote in favor of a referenda and pay a particular

randomly assigned dollar amount. Estimating

willingness to pay (WTP) from a dichotomous-

choice survey traditionally involves the use of

maximum likelihood estimation techniques.

In this article, we extend the methodology of

estimating WTP from dichotomous-choice

CV survey data by explicitly modeling for

spatial dependence using Bayesian estima-

tion techniques. We also examine the impact

of explicit spatial modeling on policy-relevant

WTP estimates.

It is reasonable to believe that WTP per

household will share some similarities among

respondents living in the same region, par-

ticularly when the nonmarket good used for

valuation has both use and nonuse values. If

observations of the dependent variable are

similar to those in nearby locations, spatial

interdependence exists within the data, and

standard models will result in biased and
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inefficient estimated nonbid coefficients such

as attitudes and demographics. As outlined in

Franzese, Hays, and Schaffer (2010), voting

behavior is shown to be correlated across

space in the political science literature. Most

dichotomous-choice CV surveys follow the tra-

ditional method of referendum format. Thus,

the survey proposes a hypothetical vote. There-

fore, spatial dependence will likely exist in the

data if a respondent’s propensity to vote ‘‘yes’’

is related to his/her neighbor’s response. Although

many past CV studies control for distance to

the natural environment being protected and

include respondents’ attitudes about protecting

the environment, heterogeneity related to lo-

cation is likely to exist in voting-type data. If

the spatial heterogeneity exists to an extent

not controlled for by explanatory variables,

all of the estimated nonbid coefficients are

biased.

Commonly estimated standard probit models

assume spatial independence of the observa-

tions. To quote Franzese, Hays, and Schaffer

(2010), ‘‘working under the incorrect assump-

tion of spatial interdependence. . .threatens

over-confidence or inefficiency in the best of

circumstances, and usually bias and inconsis-

tency as well.’’ Franzese, Hays, and Schaffer

refer to problems in the estimated coefficients

of a standard probit in the face of spatial het-

erogeneity. WTP calculations are obtained from

the estimated coefficients from probit models

and sample means from relevant explanatory

variables. Sample representativeness correc-

tions can be made to ensure that the predicted

WTP represents the population, even if the

sample is not perfectly representative (Loomis,

1987). However, these corrections require un-

biased and consistent estimates of the nonbid

probit coefficients. If probit coefficients are bi-

ased, population projections used for decision-

making will be based on biased estimates of

WTP.

We investigate potential differences in WTP

from spatial spillovers using data involving

protection of Mexican Spotted Owl habitats.

Mexican Spotted Owls are found in the south-

western United States and Mexico. In the early

1990s, it was recognized that without habitat

protection, the Mexican Spotted Owl would be

extinct within 15 years.1 Therefore, the Mexican

Spotted Owl was added to the list of endan-

gered species in 1993. Because the Mexican

Spotted Owl requires old growth forests for

its habitat, the designation of forests as pro-

tected areas has sparked a controversial debate

in the southwest region of the United States

about the benefits and costs of endangered

species habitat recovery. Protection of the

species and its habitat may have use values

through potential recreational use of the old

growth forest habitat. Thus, it is reasonable to

believe that people living closer to the habitat

may have a higher WTP for preservation. In

addition, people throughout the United States

may also hold nonuse values for the continued

existence of a self-sustaining population of

Mexican Spotted Owls (see Richardson and

Loomis, 2009, for a summary of endangered

species values). Prior studies of the California

and Northern spotted owls in California and

Oregon have documented values of these two

spotted owl species (Loomis and Gonzalez-

Caban, 2010). Loomis (2000) found that al-

though people who live more than 1000 miles

away from the owl’s habitat still have significant

values per household, values are substantially

higher in the two states that contain the species’

habitat. Although the previous spotted owl

studies investigate the potential impact of dis-

tance on WTP for habitat protection, none ex-

plicitly model for spatial dependence. Policy

decisions incorporate results from probit models,

and if the models contain biased estimated co-

efficients, failure of previous studies to explicitly

model for spatial dependence may result in

policy-relevant differences in estimated WTP.

Spatial probit models have been estimated

using full-information maximum likelihood

(McMillen, 1992; Murdoch, Sandler, and

Vijverberg, 2003), weighted least squares

(McMillen, 1992), and generalized method of

moments estimators (Pinkse and Slade, 1998).

Classical methods, especially use of maximum

likelihood techniques, can require hours to

1 For more information on the Spotted Owl en-
dangered species profile, visit http://ecos.fws.gov/
speciesProfile/profile/speciesProfile.action?spcode5

B074.
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estimate small sample problems (LeSage and

Pace, 2009). In addition, with classical or

nonsampling type estimation procedures, sim-

ulation is necessary postestimation to obtain

a distribution of WTP. In contrast, Bayesian

estimation with Markov Chain Monte Carlo

(MCMC) simulations and Gibbs sampling pro-

vides distributions of the draws of WTP post-

estimation without further simulation. We

choose the Bayesian methodology for our spa-

tial probit model for its relative computational

ease in estimation and because Bayesian methods

provide postestimation draws for parameters

that are easily computed into draws for WTP.

Other authors estimate WTP from standard

probit models using Bayesian methods, includ-

ing Li et al. (2009) and Yoo (2004). In addition,

Holloway, Shankar, and Rahman (2002) used

Bayesian methods to estimate spatial probit

models. Although other authors estimate WTP

from standard probit models using Bayesian

methods, and Bayesian spatial probit models have

been estimated in other contexts, we are unaware

of the use of any type of spatial probit model

applied in the context of estimating WTP from

dichotomous-choice CV data. In this article, we

present what is, to the authors’ knowledge, the first

application of a spatial probit model to investi-

gate spatial spillover effects on WTP estimates.

Method

Bayesian estimation of a spatial probit involves

repeated sampling using the MCMC method and

Gibbs sampling. The spatial interdependence

in the probit model is represented as follows,

where W is an n� n spatial weights matrix, r is

the spatial autoregressive parameter, y is the

observed value of the limited-dependent vari-

able, y* is the unobserved latent (net utility)

dependent variable, and X is a matrix of ex-

planatory variables.

(1) y 5
1 if y� > 0
0 if y� £ 0

�

(2) y�5 In � rWð Þ�1Xb 1 e

(3) e; N 0, Inð Þ

If r 5 0, the spatial probit model collapses to

the standard binary probit model. We estimate

the general spatial model and relax the strict

interdependence assumption used in standard

probit models by allowing changes in one

explanatory variable for one observation to

impact the values of other observations within

a neighboring distance as defined by the spa-

tial weights matrix, W. Intuitively, if the

amount of the public good is increased for an

individual observation, this will likely result in

a decreased distance to the public good for

that household and neighboring households,

resulting in a marginal impact that goes be-

yond what is represented in a simple estimated

coefficient.

LeSage and Pace (2009) label the differing

spatial impacts direct, indirect, and total. To

see the role of direct, indirect, and total ef-

fects, we compare the marginal effects of the

standard probit with that of the spatial probit.

In a standard probit, marginal impacts are mea-

sured by:

(4)
@E y jxr½ �
@xr

5u �xrbrð Þbr,

where xr is the rth explanatory variable, �xr is its

mean, br is a standard probit estimate, and u(�)
is the standard normal density.

Marginal impacts in a spatial probit take

spatial spillover effects into consideration and

are no longer scalar. In a spatial probit,

(5)
@E y jxr½ �
@x9r

5u S�1In�xrbr

� �
O S�1Inbr,

where S 5 (In 2 rW) and In is an n� n identity

matrix. In the spatial probit, the expected value

of the dependent variable resulting from a

change in xr is now a function of the product of

two matrices instead of two scalar parameters.

The direct impact of changing xr is represented

by the main diagonal elements of (Equation 5),

and the total impact of changing xr is the av-

erage of the row sums of (Equation 5). Note

that the direct impact is a function of r and W

and is therefore different than the standard

probit estimated coefficient. The indirect or

spatial spillover effect is the total impact minus

the direct impact.
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Spatial Weights

As seen in Equations 1–2, modeling spatial

interdependence involves the use of a spatial

weights matrix. All spatial spillover and feed-

back effects work through the spatial weights

matrix. Unlike including a distance variable as

an explanatory variable, which models the

distance from an observation to the habitat or

environmental amenity under analysis, the

spatial weight matrix models the neighbor re-

lationship between observations. We base our

spatial weights matrix on distances between

observations. W is an n � n weights matrix of

the form W 5

0 � � � w1n

..

. . .
. ..

.

wn1 � � � 0

2
64

3
75. Nonzero

elements represent neighbors. Let d represent

the distance between two observations. We

apply an inverse-distance weights matrix with

nonzero elements wij 5 1
d2 if di,j < 10 miles.2

Therefore, we have nonzero elements in the

spatial weights matrix for all neighbors within

10 miles of each other. We believe 10 miles

represents a reasonable distance for the neigh-

bor relationship within our national data set.

Although other weight specifications exist, in

any spatial econometric problem, the choice of

the weights is exogenous and determined by the

researcher (Mueller and Loomis, 2010). In-

vestigation of the impact of choice of spatial

weight matrices is a valuable area of potential

research in spatial probit models.

Willingness-to-Pay Estimates

For a standard probit model, following Hanneman

(1984), WTP is a function of a, a ‘‘grand con-

stant,’’ and the coefficient on the bid amount. In

the standard probit,

(6)
a5 b̂1 � �X1

� �
1 b̂2 � �X2

� �

1 � � � 1 b̂K�1 � �XK�1

� �

for all the explanatory variables except for

b̂Bid. Thus, WTP is a function of independent

variables.

In the spatial probit model, we are taking

into account spatial dependencies among the

independent variables. We use total impacts

instead of estimated coefficients on the ex-

planatory variables in our WTP function. We

obtain WTP taking into account the total im-

pacts and the WTP from the spatial probit

substituting b̂s with T̂ from Equation 6 where

T̂ is the total impact of the given explanatory

variable. Therefore,

(7)
a5 T̂1 � �X1

� �
1 T̂2 � �X2

� �
1 � � � 1 T̂K�1 � �XK�1

� �

for all the explanatory variables except for b̂Bid.

The total impacts will be a function of the

spatial weights matrix and the estimated spatial

autoregressive parameter r. Intuitively, in the

spatial probit model, a change in the value of

an explanatory variable for one observation

will have an impact on that observation and its

neighbors. In turn, the change in the value for

the neighbors will have a feedback effect on the

observation. Marginal effects in a spatial probit

model are not one-dimensional, and direct com-

parison of estimated coefficients across models

does not take into account any spatial feedback

effects. We take into account these feedback or

spatial spillover effects from the spatial probit in

our WTP estimates by using total impacts to

obtain WTP.

Hypothesis Tests for Spatial Effects

The focus of our analysis is the impact of spatial

interdependence on WTP estimates. Although

some studies may focus on the impacts of

modeling on point estimates, we note that WTP

estimates are obtained from combinations of

estimated coefficients. In studies determining

WTP values, the focus is on the effects or

measured impacts of the explanatory variables,

not necessarily a single point estimate.

First, we want to determine if spatial inter-

dependence exists within our data. If spatial

interdependence exists within our data, our

nonbid coefficient estimates will be biased,

2 MATLAB code was obtained from Donald
Lacombe’s web site: www.rri.wvu.edu/lacombe/matlab.
html and used in conjunction with James LeSage’s
MATLAB toolbox: www.spatial-econometrics.com/.

Journal of Agricultural and Applied Economics, February 201356



leading to biased WTP estimates. Therefore,

we test the following hypothesis regarding the

spatial autoregressive parameter:

(8)
H0 : r 5 0

HA : r 6¼ 0

If r 6¼ 0, then we conclude that our estimated

nonbid coefficients in the standard probit are

biased.

In addition to testing for spatial in-

terdependence, we want to test if the mean

WTP estimates from the standard probit are

different than the WTP estimates from the

spatial probit. Therefore, we test the following

hypothesis:

(9)
H0 : WTPNon-Spatial Probit 5 WTPSpatial Probit

HA : WTPNon-Spatial Probit 6¼WTPSpatial Probit

We use the complete combinatorial method

described in Poe, Giraud, and Loomis (2005)

to test for differences in WTP. The complete

combinatorial method calculates the differ-

ence between each element of each WTP vector,

resulting in a vector of differences. The pro-

portion of nonpositive values of the differ-

ence vector is equal to ĝ . ĝ corresponds to

the p value of the null hypothesis in Equa-

tion 9. If we reject the null hypothesis in

Equation 9, then WTP from a spatial probit is

statistically different from WTP in a non-

spatial probit.

Data

The data are from a mail survey of U.S. resi-

dents for WTP to preserve the habitat for the

Mexican Spotted Owl. The Dillman (2000)

Tailored Design Method including repeat mail-

ing approach was followed. Our first mailing

involved 1600 surveys. After deleting un-

deliverables, the response rate was 54.4% or

734 respondents, leaving 684 complete obser-

vations for our spatial specification.

The 12-page survey plus map insert un-

derwent the scrutiny of four focus groups and

a pretest. Each survey contained detailed maps

showing the location of the critical habitat units

in Arizona, Colorado, New Mexico, and Utah

that form the Four Corners Region along with

a description of the current recovery effort. The

description was followed by a proposal to re-

duce the protection for the threatened Mexican

Spotted Owl to allow for increased economic

activity and reduce federal management expen-

ditures. The survey then proposed a Mexican

Spotted Owl Recovery Trust Fund to continue

the current recovery program. Households were

told if they agreed to pay, the program would

continue with the likelihood the Mexican Spot-

ted Owl would recover in 15 years and could be

delisted. They also were told if they did not pay,

then it was likely the Mexican Spotted Owl

would become extinct in 15 years. The wording

of the WTP question was: If the Mexican

Spotted Owl Recovery Trust Fund was the only

issue on the next ballot and it cost your house-

hold $YY every year, would you vote in favor

of it?

The $YY was replaced by 14 bid amounts

ranged from $1 to $350. The bid amounts used

are $1, 3, 5, 10, 15, 20, 30, 40, 50, 75, 100, 150,

200, and 350.

In addition, typical questions for a con-

tingent valuation survey including Likert

scale attitude questions about environmental

protection were asked. Information about

the distance from the respondents’ residence

to the nearest Mexican Spotted Owl habitat

and to other households was obtained using

GIS.

Econometric Specification

Based on past literature, we included sev-

eral independent variables. Loomis (2000)

found distance from the habitat to be pro-

tected was frequently a significant variable

in explaining WTP. Table 1 provides de-

scriptions and summary statistics for rele-

vant variables.

The Protect and Pro-job variables were

found to be statistically significant in past sim-

ple nonspatial analyses of the Mexican Spotted

Owl CV data (see Giraud, Loomis, and Johnson,

1999). Education is often found to be a statisti-

cally significant variable in CV WTP studies

(Loomis, 1987). Therefore, we specify WTP as

a function of bid amount and the following ex-

planatory variables:
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� Distance in miles to the nearest critical habitat;

� Distance in miles squared;

� Importance to the respondent of jobs (Pro-

job);

� Importance to the respondent of environ-

mental protection (Protect);

� Education (years); and

� Western region indicator variable.

We include both distance in miles and dis-

tance squared to allow nonlinearity in the dis-

tance relationship. Whether a respondent pla-

ces high importance on protecting jobs or the

environment is also likely to influence his/her

WTP to protect the Mexican Spotted Owl

habitat, and therefore we include both Pro-job

and Protect as explanatory variables. We in-

clude the highest number of years of education

attained in each household as a demographic

variable. We also include a western regional

dummy variable to act as a proxy for any other

spatial fixed effects not included in other ex-

planatory variables. The variable western re-

gion is equal to one for the intermountain

Western states, including the Four Corner

States where the prime habitat is Arizona, New

Mexico, Colorado, Utah and states adjacent

to them, Nevada, Idaho, and Wyoming. We

Table 1. Summary Statistics and Variable Definitions

Variable Mean Standard Deviation

Log of bid amount

The natural log of a randomly assigned bid amount, where

actual bids were randomly assigned from the following:

$1, 3, 5, 10, 15, 20, 30, 40, 50, 75, 100, 150, 200, 350

3.39 1.57

Miles

Distance from nearest critical habitat (miles) 560 603

Miles squared

Distance from nearest critical habitat squared (miles) 634,931 968,234

Pro-job

Measure of the importance of using public lands for

commercial uses and jobs, measured as a sum of the

following two 5-point Likert scale items:

� Businesses should be allowed to extract natural

resources from Federal lands

� If any jobs are lost, the cost of protecting

threatened and endangered species is too large

6.62 2.10

Protect

Measure of the importance of protecting threatened and

endangered species, measured as a sum of the following

three 5-point Likert scale items:

� All threatened and endangered species should

be protected

� I am glad threatened and endangered species are

protected in the Four Corners area even if I

never see them

� Protection of threatened and endangered species

is a responsibility I am willing to pay for

9.86 4.38

Education

Maximum number of years of education completed 14.79 2.98

Western Region

A dummy variable equal to 1 if the respondent lives in one

of the following Western states: Arizona, New Mexico,

Colorado, Utah Nevada, Idaho, and Wyoming

0.56 0.50
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believe including this regional variable will

control for differences in preferences for

habitat protection because the majority of the

Mexican Spotted Owl habitat exists in these

states. We use the same explanatory variables,

X, in the standard probit and the spatial probit

models.

Spatial Probit Model

We estimate the spatial probit model using

Bayesian estimation and Gibbs sampling

(Gelfland et al., 1990). Following Li et al.

(2009), let WTP represent a latent variable on

n observations. WTP for an individual is then

a function of the explanatory variables, X, and

the other parameters of interest b and s. b0 and

s0 are the initial values of the parameters of

interest, N denotes the normal distribution and

IG denotes the inverse gamma distribution.

Thus,

(10) WTP�; N X0b,s2
� �

and b and s are independent with

(11) b js2; N b0,s2b �1ð Þ
0

� �

and

(12) s2; IG g0=2,g0s2
0

�
2

� �
.

The Gibbs sampler starts with initial values

(in our case, the initial values are set 5 0) and

draws b and s through simulations. The spatial

probit model leads to a multivariate truncated

normal distribution for the latent y* para-

meters. Following LeSage and Pace (2009),

Now, unlike the standard probit, the latent

WTP is thus distributed:

(14)

b jr,WTP�; N c�,T�ð Þ

c�5 X0X 1 T�1
� ��1

X0Sy�1 T�1c
� �

T�5 X0X 1 T�1
� ��1

S5 In � rWð Þ.

We also need to sample for r using the Me-

tropolis Hastings approach. For the approach,

(15)
r jb,WTP�; In � rWj jexp

� �1=2 Sy� � Xb½ �9 Sy� � Xb½ �
� �

.

We make 10,000 passes through WTP* j b, r,

b j r, WTP*, and r j b, WTP*. We use Gibbs

sampling for WTP* j b, r, b j r, WTP*, and

Metropolis Hastings for r j b, WTP*. We

omit the initial 9000 simulations for burn-in

and keep the last 1000 draws to calculate

WTP.

Calculation of Willingness to Pay

We use maximum likelihood estimation to

obtain parameter estimates for the standard

probit model. We then use the Krinsky and

Robb (1986) method to simulate 1000 draws of

the WTP function. For the standard probit:

where the b̂s are vectors of draws obtained

from the Bayesian estimation. WTP is obtained

by dividing aStandard by b̂Bid.

For the spatial probit, because we use

MCMC methods to estimate WTP, we do not

have to use additional simulation procedures to

estimate WTP from the regression coefficients.

We obtain 1000 draws of WTP as a function of

the draws from the distribution of the estimated

parameters. We include total effects in our

WTP estimates from the spatial probit. Thus:

(16)
aStandard5 b̂Distance � �XDistance

� �
1 b̂DistanceSquared � �XDistanceSquared

� �
1 b̂Pro�job � �XPro�job

� �

1 b̂Protect � �XProtect

� �
1 b̂Education � �XEducation

� �
1 b̂West � �XWest

� �
,

(13)

WTP� jb,r; TMVN

� In�rWð Þ�1ð ÞXb In�rWð Þ9 In�rWð Þ
h i�1ð Þ

� �
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where T̂ , the total impacts, are vectors of draws

obtained from the average of the row sums of

the marginal effects matrix in Equation 5. We

use log of bid amount in the spatial probit and

WTP is obtained by the following trans-

formation (Hanneman, 1984):

(18) e
�a=b̂Bid

p
.

b̂Bid

sin p
.

b̂Bid

.

Results and Analysis

The standard probit results are presented

in Table 2, and the Bayesian spatial probit

results are presented in Table 3. Both models

have p values < 0.0001 for the estimated

coefficients on bid amount. For the spatial

probit, the p values are calculated using the

method described in Gelman et al. (1995).

The estimated coefficients on bid amount

in both models are negative, indicating that

propensity to vote ‘‘yes’’ decreases as the

randomly assigned bid amount increases.

Both models have insignificant p values on

the estimated coefficient on distance in

miles and distance in miles squared. The lack

of predictive power on the distance co-

efficients in both models is noteworthy. Many

researchers defend the use of the standard

probit model in the face of possible spatial

interdependence using an omitted variables

defense—claiming that if researchers are

careful in their choice of independent vari-

ables, spatial interdependencies will be taken

into account. However, even with distance

being insignificant, if spatial dependence ex-

ists in the error terms of the standard probit,

this can lead to heteroscedasticity and in-

consistent estimates in the standard probit

model (Pinkse and Slade, 2010).

Our empirical results seem to weaken the

omitted variables defense. The nature of the

Mexican Spotted Owl habitat is unique in that

the owls necessitate an old growth forest hab-

itat. Old growth forest may provide other

amenities for respondents besides endangered

species protection such as recreation use.

However, if the habitat has use values, it is also

likely that the use values will exhibit distance-

decay. In other words, as distance to the habitat

increases, we expect that the probability of

a ‘‘yes’’ vote will decrease, ceteris paribus. We

do find a negative estimated coefficient on

distance; however, it is not statistically signif-

icant in predicting a ‘‘vote’’ on WTP. Two

possible reasons exist for this lack of power in

prediction for our distance variables. Perhaps

the existence value of the Mexican Spotted Owl

is such that many people living far away from

habitat are willing to pay to protect the owls

despite having zero or very small use values for

the habitat itself, and thus the lack of signifi-

cance represents strong existence values, and

therefore strong support solely for habitat pro-

tection. The r parameter remains statistically

significant even when the western region vari-

able is included in the specification, indicating

Table 2. Standard Probit Model Results

Variable Coefficient p Value

Bid amount –0.005182 <0.0001

Distance in

miles

0.000196 0.7280

Distance

squared

0.000000 0.7310

Pro-job –0.197959 <0.0001

Protect 0.126760 <0.0001

Education 0.039302 0.0390

Western region 0.191741 0.4810

Constant –0.509555 0.3110

Mean WTP

sample

$54.62

95% CI [$33.09–$72.12]

Mean WTP

population

$37.65

95% CI [$–10.61 to $75.71]

WTP, willingness to pay; CI, confidence interval.

(17)
aSpatial5 T̂Distance � �XDistance

� �
1 T̂Distance Squared � �XDistance Squared

� �
1 T̂Pro�job � �XPro�job

� �
1 T̂Protect � �XProtect

� �
1 T̂Education � �XEducation

� �
1 T̂West � �XWest

� �
,
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that the r parameter is actually measuring de-

pendence within voting behavior.

Another possible reason for the insig-

nificance of distance is a spatial heterogeneity

argument—the distance in miles variable does

not explicitly take into account spatial groupings

of respondents or any sort of feedback effects

that may occur through neighborhood differ-

ences. The spatial heterogeneity argument is

strengthened by the highly significant p value on

the spatial autoregressive parameter, r. The

spatial autoregressive parameter shows the

Bayesian equivalence of statistical significance

in the spatial probit; thus, we reject the null

hypothesis in Equation 8 in favor of the spatial

model. The high level of statistical significance

associated with r indicates that the estimated

nonbid coefficients in the standard probit are

biased.

With regard to the attitudinal variables,

the estimated coefficients on Pro-job and

Protect conform to our expectations. Both the

standard and spatial models indicate that,

ceteris paribus, respondents who value job

protection are less likely to vote ‘‘yes’’ on the

WTP question, whereas respondents who value

environmental protection are more likely to

vote ‘‘yes’’ on the WTP question. The esti-

mated coefficient on education is positive and

significant in both the standard and spatial

models, indicating that households with

higher educational attainment are more likely

to vote ‘‘yes’’ on the WTP question. The

western region indicator variable is statisti-

cally significant at the 10% level in the spatial

model, although not significant in the standard

model. The positive estimated coefficient in-

dicates that respondents living in our western

region are more likely to vote ‘‘yes’’ on the WTP

question.

Per-household mean WTP is $54.62 in the

standard probit and $59.66 in the spatial probit.

Confidence intervals on WTP are reported in

Tables 2 and 3. We also apply the complete

combinatorial method to compare the vectors

of mean WTP estimates using sample means

and obtain a ĝ 5 0.86. The ĝ from complete

combinatorial is analogous to the p value in

traditional hypothesis testing. The decision rule

using the complete combinatorial method is to

reject the null hypothesis of a mean difference

of zero if ĝ is less than the level of significance.

Therefore, we fail to reject the null hypotheses

in Equation 9 and conclude we do not have

sufficient statistical evidence to show a signifi-

cant difference in the empirical distributions of

mean WTP from the standard vs. spatial probit.

The lack of significant difference may be the

result of the large variance in the estimate of

WTP from the spatial probit because we have

included direct and indirect impacts in our

WTP calculation. Nonetheless, with our data,

the standard model underestimates WTP per

household by $5.06 per household relative to

the spatial model using our sample statistics to

calculate WTP.

Table 3. Spatial Probit Model Results

Variable Coefficient p Value Total Impacts

Log bid amount –0.383641 <0.0001 –0.093785

Distance in miles 0.0003 0.2610 0.000073

Distance squared <0.0001 0.3008 <0.0001

Pro-job –0.227676 <0.0001 –0.055663

Protect 0.130694 <0.0001 0.031953

Education 0.049784 0.0008 0.012166

Western region 0.306645 0.0824 0.074998

Rho –0.086 <0.0001

Mean WTP sample draws $59.66

95% CI [$15.86–$253.11]

Mean WTP population draws $55.60

95% CI [$14.44–$228.15]

WTP, willingness to pay; CI, confidence interval.

Loomis and Mueller: Spatial Spillovers in Willingness-to-Pay Estimates 61



Differences in Total Population Willingness to Pay

Using Spatial and Standard Models

The bias in the nonbid coefficients has eco-

nomic significance in policy decisions when

adjusting the sample WTP to the population

WTP. In particular, adjusting for sample un-

representativeness using attitude or demographic

variables requires unbiased estimated demo-

graphic coefficients; otherwise, significant er-

rors can occur in the adjusted WTP (Loomis,

1987). In our analysis, we find that is the case.

The U.S. Census population estimate of educa-

tion is 13.1 years vs. the sample estimate of

14.78 years. In our sample, the western region

variable is 0.56, whereas in a nationally repre-

sentative sample, it would be 0.145. A conti-

nental U.S. population weighted distance to the

Mexican Spotted Owl habitat is approximately

1200 miles rather than the sample average of

560. Replacing just the sample values of these

three variables with their U.S. population esti-

mates results in the WTP calculated from the

standard model decreasing from the sample av-

erage $54.62 to $37.65 per household. Per-

forming the same exercise using the spatial

model results in a decrease of WTP from $59.66

to $55.60. Expanding the approximately $17

difference times 100 million households could

likely result in different conclusions for the

amount of Mexican Spotted Owl habitat to

protect. In addition, when using the population

parameter estimates, the confidence interval on

the Krinsky–Robb draws of WTP from the

standard probit ranges from –$10.61 to $75.71.

The credible interval from the Bayesian spatial

probit WTP with population parameters ranges

from $14.44 to $228.15. Therefore, from a

practical perspective, although the point esti-

mates are quite similar in the standard and

spatial probit models, we find economically

significant differences in the models when using

them as policymakers would in expanding to the

population.

Conclusions

Willingness-to-pay estimates from dichotomous-

choice CV surveys are used to inform environ-

mental policies. Many dichotomous-choice CV

surveys estimate values of nonmarket goods in

which WTP is likely to depend on distance. In

addition, it is likely that unobserved charac-

teristics that impact voting behavior exist

within neighborhoods resulting in spatial het-

erogeneity. If spatial interdependence exists

within dichotomous-choice CV data, estimated

nonbid coefficients from standard probit models

are biased and inconsistent and estimated WTP

fails to account for vital spatial spillover effects.

Failure to account for vital spatial spillover ef-

fects may result in policy-relevant differences in

estimated WTP.

In this article, we estimate WTP using

a Bayesian spatial probit model and find

statistically significant spatial effects to be

present. Thus, estimated nonbid coefficients

from a standard probit fail to take spatial

spillover effects into account and are biased

and inconsistent. Although we find different

mean values of WTP, when we apply the

complete combinatorial method to compare

distributions of WTP, we fail to reject the null

hypothesis of statistical difference between

the mean WTP estimates. Although we can-

not conclude the means of WTP are statis-

tically different, we do find evidence that

the difference in the WTP estimates can re-

sult in substantial differences in aggregate or

population benefits estimates. In particular,

adjusting the sample WTP to the popula-

tion WTP requires unbiased estimates of the

nonbid coefficients. We find the population

WTP per household from the standard probit

model is $37.65, which is $17 less than that

of the spatial probit model population WTP

of $55.60.

Given potential differences in estimated

WTP, we recommend in nationwide contingent

valuation method (CVM) studies that explicit

spatial modeling be used. Our data indicate that

spatial interdependence can result in biased

benefit estimates with potentially important

ramifications for policy analyses when using

a standard model. We provide an example for

researchers on how to proceed with estimation

of a Bayesian spatial probit. However, assessing

whether spatial interdependence in dichotomous-

choice CV is frequently encountered and whether

it consistently results in policy relevant differences
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in WTP requires more empirical testing using

a wide variety of public goods.

[Received September 2012; Accepted November 2012.]
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