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Information Value of Climate Forecasts

for Rainfall Index Insurance for Pasture,

Rangeland, and Forage in the Southeast

United States

Denis Nadolnyak and Dmitry Vedenov

In this article, possible use of climate forecasts in rainfall index insurance of hay and forage
production is considered in a geographical area (southeast United States) relatively heavily
impacted by the El Nino Southern Oscillation (ENSO). Analysis of the stochastic properties
of rainfall, yields, and the ENSO forecasts using the copula technique shows that the forecast
impact depends on the proximity to the Gulf Coast where the impact of the ENSO is more
pronounced and earlier in the year. Stochastic modeling shows that the use of skillful long-
term climate forecasts by the insured producers creates intertemporal adverse selection that
can be precluded by offering forecast conditional premiums. The impacts on the efficiency of
the rainfall index insurance and results of sensitivity analysis with respect to model pa-
rameters are discussed.
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Over the past two decades, several alternative

designs of agricultural crop insurance have

been tried in an attempt to increase participa-

tion rates and improve actuarial performance of

the program. However, reducing moral hazard

and adverse selection inherent in insurance

contracts is frequently associated with reduc-

tion in the risk covered by insurance (Glauber,

2004). One example is the index-based agri-

cultural insurance that largely avoids the moral

hazard issues and can be especially applicable

for crops and areas with limited yield/revenue

records and where agriculture is more rainfall-

dependent (Skees, 2008).

In 2007, the U.S. Risk Management Agency

(RMA) introduced a pilot program to offer

Pasture, Rangeland, and Forage (PRF) insur-

ance that provides protection against losses of

forage produced for grazing or harvested for

hay (RMA, 2012). Two types of PRF insurance

contracts are currently available under the pilot

program, both of which are designed to in-

demnify producers when yield-reducing drought

conditions arise. Rainfall Index (RI) contracts

indemnify policyholders based on gridded

0.25° latitude by 0.25° longitude rainfall data

published by the National Oceanic and Atmo-

spheric Administration Climate Prediction Cen-

ter. Vegetation Index (VI) contracts indemnify
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policyholders based on gridded 4.8 mile � 4.8

mile Normalized Difference Vegetation Index

(NDVI) data published by the U.S. Geological

Survey Earth Resource Observation Center. In

the 2011 crop year, RI insurance was offered in

16 states and VI insurance in nine states.

Both types of PRF contracts are examples of

index insurance. Index insurance differs from

the conventional insurance in that it indemnifies

policyholders based not on verifiable individual

producer losses, but rather on realization of

a variable or an ‘‘index’’ that is highly corre-

lated with these losses. Index insurance is gen-

erally considered to be free of the moral hazard

problems that have undermined the actuarial

performance of traditional crop insurance

(Halcrow, 1949). However, with index insurance,

it is possible for a policyholder to suffer a loss

without receiving an indemnity as a result of

the basis risk caused by imperfect correlation

between the index and the losses. Properly de-

signed index insurance products can minimize

basis risk although not completely eliminate it.

The benefits, limitations, and optimal design of

agricultural index insurance have been thor-

oughly studied in the literature. Miranda (1991)

was the first to analyze the demand for agri-

cultural index insurance in a stylized setting,

demonstrating that the optimal quantity of index

insurance that a producer should purchase is

generally proportional to the correlation between

the index and the producer’s yields. Mahul

(1999, 2001) and Mahul and Wright (2003) ex-

tended Miranda’s results, examining practical

design issues and revenue insurance. Carriquiry

and Osgood (2012) developed a theoretical

model looking specifically at the impact of cli-

mate (weather) forecast availability on producer

welfare and demand for index insurance.

Currently, the U.S. Risk Management Agency

calculates PRF insurance premiums using all

available historical rainfall and NDVI time-series

data (‘‘pooled’’ data) without regard to inter-

annual climate variations. Climate research,

however, has established that rainfall in the

southeastern United States is heavily influenced

by El Niño-Southern Oscillation (ENSO) cycles

(Agroclimate.org, 2012; Gershunov, 1998;

Hansen, Hodges, and Jones, 1998; Royce,

Fraisse, and Baigorria, 2011).

The ENSO cycles are driven by central Pa-

cific sea surface temperature (SST) anomalies

with significant positive anomalies classified as

El Niño events and significant negative anom-

alies classified as La Niña events. A peculiarity

of the ENSO phenomenon is that central Pa-

cific sea surface temperatures observed in late

Fall usually persist for 6–10 months, making

them useful in predicting the onset of El Niño

or La Niña conditions.

As such, central Pacific sea surface tem-

peratures (or any other index reflecting ENSO

phases) may be used to predict rainfall in the

southeastern United States and, thus, the pay-

outs expected from a PRF insurance contract,

which has a late November sales closing date.

This gives rise to the possibility of ‘‘inter-

temporal’’ adverse selection, the practice among

producers of purchasing more insurance cover-

age when expected payouts are high and pur-

chasing less insurance coverage when expected

payouts are low. Unless a corrective action is

taken by the insurer, such intertemporal adverse

selection would increase the long-term loss ratio

of the contract (i.e., the indemnities policy-

holders expect to receive per unit of premium),

thus undermining its actuarial soundness.

This article analyzes the potential impact of

long-range climate forecast availability on the

risk-reducing effectiveness of the RI PRF in-

surance in the southeastern United States. The

analysis is based on stochastic simulation of

rainfall, yields, and ENSO indices. Copula ap-

proach is used to model joint distribution of the

relevant random variables.

The rest of the article is organized as fol-

lows. Section one discusses the theoretical

model. Section two describes data and statis-

tical methods and presents the estimation re-

sults. Section three presents the simulation re-

sults under varying assumptions about farmer

purchasing decisions and crop insurance rating

methods. The last section provides concluding

remarks.

Modeling Framework

As mentioned before, index-based insurance

relies on the fact that the insured index is

correlated with the loss variable (e.g., yield).
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Previous research suggests that the demand for

index-based insurance (or demand for coverage)

is generally proportional to the correlation be-

tween the index and the yield (Mahul, 1999;

Miranda, 1991).

An implicit assumption behind pricing of

any index insurance contract is that the insurer

can sell roughly the same number of contracts

over any time period so as to break even in the

long run. However, availability of a skillful

or accurate (i.e., better in terms of predictive

power) forecast reduces the demand for cov-

erage when low probability of a loss is pre-

dicted (‘‘good’’ year) and vice versa.1 Under

such circumstances, the insurer may not be able

to collect enough premiums in ‘‘good’’ years to

offset payoffs in ‘‘bad’’ years. To compensate

for such an intertemporal adverse selection, the

insurer can either offer a menu of multiperiod

contracts or make the premiums conditional on

the forecast.

With this in mind, we specify the model as

follows. A risk-neutral insurer with zero costs

offers an RI-based contract with the coverage

equal to 100% of E[RI].2 The indemnity is

defined as a positive deviation of the RI index

from the coverage multiplied by the value co-

efficient b, the county base value (CBV) rep-

resenting the marginal impact of precipitation

on yields and thus the level of indemnification.

This coefficient is obtained by regressing county

yield on RI, i.e. Y 5 a 1 b*RI.3

Given forage yield y, rainfall index r, cov-

erage C, premium P, initial wealth W0, and

joint density of f(r,y), the expected utility of the

producer is

(1)
E U½ �5

ðRmax

Rmin

ðYmax

Ymin

U W0 1 yð

1 d b �max 0, C� rð Þ � Pð ÞÞf r, yð Þdr dy.

where d 5 1 indicates purchase of insurance,

whereas d 5 0 corresponds to the case of no

insurance. The insurer sets the premium P of

the index insurance contract to be actuarially

fair so that

(2) P 5 E loss½ � 5

ðC

Rmin

b C � rð Þf R rð Þ dr

where f R rð Þ5
Ð Ymax

Ymin
f r, yð Þ dy is the marginal

density of the rainfall index.

In this model, the insurer and the insured

compute the expectations based on their sub-

jective perceptions of the index and yield

distributions. If the relevant information is

fully available, then the distributions f(r, y)

used by both parties are the same, the insureds

perceive the contract as actuarially fair, pur-

chase it on an annual basis, and allow the in-

surer to break even in the long run as implied

by the premium calculations, which implies

zero expected income transfer from the insurer

to the insured.

However, if the ENSO phases affect the

realizations of rainfall, then the bivariate joint

distribution f(r, y) of rainfall and yield is in fact

a marginal distribution derived from a more

general trivariate distribution f(r, y, E) of the

rainfall, yield, and ENSO ‘ index forecast so

that f r, yð Þ5 fE r, yð Þ5
Ð‘

0 f r, y, Eð ÞdE.

Availability of the ENSO forecast essen-

tially allows the agents to use the conditional

distribution of rainfall and yields instead of the

marginal (unconditional) one. In this regard,

there are four possible scenarios of climate

information availability (asymmetry) that can

be constructed (both the insurer and insureds

either are aware of the forecast or not). We

focus on the three that seem to be the most

1 Formally, forecast skill in meteorology is defined
as one minus the ratio of mean squared error (MSE) of
the forecast in question and MSE of a reference fore-
cast (Glossary of Meteorology). This measure does not
accommodate different forecasting and forecast vari-
ables (ENSO index and rainfall index in our case) and,
additionally, requires a reference forecast that we do
not have. Because the forecast skill is closely related to
the correlation between the forecast and its realization,
we use simple correlation between the forecast (MEI
from November of the previous year) and the rainfall
index realization in a bimonthly interval as a measure
of forecast accuracy (Murphy, 1988).

2 We use the 100% coverage level for the sake of
simplicity of exposition. The analysis can be extended
to any other coverage level in a straightforward fashion.

3 With corr(RI,yield) ranging between 0.4 and
0.7, the coefficients are statistically significant in all
counties.
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interesting and realistic.4 The implications of

each scenario discussed subsequently are based

on the theory of informational asymmetry go-

ing back to the works of Rothschild and Stiglitz

(1976) and Wilson (1977). More formal deri-

vation supporting these statements can be found,

for example, in Mas-Colell, Whinston, and Green

(1995).

1) Baseline scenario: the forecast information is

unavailable or is of no interest to both the in-

sured and the insurer. All expectations are then

based on the marginal joint distribution of yields

and RI. The demand for insurance is based

on comparing the expected use of the end-of-

season wealth with and without the contract.

2) The insurer does not know about the value

of the forecast, but the insured recognizes the

forecast accuracy (predictive capability). The

former still computes the expectations based

on the marginal joint distribution of yields

and RI, whereas the latter uses the conditional

distribution f y, rjEtð Þ5 @2F y, r, Eð Þ
@y@r

���
E 5 Et

, where

�t is the forecast of ENSO index. Advance

knowledge of the realization of conditioning

variables leads to intertemporal adverse se-

lection, i.e., an incentive not to buy the con-

tracts in ‘‘good’’ years predicted to have high

values of rainfall (and thus yield) and vice

versa. Note that the contract pricing continues

to be actuarially fair based on the insurer’s

evaluation of risk, but not actuarially sound

(E[loss] > P) as a result of the intertemporal

adverse selection. This situation leads to the

expected income transfer from the insurer to

the insured, E[loss] 2 P, in addition to the

insured’s risk reduction in ‘‘bad’’ years. The

net gain (benefit) is made of the insured’s

expected use gain expressed in terms of cer-

tainty equivalent revenue described in Section

2.1 and the insurer’s losses resulting from

expected income transfer. The net gain is dif-

ferent from zero because the insured is risk

averse, whereas the insurer is not.

3) Both the insurer and the insured are aware of

the forecasting value of the ENSO index re-

alization. If the premiums are originally set

based on the unconditional marginal distri-

bution of rainfall index and yields, then the

insured has an incentive to intertemporally

adversely select as described in Scenario 2.

However, the insurer can now respond by

making the premiums conditional on the fore-

cast. The contract again is both actuarially

fair and actuarially sound. Given nonnegative

index–yield correlation, the demand will re-

main positive because of actuarial fairness

and no discrepancy in subjective perceptions

of joint distributions. However, the insured’s

would be worse off relative to the baseline

scenario because the contract would now

only insure a portion of the rainfall risk not

explainable by the ENSO index and thus

provide lower level of risk reduction.

Methods, Data, and Estimation Results

Statistical Methods

To quantify the effects of long-range climate

forecasts on performance of RI insurance in the

scenarios outlined previously, we need to analyze

the relationship between the climate (ENSO

phases), RI, and yield. A significant relation be-

tween climate forecast and insured variable (e.g.,

index) is indicative of the forecast accuracy that

is generally valuable in risk management. The

marginal distributions of the RI, forage yield, and

end-of-last-year ENSO index representing the

climate forecast are estimated from the historical

data using the maximum likelihood method.

The joint density of the ENSO index, RI, and

yield are then constructed using the estimated

marginals and the copula approach.

To accommodate seasonal differences in

rainfall, we construct annual series for each

insurable bimonthly period. The best fits for the

marginal distributions of rainfall index, yield,

4 The fourth possible scenario corresponds to the
situation in which the insurer is aware of the forecast
but the insureds are not. However, this case is trivial
and reduces to one of the two analyzed scenarios.
Indeed, if the insurer has reasons to believe that the
producers do not intertemporally adversely select, it
can choose to ignore the forecast thus leading to
Scenario 1. Alternatively, the insurer can introduce
the forecast-conditional premiums. In this case, the
insurer would have to educate the producers as to the
reasons behind the differences in premium, thus lead-
ing to Scenario 3.
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and ENSO index are chosen from several alter-

native distributions (beta, gamma, log-normal,

normal, and Weibull). Copulas are functions that

combine the marginals of jointly distributed

variables into their joint distributions. The con-

nection between copulas and probability dis-

tributions is established by the Sklar’s Theorem

(Nelsen, 2006). The latter states that for any

group of jointly distributed variables, there ex-

ists a unique copula function C(�) such that the

joint distribution function H(x1, x2, . . ., xn) with

marginals {Hi (xi)} can be represented as

(3) H x1, . . . , xnð Þ 5 C H1 x1ð Þ, . . . , Hn xnð Þð Þ

Equation (3) can also be rewritten to relate

the joint and marginal probability densities so

that

(4) h x1, . . . , xnð Þ 5 C H1 x1ð Þ, . . . , Hn xnð Þð Þ
� h1 x1ð Þ � . . . � hn xnð Þ

where h x1, . . . , xnð Þ5 @nH

@x1 . . . @xn
,

C �ð Þ5 @nC u1, . . . , unð Þ
@u1 . . . @un

, and hi xið Þ5H0i xið Þ.

Copulas can be instrumental in constructing

joint distributions by combining variables with

different marginals. The usefulness of copulas

comes from the fact that, once a copula is esti-

mated, it can be used to construct joint distri-

butions by combining variables with different

marginals (Tejeda and Goodwin, 2008). Im-

portantly, the copula approach allows for better

use of available data when data series are of

different lengths. In our case, the yield data se-

ries are much shorter (approximately 25 obser-

vations per location and insurable bimonthly

interval) than the RI and ENSO data (ap-

proximately 50 observations per location and

insurable interval). Although estimation of the

dependency structure in equation (4) still needs

matching data points, the marginal distributions

for each variable can be estimated individually

using all available data.5 The conventional esti-

mation of a full joint distribution, on the other

hand, would only use the matching observations.

For the purposes of this analysis, we use

Gaussian and t-copulas. These copulas are

commonly used in the literature and are char-

acterized by a symmetric dependence structure,

which is consistent with the dependence ob-

served in our data.6

Marginal densities of the three variables

(ENSO index, RI, and yield) were computed on

a three-dimensional grid of Simpson quadra-

ture nodes. The trivariate joint density at the

nodes was then calculated according to equa-

tion (4) and used in computing the expected

utilities (equation [1]) and contract premiums

(equation [2]) under the three scenarios of in-

formation availability outlined previously.

To reflect possible imprecision in ENSO

forecasts, we partitioned the range of ENSO

index into a number of intervals of equal length

(10 or more to approximate a continuous index

measure) and calculated rainfall distributions

conditional on the ENSO index belonging to

each interval. Any consistent patterns in ENSO-

conditioned premiums would then indicate pre-

dictable differences in the volatility of rainfall

and therefore of a potential value of climate

forecast information.

Commonly found in financial literature

are several measures of performance of risk-

reducing contracts that include value at risk,

mean root square loss, and certainty equivalent

revenues (CER). In production analysis, com-

parison of certainty equivalent revenues is

a good indicator of net benefits from risk re-

duction, because agricultural producers are

normally viewed as risk-averse and the level

of aversion matters (Schnitkey, Sherrick, and

Irwin, 2003). The constant absolute risk aver-

sion utility function of the form

(5) U R;Að Þ51� exp �A � Rð Þ.

was used for the analysis with the results ex-

pressed in terms of certainty-equivalent wealth

(CEW given W0 5 0 becomes CER). Follow-

ing Babcock, Choi, and Feinerman (1993), we

5 For a brief technical description of copulas, see
Vedenov (2008). For a detailed discussion, see Nelsen
(2006).

6 Currently, there is no common approach to the
copula selection in the literature and this topic goes
outside of the scope of the present article. We relied on
visual inspection of data to select these two copulas for
our analysis.
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calibrated the risk aversion coefficient A based

on assumptions about the risk premium level,

i.e., the share of the expected income an in-

dividual would be willing to give up to eliminate

all risk. For a given risk premium u, the risk

aversion coefficient A can be calculated by nu-

merically solving a fixed point problem U([1 2

u]ER; A) 5 EU(R; A).

The net gain from insurance to both the in-

sured and the insurer is made of the difference in

certainty equivalent revenues with and without

insurance, CERIns – CERNoIns, minus expected

income transfer from the insurer to the insured,

E[loss] – premium, which can be positive in case

of intertemporal adverse selection.

Data

The states that are currently fully or partially

covered by the RI-based PRF insurance are

Alabama, Colorado, Idaho, Missouri, Mon-

tana, North Dakota, Pennsylvania, and South

Carolina.7 The geographical scope of this re-

search is limited to locations in Alabama,

Georgia, and the Florida Panhandle representing

a variety of regions ranging from coastal to

inland. This variety is important, because the

ENSO impact on rainfall is usually the stron-

gest in the coastal areas.

Rainfall data were collected from the Climate

Prediction Center (CPC) and local meteorologi-

cal sources.8 The RI used by the RMA reflects

precipitation received in an area relative to the

long-term average and is highly correlated with

monthly rainfall data, available from the National

Oceanic and Atmospheric Administration’s cli-

mate data inventory, for the same weather station

locations. We use the RMA’s RI data collected

from the RMA online database as more suitable

for our research purposes (RMA, 2012).

Four ENSO indices are commonly used by

climatologists and agronomists, namely the

Nino 3.4, the Oceanic Nino Index (ONI), the

Japan Meteorological Agency (JMA) index,

and the Multivariate ENSO Index (MEI). The

SST anomalies in the Nino 3.4 region of the

Pacific Ocean are believed to be the most

suitable for explaining climate variations in

the southeastern United States (CPC; Hansen,

Hodges, and Jones, 1998). The ONI and the

JMA indices are highly correlated with the

Nino 3.4 index but represent 5-month moving

averages emphasizing the persistence of the

phenomenon.

The MEI is a composite ENSO index based

on six main observed variables over the tropical

Pacific, viz. sea surface temperature, sea-level

pressure, zonal and meridional components of

the surface wind, surface air temperature, and

total cloudiness fraction of the sky. Because of

its composite nature more fully reflecting the

complex atmospheric processes, the MEI index

scores best as a predictor of corn, cotton, and

peanut yields in the Southeast (Royce, Fraisse,

and Baigorria, 2011). Monthly and weekly data

on these indices are available from the National

Aeronautics and Space Administration online

database (NASA, 2012). Because the stated

deadline for signing the RI insurance contracts

is November 30, we used the reported No-

vember values of the MEI as a proxy for the

next year’s forecast.

Monthly hay yield data come from the Ag-

ricultural Experiment Station yield perfor-

mance reports. The latter cover the period of

1999–2010 (with some variations) and sum-

marize field trial yields of different ryegrass

varieties recorded continuously from Septem-

ber to October to April to June at the rate of

three to six annual measurements (approxi-

mately 40 observations for each location). To

account for irregular measuring intervals, the

reported incremental yields averaged across

varieties (mostly ryegrass) were converted to

daily averages. The correlation between these

daily averages and precipitation is significant

and varies between 0.4 and 0.7.97 The PRF insurance is also available in Texas,
Kansas, Nevada, New York, North Carolina, Oklahoma,
Oregon, South Dakota, Virginia, and Wyoming, but
there it uses the vegetation index (VI) for indemnity
determination.

8 Precipitation and yield data collected at experi-
ment stations were chosen as the most reliable.

9 Annual forage yield data are not used in this
analysis because the bimonthly yield distributions
necessary for our analysis are sufficiently different
from the annual yield distributions.
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Impact of the El Nino Southern Oscillation

Forecast on Rainfall and Premiums

Table 1 shows typical correlations between

the RI in February to March and the lagged

(November-1) ENSO index (MEI) representing

forecast at four Alabama experiment stations

ranked by their proximity to the coast. The

forecast accuracy appears to be highly depen-

dent on the proximity to the Gulf Coast.

Because we are interested in the insurance

implications of climate information and there-

fore its effect on downward volatility (losses)

of the insured variable, we also ran quantile

regressions of the rainfall index on the lagged

values of the MEI, Nino 3.4, and JMA indices.

A sample of results reported in Table 2 indicates

that most of the impact is on the lower to mid-

quantiles of rainfall distribution and that, at least

for the coastal regions, the impact is significant

for the index lagged up to 6 months.10

Tables 3, 4, and 5 show typical results of

expected utilities and certainty equivalent rev-

enues calculated under the three scenarios

discussed in the previous section. Gaussian

copula is used to construct estimates of tri-

variate densities of the RI, lagged ENSO index

(MEI) representing the forecast, and ryegrass

yields. The ENSO forecast takes on one of 10

values reflecting the interval into which the

lagged ENSO index falls. Table 3 shows typical

results for a coastal location (Mobile County,

AL). As expected, the mean of the rainfall in-

dex is positively related to the ENSO forecast

value, i.e., the lagged MEI index showing the

strength of the ENSO (El Nino) signal (Table 4,

column 2). Even more notably, the relationship

between the forecast and expected losses of

the RI insurance is almost monotonic with the

losses (Table 4, column 3) increasing with the

forecast up to its upper range, albeit slightly

falling at the end. The premiums conditioned

on the forecast (Table 4, column 4) are in-

versely related to the forecast value.

Of greatest interest is the impact of the fore-

cast availability on the risk reducing effectiveness

of the insurance contract under the alternative

scenarios described earlier. If the unconditional

distributions are used in equations (1) and (2), the

benefit from the RI insurance (as measured by

the change in CER) is quite small and amounts to

only approximately 6% of the CER of the un-

insured yield (Table 3, row 3). As expected, the

RI insurance with premiums not conditioned on

climate forecasts is always preferred to that with

forecast-conditional premiums, although the dif-

ference is not very large. The small magnitude of

the losses from conditioning premiums on fore-

cast could be attributed to a relatively small im-

pact of the forecast on the insured index.

When the producers make insurance pur-

chasing decisions based on skillful forecasts

but the contract offers premiums based on

unconditional distribution (Tables 4 and 5,

Scenario 2), the producers benefit the most as

a result of their ability to intertemporally ad-

versely select across time. Close to the coast

and in Winter/early Spring, purchasing the

insurance is optimal only under three most

pessimistic forecasts (1–3) out of 10 as evidenced

by comparing the unconditional premium (un-

conditional expected losses) with the expected

Table 1. Correlation between Forecast (Multivariate El Nino Southern Oscillation Index [MEI] in
November previous year) and Rainfall Index in February to March

Locations in Alabama

Coastal

(Fairhope)

Further from Coast (Headland) Further from Coast (Chilton) Inland

(Belle Mina)

MEI Rainfall Index Correlation (p value)

0.569 (0.065) 0.368 (0.086) 0.255 (0.279) –0.199 (0.981)

10 Mixture models are a better methodology for
ascertaining ENSO impact on weather at distributional
extremes because they eschew any arbitrary subpopu-
lation classification. However, the use of mixture
models is outside the scope of this article as a result
of space limitations and the focus on modeling index
insurance contracts.
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losses conditional on the ENSO forecast in

Table 4. The net benefit from insurance—

calculated as the producer benefit (CER) minus

expected income transfer from the insurer

resulting from intertemporal adverse selection—

is always smaller relative to the forecast-

conditional situation (Scenario 3). The higher

the forecast accuracy, the smaller the net benefit.

These results reinforce the intuitive and

expected conclusion that, in the absence of

positive forecast impact on management prac-

tices, which is more likely to be the case in

forage than in crop production, climate forecast

information does not have a positive value for

the insurance. However, as the correlation be-

tween the forecast and the insurable index in

subsequent insurable intervals (further in the

year) decreases, the forecast information trans-

lates into smaller differences in benefits when

incorporated into contract design. For maxi-

mizing the efficiency of the RI insurance, de-

fined as the net gains equal to difference in

certainty equivalent revenues with and without

insurance, CERIns – CERNoIns, minus expected

income transfer from the insurer to the insured,

E[loss] – premium, it is (almost) always better to

offer forecast-conditional contracts than to allow

intertemporal adverse selection under contracts

with premiums based on unconditional distri-

butions (pooled contracts).

The effect of forecast accuracy on the risk-

reducing effectiveness of the RI insurance is

demonstrated in Table 5, which presents the

CER results under the three scenarios of

Table 3. Benefits from Insuring December–February Rainfall Insurable Interval (Mobile County,
AL)

Scenario CER

No insurance 2152.7

D CER from no insurance:

Scenario 1 Unconditional premiums Producer benefit 5 net benefit 129.3

Scenario 2 Unconditional premiums, intertemporal adverse

selection Producer benefit

145.9

Scenario 2 Unconditional premiums, intertemporal adverse

selection Net benefit

101.6

Scenario 3 Forecast conditional premiums

Producer benefit 5 net benefit

122.8

CER, certainty equivalent revenue.

Table 4. Expected Losses Conditional on Forecast Insuring December–February Rainfall Insurable
Interval (Mobile County, AL)

Forecast value (ENSO index interval)a E[RIjforecast] E[lossjforecast]b E[loss/RIjforecast]b

1 66.28 9.93 0.15

2 81.04 11.83 0.15

3 95.26 12.89 0.14

4 109.53 13.51 0.12

5 124.16 13.89 0.11

6 139.30 14.10 0.10

7 154.98 14.15 0.09

8 170.95 14.01 0.08

9 187.00 13.43 0.07

10 201.03 11.63 0.06

Unconditional premiums (Scenario 2) 99.84 14.13 0.14

a Higher intervals correspond to stronger ENSO signal (higher index values).
b Expected loss computed according to equation (2) using conditional densities.

ENSO, El Nino Southern Oscillation Index; RI, insurable rainfall index.
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information availability for all six insurable

bimonthly periods for a coastal location in

Alabama (Mobile County). As the forecast

accuracy declines over the subsequent periods,

the forecast information makes less and less

difference between the benefits from the in-

surance with and without using the forecast

information (between Scenario 1 and Scenario

3), becoming irrelevant in mid-Summer when

the ENSO usually transitions from one phase

to another. Similarly, lower forecast accuracy

in locations further inland makes forecast

information almost completely irrelevant for

the RI insurance. The results for Georgia and

Florida are very similar and are not shown as

a result of space limitations.

Sensitivity Analysis

To evaluate the sensitivity of our results to as-

sumptions and modeling choices, we vary

several factors including forecast accuracy and

precision, correlation between the yield and the

index, producer’s risk aversion, and the county

Table 5. Results Summary for All Insurable Intervals (Mobile County, AL)

Insurable Interval

(bimonthly, starting January) Scenario CERa

1 corr(forecast, RI) 0.53 Scenario 1. Unconditional premiums 129.31

Demand, % of forecastb 0.40 Scenario 2. Unconditional premiums,

intertemporal adverse selection,

producer benefits

145.87

Insurer’s lossc 244.24 Scenario 2. Unconditional premiums,

intertemporal adverse selection,

net benefits

101.62

Scenario 3. Forecast conditional insurance 122.79

2 Scenario 1. Unconditional premiums 119.10

corr(forecast, RI) 0.26 Scenario 2. Unconditional premiums,

intertemporal adverse selection,

producer benefits

119.76

Demand, % of forecast 0.50 Scenario 2. Unconditional premiums,

intertemporal adverse selection, net benefits

108.01

Insurer’s loss 211.75 Scenario 3. Forecast conditional insurance 110.68

3 Scenario 1. Unconditional premiums 105.06

corr(forecast, RI) 0.19 Scenario 2. Unconditional premiums,

intertemporal adverse selection,

producer benefits

105.08

Demand, % of forecast 0.60 Scenario 2. Unconditional premiums,

intertemporal adverse selection, net benefits

99.52

Insurer’s loss 25.56 Scenario 3. Forecast conditional insurance 99.15

4 Scenario 1. Unconditional premiums 114.47

corr(forecast, RI) 0.08 Scenario 2. Unconditional premiums,

intertemporal adverse selection,

producer benefits

114.47

Demand, % of forecast 1.00 Scenario 2. Unconditional premiums,

intertemporal adverse selection, net benefits

114.47

Insurer’s loss 0.00 Scenario 3. Forecast conditional insurance 111.80

5 corr(forecast, RI) 20.04

6 corr(forecast, RI) 0.04

a CER refers to certainty equivalent revenues corresponding to a scenario (1, 2, and 3) in each insurable interval (1–6, bolded).
b Percent of forecasts under which insurance is purchased.
c Expected income transfer to the insured.

RI, rainfall index.
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base values (the conversion factor between the

index and the yield in equation [1]).11

For all reasonable parameter ranges, de-

mand for the RI contract based on the un-

conditional distribution remains the same: it is

optimal to buy the actuarially fair insurance at

the maximum available coverage (100% of the

expected RI). This result agrees with the theory,

because the correlation between the RI and

yield is high enough to justify demand for

coverage at the mean of the RI.

The impact of the forecast accuracy (i.e., the

correlation between the forecast and the RI) on

welfare and demand for insurance can be traced

by comparing results for coastal (higher corre-

lation) with inland (lower correlation) areas.

However, such comparisons may be obscured by

the differences in marginal distributions across

the intervals. Therefore, we varied the correlation

between the forecast and the RIs directly. The

results of the simulations are shown in Figure 1.

Increasing forecast accuracy, ceteris paribus,

has two major impacts on the effectiveness of RI

insurance. On the one hand, it reduces producer

benefits from the insurance (as measured by

CER) under the forecast-conditioned contracts

(Scenario 3). Intuitively, better forecast re-

duces the insurable portion of the rainfall risk

and thus the producers are left bearing a higher

portion of the risk.

On the other hand, higher forecast accuracy

results in a higher degree of intertemporal ad-

verse selection under Scenario 2. In other words,

under the asymmetric information scenario,

better forecast leads to more selective purchase

of insurance, thus leading to higher transfer of

expected income from the insurer to the pro-

ducer. The kink in the net gains (net benefits)

from insurance (insured’s gains minus expected

income transfer) is explained by the discrete

specification of forecast intervals. The in-

sured’s benefits increase more smoothly be-

cause of simultaneously losing the benefits of

consumption smoothing.

Figure 1. Benefits (gains) from Insurance Relative to No Insurance (as measured by certainty

equivalent revenues [CERs]), Sensitivity to Forecast-Index Correlation

11 Existing analytical models of index insurance
that provide comparative statics are based on a set of
restrictive assumptions (Cariquiry and Osgood, 2012;
Mahul, 2001; Miranda, 1991). We use sensitivity
analysis to focus on a set of local empirical estimates.
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In our analysis, the range of ENSO index

was divided into intervals on which the pre-

miums were conditioned. This modeling setup

approximated the forecast precision (as op-

posed to the forecast skill).12 Decreasing the

number of intervals—making the forecast more

‘‘crude’’– reduces the informational content of

the forecast, no matter how skillful or accurate.

This brings Scenarios 1 and 3 closer together

and reduces the degree of intertemporal adverse

selection. For small variations in the number of

intervals, the impact is minimal. The results are

not reported here for brevity sake.

Higher correlation between the index and

the yield improves producers’ well-being in all

three scenarios (Figure 2). Intuitively, higher

index–yield correlation means higher risk re-

duction in terms of the CER regardless of

the premium structure. As the correlation in-

creases, intertemporal adverse selection de-

creases (insurance is purchased under a wider

range of forecasts). However, the impact on the

expected income transfer is indeterminate be-

cause producer benefits under the intertemporal

adverse selection scenario increase with the

correlation. Our estimates suggest that expected

income transfer becomes smaller with greater

index–yield correlation as insurance, even under

more favorable forecasts, becomes more valu-

able to the producer. Conversely, expected in-

come transfer under the intertemporal adverse

selection scenario is inversely related to the in-

dex–yield correlation: the lower the correlation,

the more indifferent the insured is between

buying and not buying the insurance, which re-

duces demand even under the bad, but now less

relevant, forecasts.13

Correlation between the forecast and the

yield also affects the effectiveness of insurance

contract, albeit indirectly. As shown in Figure 3,

increasing correlation leads to greater divergence

Figure 2. Benefits (gains) from Insurance, Sensitivity to Index–Yield Correlation

12 Precision is a measure of exactness; it is negatively
correlated with random error (as in measurement).

13 On a side note, an interesting observation is that,
under the assumptions of forecast use and premiums
based on unconditional distribution, higher index–
yield correlation causes smaller changes in demand
for insurance and thus increases both the producer’s
welfare and net welfare.
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between the CERs in Scenarios 1 and 3. In-

tuitively, for a given forecast accuracy (fore-

cast–index correlation), higher forecast–yield

correlation implies higher index–yield corre-

lation. Therefore, the same reduction in the

insurable portion of the index risk (occurring in

Scenario 3) leads to higher reduction in insur-

able portion of the yield risk and thus lower

overall effectiveness of the insurance contract

with the forecast-conditioned premiums. Fur-

thermore, as the forecast–yield correlation in-

creases, the intertemporal adverse selection in

Scenario 2 becomes more severe (fewer con-

tracts are purchased) and benefits the producer

less. At the lower levels of the correlation

values, the insurance is purchased only 50% of

the time. As the correlation increases, the de-

mand falls even further without benefitting the

producer much because most of the gain is

expected income transfer from the insurer that

is largely offset by the losses from not insuring

under intertemporal adverse selection.

Increasing risk aversion has different im-

pacts under different scenarios (Figure 4). On

the one hand, it leads to greater divergence

between the contracts with premiums based on

unconditional distribution (Scenario 1) and the

forecast-conditional premiums (Scenario 3).

Indeed, higher risk aversion means that the

uninsurable portion of the rainfall risk results in

higher loss of use.

On the other hand, increasing risk aversion

in Scenario 2 eventually leads to the situation

in which the contract appears to be ‘‘over-

priced’’ relative to the risk protection provided

and the expected use of the contract begins to

decrease. Given that producers in Scenario 2

only purchase insurance in ‘‘bad’’ years, the

frequency of such high loss events does not

seem to be high enough to justify purchase of

the contract.

The CBVs represent the marginal impact of

precipitation on yields and thus the level of

indemnification. As shown in Figure 5, gains

(benefits) from the insurance are maximized

under Scenarios 1 and 3 when the base values

represent the actual coefficient from regressing

yields on bimonthly rainfall indices as de-

scribed in the ‘‘Methodology’’ section. Under

Scenario 2, the benefit of insurance also reaches

Figure 3. Benefits (gains) from Insurance Relative to No Insurance, Sensitivity to Forecast–Yield

Correlation
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a maximum although at a higher level of CBV

(outside of the graph range). The difference is

explained by the higher levels of the expected

income transfer from the insurer, because it is

scaled by the CBV.

Conclusions

This article analyzes the effect of long-term

climate forecasts on RI insurance for hay and

forage production in a geographical area where

the climate is relatively heavily impacted by the

ENSO phases (southeastern United States). The

copula approach is used to model the joint

distribution of the RI, hay yields, and the ENSO

forecast. The forecast impact appears to be

dependent on the proximity to the Gulf Coast

where the impact of the ENSO is more pro-

nounced. Both the mean of the RI and the

contract indemnities increase with the forecast

(stronger El Niño signal), whereas the premiums

decrease with the forecast.

The effectiveness of insurance contracts is

measured by the certainty equivalent wealth

of an insured producer under three different

scenarios reflecting forecast use by the insurer

and the insureds. In the baseline case (Scenario 1),

neither the insurer nor the insureds use the

forecast, and the contract is priced based on the

unconditional distribution of index and yield.

In this case, the actuarially fair contract is

perceived as such and is always purchased.

Producers benefit the most in the Scenario 2

in which the premiums are set based on un-

conditional distribution, but the producers use

the forecast to selectively purchase insurance

only in years with higher expected losses. This

results in intertemporal adverse selection and

income transfer from the insurer to the insureds.

The contract is essentially mispriced and the

premiums are not actuarially sound. In Scenario

3, both the insurer and the insureds are aware of

the forecast and the insurer offers contracts with

forecast-conditioned premiums. In this case, the

forecast reduces the insurable portion of the in-

dex risk, and the producers are relatively worse

off because they have to internalize this un-

insurable risk. Stochastic modeling shows that

the efficiency loss from using the forecast-

conditioned premiums is relatively small in the

southeastern United States but the effect is

sensitive to the parameters and assumptions.

The main results of sensitivity analysis are

that forecast accuracy (correlation between the

Figure 4. Benefits (gains) from Insurance, Sensitivity to Risk Aversion (risk premium)
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forecast and the RI) increases intertemporal

adverse selection in Scenario 2. However, in

most cases, higher correlation between the RI

and the yield improves the efficiency of the RI

insurance defined as the net gains equal to

difference in certainty equivalent revenues with

and without insurance minus expected income

transfer from the insurer to the insured.

Currently, the RMA does not condition the

premiums of RI insurance contracts on ENSO

forecast. At this point, the lack of relevant data

does not allow us to determine whether the

producers are aware of the value of ENSO

forecasts or use those to intertemporally ad-

versely select against the RMA (i.e., whether

the current situation corresponds to Scenario 1

or 2). Further research would be required to

definitively answer this question.

If the evidence of intertemporal adverse

selection is found, then the RMA would need to

introduce the forecast-conditioned premiums to

maintain the actuarial soundness of the pro-

gram. The effect of such an action would be an

overall decrease in risk-reducing effectiveness

of the RI contracts, because the producers will

have to bear the uninsurable (predictable) por-

tion of the RI risk. Note, however, that the

problem does not necessarily lie in the pre-

dictability of ENSO phases, but rather in the

advance availability of the forecast. A possible

solution in this situation would be to introduce

the ENSO insurance which can be purchased

before the forecast becomes available (or ac-

curate) and can provide protection against the

ENSO-driven variability in the rainfall and thus

yield.

[Received June 2011; Accepted July 2012.]
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