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Abstract 

In this paper, we conduct a set of Monte Carlo sampling experiments to examine the effect of design 

characteristics on the inequality restricted maximum entropy (RME) estimator.  We generate data under varying 

design characteristics, and estimate the parameters using maximum entropy and least squares estimation, both 

with and without parameter inequality restrictions.  As part of the experimental design we vary the sample size, 

the distribution of the regressors, the distribution of the errors, the degree of collinearity, the signal-to-noise 

ratio, and the specification error.  We compare the alternative estimators on the basis of mean square error.       
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1. Introduction 

 This paper examines the effects of design characteristics on the inequality restricted maximum entropy 

estimator.  We conduct a set of Monte Carlo experiments and examine the effects of design characteristics on 

the empirical risk of least squares and maximum entropy estimators, both with and without linear inequality 

restrictions.  Golan, Judge, and Miller (1996) [hereinafter GJM] discuss the generalized maximum entropy 

(GME) estimator, apply it to a linear regression model, and carry out a set of experiments comparing the GME 

estimator to least squares, restricted least squares, and ridge regression.  GJM vary the degree of collinearity in 

their sampling experiment and find that the GME estimator has lower risk than the alternative estimators, 

especially when there is a high degree of collinearity.   

We add to the GJM contribution by studying a broader set of design characteristics in our experiments.  On 

the basis of experimental results, GJM find that GME estimation should be considered when data are highly 

collinear.  By examining additional data characteristics, we can gain some insight into other cases where 

researchers may benefit from GME estimation.  We examine the effects of changes in the sample size, the 

distribution of the regressors, the distribution of the errors, the condition number, the signal-to-noise ratio, and 

the specification error on the risk of the alternative estimators.  In addition, we estimate the model using a 

restricted maximum entropy (RME) estimator.  Campbell and Hill (2004) discuss how to impose binding 

inequality restrictions on the GME estimator through the parameter support matrix.   

Section 2 discusses GME estimation in the linear regression model.  We discuss parameter inequality 

restrictions and the RME estimator in this section.  Section 3 presents the Monte Carlo experimental design and 

variations in the experimental design.  Section 4 gives results from our experiments and examines the impact 

that each of the design characteristics has on the performance of the alternative estimators.  Section 5 gives 

results from response surface regressions on the MSE of the alternative estimators while Section 6 concludes the 

paper.     

 

2. Generalized maximum entropy estimation in the general linear model 

In our experiments, we estimate a linear regression model of the form 

y X e  ,                    (1) 
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where y  is a 1T   vector of sample observations on the dependent variable, X  is a T K  matrix of explanatory 

variables, e is a 1T   vector of unknown errors, and   is a 1K   vector of unknown parameters.   

Jaynes (1957a, 1957b) shows that maximum entropy allows us to estimate the unknown probabilities in a 

discrete probability distribution.
1
  Therefore, we reparameterize the linear model such that the unknown 

parameters and errors take the form of probabilities.  Specify a set of support points for each unknown 

parameter and error and use maximum entropy to estimate the unknown probabilities associated with the support 

points.  Let 1kz  be the smallest possible value of k  and 2kz  be the largest possible value of k .  Then, for 

each parameter, k , there exists  0,1kp   such that 

 1 2 1 2(1 )
1

k

k k k k k k k

k

p
p z p z z z

p


 
     

 
.            (2) 

The parameter support is based on prior information or economic theory.  For example, we would specify 

boundaries of 1 0kz   and 2 1kz  when estimating the marginal propensity to consume.  However, specifying 

the largest and smallest possible values for each variable is not an easy task since economic theory does not 

usually provide this information.  GJM (1996, p. 138) discuss the width of the parameter support and conclude 

that the effects of specifying wide support bounds are small when the prior mean is unchanged.  We extend this 

research by examining the effects of design characteristics under binding inequality restrictions, which change 

the prior mean of the unknown parameters.
2
 

 Define a matrix consisting of 2M   support points for each parameter, which may or may not be 

symmetric about zero and which bound the unknown parameters.  Let kz  be the 1M   support vector for the 

thk  parameter and let kp  be the associated 1M   vector of probabilities or weights on these support points.  We 

write the unknown parameter vector,  , as 

1 1

2 2

0 0

0 0

0 0 K K

z p

z p
Zp

z p



   
   
     
   
   

      

,                (3) 

                                                           
1 The ME distribution is the most uniform distribution compatible with the prior information. 

 
2 The prior mean of a parameter is equal to the support points times their prior probabilities or k kz p , where kp are the prior 

probabilities and are uniform in GME. 
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where   is a 1K   vector of unknown parameters, Z is a K KM  matrix of support points, and p  is 

a 1KM   vector of unknown weights such that 0kmp   and 1k Mp i   for all k .  This is the traditional GME 

parameter support matrix, which is block diagonal so the support points for any parameter do not directly impact 

the other parameter estimates.  

 Similarly, for the unknown errors, let 1iv  be the smallest possible value of ie and 2iv  be the largest possible 

value of ie .  For each random error, ie , there exists [0,1]iw   such that 

 1 2 1 2(1 )
1

i

i i i i i i i

i

w
e w v w v v v

w

 
     

 
.             (4) 

Placing boundaries on the unknown errors may be difficult in practice.  Chebychev’s inequality states that 

  2Pr | |X c c     , where X  is a random variable with mean   and variance 2  and c is a constant.  

Following Pukelsheim (1994), GJM suggest setting the error bounds as 1 3iv    and 2 3iv  .  We obtain 

GME estimates using both the 3 - rule (GME3) and a more conservative 4 - rule (GME4).  The 3 - rule 

guarantees that at least 88.8% of the unknown errors fall within the error bounds while the 4 - rule guarantees 

that at least 93.75% of the unknown errors fall within the error bounds.  In practice, when a researcher does not 

know  , the sample standard deviation of y , y , can be used.  Since y will generally be larger than the true 

  this will result in slightly wider error bounds.  Thus, an empirical 3 - rule corresponds more closely with 

the 4 - rule based the true value of  , and may result in even wider error bounds.           

 Define a set of 2J   support points for each error, which are symmetric about zero and which bound the 

unknown errors.  Let iv  be the 1J   support vector for the thi  error and let iw  be the associated 1J   vector of 

weights on these support points.  We write the unknown error vector as   

 

1 1

2 2

0 0

0 0

0 0 T T

v w

v w
e Vw

v w

   
   
     
   
   

      

,                (5) 

where e  is a 1T   vector of random errors, V is a T TJ  matrix of support points, and w  is a 1TJ   vector of 

unknown weights such that 0ijw   and 1i Jw i   for all i .   

The reparameterized model in matrix form is written as 
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y XZp Vw  ,                   (6) 

where y , X , Z , and V are known and we estimate the unknown p  and w  vectors using maximum entropy.  

GJM refer to the maximum entropy estimator for the reparameterized model as the generalized maximum 

entropy (GME) estimator.
3
  The GME parameter and error estimates are given by 

 ˆ ˆ
GME Zp                      (7) 

and 

垐
GMEe Vw ,                    (8) 

where p̂ and ŵ  are the estimated probability vectors. 

 Shannon (1948) shows that entropy is additive for independent sources of uncertainty.  Assuming the 

unknown weights on the parameter and the error supports for the GLM are independent, we jointly estimate the 

unknown parameters and errors by solving the constrained optimization problem 

 max ( , ) ln( ) ln( )H p w p p w w                       (9) 

subject to 

 y XZp Vw                     (10) 

( )K M KI i p i                     (11) 

( )T J TI i w i  ,                   (12) 

where   is the Kronecker product.  Equation (10) is a data constraint and equations (11) and (12) are additivity 

constraints, which require that the probabilities sum to one for each of the K parameters and each of the T errors. 

The solutions to the GME constrained optimization problem are 

 

1

ˆexp( )
ˆ

ˆexp( )

km k

km M

km k

m

z x
p

z x










                 (13) 

and 

 

1

ˆexp( )
ˆ

ˆexp( )

tj t

tj J

tj t

j

v
w

v









,                    (14) 

                                                           
3 Our GME estimator corresponds to the GME-D estimator given by GJM (p. 86) 
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where kx  is the 1T   vector of observations for the 
thk  explanatory variable and  is a 1T   vector of 

Lagrange multipliers for the data constraint.  The GME parameter estimates are a function of the Lagrange 

multipliers for the data constraint, the support points placed on the parameters a priori, and the sample data, and 

can be written as 

1 1 1ˆ 垐( ) ( ) ( ) ( )GME GME GMEX X X y X X X e X X X y e            .         (15) 

Thus, GME minimizes the SSE for a fitted regression line that passes through the mean of ˆ
GMEy e  rather than 

through the mean of y .  As ˆ 0GMEe  (narrower error bounds), the GME estimator converges to the OLS 

estimator.  As the error bounds are made wider the GME estimator is shrunk towards zero.
4
       

In the linear regression problem, the GME estimator is a shrinkage estimator similar to the Stein-like and 

empirical Bayes estimators described, for example, by Judge, Hill, and Bock (1990).  GME shrinks the 

parameter estimates towards the expected value of the parameter support, which is specified a priori.  The 

expected value of the parameter support is equal to the sum of the support points multiplied by the associated 

prior distribution, and is known as the prior mean of the unknown parameters.  For example, suppose we specify 

a parameter support that is symmetric about zero.  If the prior probability distribution is uniform the prior mean 

of the parameter support is equal to zero (since ˆ ˆ
k k kz p  ). 

2.1 Restricted maximum entropy estimation in the general linear model 

 An economic researcher often has sign or other information about the parameters that can be expressed as a 

linear inequality restriction.  We impose parameter sign restrictions on both the least squares and maximum 

entropy estimators.  Judge et al. (1988, pp. 822-825) show that the inequality restricted least squares (IRLS) 

estimator is biased, but dominates the OLS estimator, under a squared error loss measure, as long as the 

restrictions are true or nearly true.   

Using the parameter support matrix we impose linear inequality restrictions on the GME estimator.  

Because each parameter must be bounded, the GME estimator always has inequality restrictions placed on the 

parameters.  However, the bounds do not generally reflect specific prior information such as sign or other 

restrictions.  Instead, the parameters are bounded because they must be and the bounds are not based on prior 

                                                           
4 Assuming the parameter support is symmetric about zero.  The GME estimator is shrunk toward its prior mean, which may or 

may not be zero, as the error bounds are made large. 



A Monte Carlo study of the effect of design characteristics on the inequality restricted maximum entropy estimator 

 7 

information.  We impose parameter sign restrictions following Campbell and Hill (2004) and examine how the 

restricted maximum entropy (RME) estimator performs as we vary the degree of collinearity, the sample size, 

the distribution of the errors and regressors, the signal-to-noise ratio, and the specification error.     

If we have nonsample information that 0k   we specify the support vector for k  to take only positive 

values such as  0 5 10 15kz  , where kz  is the 1M  parameter support vector for k .  In this case the 

RME estimate  

1 2 3 4
ˆ 垐 垐0 5 10 15 0k k k k kp p p p      ,             (16) 

since ˆ 0kmp   for all M  support points.  Note that the parameter estimate will be shrunk toward the prior mean 

which is non-zero in this case.  Likewise, for a negative sign restriction, 0k  , we specify the parameter 

support vector to take only negative values.  For these parameter sign restrictions, the parameter support matrix 

is block diagonal.  From equation (3), each unknown parameter, k , is associated with a support vector, kz , and 

the off-diagonal elements in the support matrix are equal to zero.  In this case, the solutions to the RME 

optimization problem are given by equations (13) and (14).
5
  Applications of restricted maximum entropy 

estimation include Fraser (2000) and Shen and Perloff (2001).  Section 3 describes our Monte Carlo 

experiments and gives the elements of the experimental design.   

 

3. Monte Carlo experimental design 

GJM (pp. 133-137) carry out a Monte Carlo experiment comparing the empirical risk of OLS, IRLS, ridge 

regression, and GME estimators under varying degrees of collinearity.  They find that the GME estimator has 

lower mean squared error (MSE) than the alternative estimators at all levels of collinearity, but the GME 

estimator performs especially well compared to the alternative estimators when the degree of collinearity is high.  

This is consistent with other shrinkage estimators.  We carry out essentially the same Monte Carlo experiments, 

but in addition to the degree of collinearity we vary the sample size, the distribution of the errors, the 

distribution of the regressors, the signal-to-noise ratio, and the specification error.  We examine the effects of the 

                                                           
5 Campbell and Hill (2004) also discuss estimation under restrictions such as k j  , where the parameter support matrix is 

not block diagonal. 
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design characteristics on the RME estimator as well as the OLS, IRLS, and GME estimators.  We estimate the 

linear model  

1 1 2 2 3 3 4 4 , 1, ,t t t t t ty x x x x e t T                    (17) 

The model is written in matrix form as in equation (1): 

  y X e  , 

where X  is a 4T   matrix of random regressors,  2, 1, 3, 2    is a known parameter vector, and e  is a 

1T   vector of random errors.   

 To vary the degree of collinearity, we obtain the singular value decomposition of X QLR , where Q  is a 

T K  matrix, L  is a K K diagonal matrix with eigenvalues 0il  , and R  is a K K  matrix such 

that ' KR R I .  We replace the eigenvalues in L  with the vector 
2 2

, 1, 1,
1 1

a


 

 
  

  
, where   is 

a known constant, to form a new matrix aL .  We use aL  to create a new matrix of regressors a aX QL R .  

Belsley, Kuh, and Welsch (1980) define the condition number of 'X X  to be 1/ 2

1( / )K  , where 1 and  k  are 

the largest and smallest eigenvalues, respectively.  The largest and smallest eigenvalues for 'a aX X  are 

1

2

1








 and 

2

1
K





.  Thus, the condition number 1/ 2( ' )a aX X   is specified a priori. 

During each of N = 1,000 Monte Carlo iterations we generate the dependent variable ay X e  .  In 

addition, we generate a hold-out sample as 0 0 0ay X e  , which we use to examine out-of-sample prediction.  

We vary the estimation sample size using the values T =10, 50, 100, 300, and 500.  We use a hold-out sample of 

size 0T = 50 for all experiments.   

Following GJM, we vary the degree of collinearity.  Belsley, Kuh, and Welsch (1980) conclude that 

condition numbers greater than about 30 indicate that collinearity may be a problem.  We consider condition 

numbers ( ' )a aX X = 1, 10, 20, 40, 60, 80, 100, 250, and 500.  Additionally, we vary the distribution of both 

the errors and the regressors.  In our experiments we draw both the errors and regressors from a standard normal 

distribution as well as from (3)t  and a 
2

(5)  distributions, correcting the mean to 0 and the variance to 1.  We 
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chose a (3)t  distribution since it is symmetric with a mean of 0 and a variance of 1, but has thicker tails than the 

standard normal distribution.  We chose a 2

(5)  distribution in order to examine a non-symmetric distribution.    

Since each column of X  has the same expected length, we do not scale the data to unit length as suggested by 

Belsley et al. 

We next consider the signal-to-noise ( s n ) ratio.  Since we do not include an intercept term the signal-to-

noise ratio is equal to 

 2 1 1

2

' '
'( ( ' ) )

X X
s n X X

 
  



    .               (18) 

We vary the signal-to-noise ratio by changing the error variance 2 .  However, because X  is randomly drawn 

we cannot specify the exact signal-to-noise ratio a priori.  Therefore, we will discuss the effects of the signal-to-

noise ratio in terms of 2 .  Holding everything else constant, an increase in 2  represents a decrease in the 

signal-to-noise ratio. 

 Finally, we examine the effects of specification error.  For a linear inequality restriction, i ir  , define the 

specification error i i ir   .  Thus, the specification error will be positive if the restriction is not true.  Judge 

et al. (1988) show that the IRLS estimator dominates the OLS estimator under a squared error loss measure as 

long as the restrictions are nearly true.  In all of our experiments, we compare the OLS and GME estimators to 

the IRLS and RME estimators with the parameter estimates restricted to take the correct signs.  To examine the 

effects of specification error, we consider the parameter 2 1   and impose the restrictions 2   0, 0.5, 0.8, 0.9, 

1.0, 1.1, and 1.2, which represent increasing specification error.  Table 1 summarizes the dimensions of our 

experimental design. 

 

 

4. Results 

We present the Monte Carlo results using a separate table for each design characteristic.  We start with a 

“base case” experiment using 100T   in-sample observations, standard normal errors, standard normal 

regressors, ( ' ) 10a aX X  , 2 1  , and only the parameter sign restrictions for our restricted estimators.  From 

this basic design, we vary each design characteristic holding all other design characteristics constant. 

4.1 Sample size 
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 In this section, we examine the effects of the estimation sample size on the alternative estimators.  We 

consider sample sizes ranging from 10 observations to 500 observations.  As we increase the sample size we 

cannot hold the signal-to-noise ratio constant since it depends on the random X  matrix whose dimensions vary 

with the sample size.  The signal-to-noise ratio ranges from about 19 to 29 as we draw data using different 

sample sizes.  In the OLS model, the
2R  increases as the signal-to-noise ratio increases.  Table 2 gives the MSE 

of the alternative estimators as the sample size varies.  The alternative estimators include OLS, IRLS, GME3 

(which uses the 3 - rule for error bounds), GME4 (which uses the 4 - rule for error bounds), and two RME 

estimators.  Note that we use the true value of  , which is known in our experiments, rather than the sample 

value y .  We use the 3 - rule for both RME estimators, but we change the prior mean.  The RME3-I 

estimator has an “incorrect” prior mean vector of  5 5 5 5   while for the RME3-C estimator we specify a 

“correct” prior mean vector of  2 1 3 2  , which is the true parameter vector.     

 The results in Table 2 show that the MSE is roughly constant for OLS as we vary sample size.  Judge et al. 

(1988, p. 866) show that the variance of the OLS estimators are given by 

  2 2

1

var( ) /
K

j ji i

i

b p 


                  (19) 

where ip  is the thi characteristic vector and i  is the thi characteristic root of 'X X .  Since we hold constant 

the error variance and the characteristic roots, the variance of jb  changes only with 2

1

K

ji

i

p


 , which does not 

depend on sample size. 

 As expected, imposing correct inequality restrictions, in this case the correct signs of the parameters, results 

in lower risk.  Thus, the IRLS estimator has lower MSE than the OLS estimator for all sample sizes.  GJM (p. 

135, Table 8.6.1) find that the IRLS estimator has just slightly lower (and in some cases higher) empirical risk 

than the OLS estimator.  However, GJM restrict the estimates to the range [-10, 10] whereas we restrict the 

parameter estimates to take the correct sign.
6
    Judge et al. (1988, pp. 822-824) show that the IRLS estimator 

                                                           
6 Empirically, we find that very few of the OLS parameter estimates lie outside the [-10, 10] range.  Thus, the GJM parameter 

restrictions have very little impact and the risk measures for IRLS and OLS are similar. 
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dominates the OLS estimator under a squared error loss measure as long as the restrictions are true or nearly true.  

Our results are consistent with this result. 

 We find that the GME and RME estimators have lower risk than the OLS estimator in most cases.  We 

obtain three results of note here: 1) the GME and RME estimators have higher risk as the sample size increases, 

2) the GME4 estimator has lower risk than the GME3 estimator for all sample sizes and particularly in large 

samples, and 3) the risk of the RME estimators depends on the prior mean of the estimator.  Note that 

throughout the paper we compare the estimators on the basis on MSE.  It is possible that the relative rankings of 

the alternative estimators could change under a different performance measure.   

 Mittelhammer, Judge, and Miller (2000) discuss large sample properties of the GME estimator.  They show 

that under certain regularity conditions derived by Mittelhammer and Cardell (1997) the GME-NM estimator (as 

defined by GJM, p.88), which shrinks the error support boundaries as the sample gets larger, is consistent and 

asymptotically normal.  Among the Mittelhammer and Cardell regularity conditions are that the true error values 

are contained within the error bounds and the true parameters are contained within the parameter bounds.  Our 

GME and RME estimators are inconsistent since the processes used to generate errors are unbounded.  

Therefore, some of the generated errors fall outside the bounds we specified.  This is particularly true for the t- 

and chi-square distributions, which have thicker tails.  In addition, we use the GME-D estimator, which does not 

shrink the error support boundaries as the sample size increases.     

 GJM (p. 88) suggest using the 3 - rule (Pukelsheim 1994) for setting the error bounds since at most one-

ninth of the unknown errors falls outside this range.  We also consider a 4 - rule, which has at most one-

sixteenth of the errors fall outside the range.  We expect that wider error bounds will lead to greater shrinkage 

and lower variance of the GME estimator.  However, the reduction in variance may be offset by larger bias.  In 

general, our experimental results show that the GME4 estimator has lower MSE than the GME3 estimator.
7
  

While the variance increases with sample size for both estimators, it does not increase as quickly for the GME4 

estimator as it does for the GME3 estimator. 

  

                                                           
7 This does not imply that a GME5 estimator would have still lower MSE.  We did observe lower variance and higher bias for the 

GME4 estimator compared to the GME3 estimator.  The increase in bias would presumably outweigh the reduction in variance at 

some point. 
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Finally, we note the increase in MSE for our inequality restricted (RME) estimators.  Inequality restrictions have 

a greater effect on the GME estimator than simply restricting the estimators.  For example, our GME parameter 

support for 
1  is  10 5 0 5 10   , which has a prior mean of 0.  When we restrict the parameter 

estimates to be positive we obviously must specify a positive prior mean.  For the RME3-I estimator we specify 

the parameter support for 1  as  0 2.5 5 7.5 10  , which has a prior mean of 5.  For the RME3-C 

estimator we specify the parameter support for 1  as  0 1 2 3 4  , which has a prior mean of 2.  When our 

prior mean is incorrect (RME3-I), imposing binding inequality restrictions on the GME estimator leads to an 

increase in MSE for small sample sizes.  However, this is not true if the researcher has prior information about 

both the sign and magnitude of a parameter.  The RME3-C estimator shrinks 1̂  toward 2 (the true parameter 

value) and results in both lower variance and bias.  These are just two of many possible RME formulations that 

restrict the parameter estimates to take the correct sign. 

 Tables 3 and 4 give results as we vary sample size with the errors and regressors drawn from t- and chi-

square distributions respectively.  GJM (p. 142) examine the effects of non-normal errors on risk measures.  

They find that GME still has lower risk than the OLS estimator when errors are drawn from a t- or chi-square 

distribution.  When errors are drawn from a t- distribution GJM specify wider error bounds to account for the 

thicker tails.  Thus, we expect to see a larger difference between the GME3 and GME4 estimators when the 

errors follow a t- distribution.  When the errors are drawn from a chi-square distribution GJM specify a skewed 

error support to account for the fact that the chi-square distribution is skewed.  We continue to specify the 

symmetric error supports  3 0 3    and  4 0 4    for our GME3 and GME4 estimators 

respectively since Chebychev’s inequality holds for any distribution and we have adjusted the means to zero for 

the random errors.     

With errors and regressors drawn from a t- distribution the OLS estimator has basically the same risk as in 

the case of normal errors and regressors.  The IRLS estimator has higher MSE than in the normal case, but still 

has lower MSE than the OLS estimator.  However, the GME3, GME4, and RME3-I estimators have much 

higher MSE than they do when the errors are normal.  This is in contrast with the results obtained by GJM who 

find only a slight increase in the risk of the GME estimator when the errors are non-normal.  However, GJM use 
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a sample size of 10 observations.  With only 10 observations we find that the GME and RME estimators have 

lower MSE than the OLS and IRLS estimators, which is consistent with GJM.  But the MSE for the GME3 and 

GME4 estimators increases more rapidly than in the case of normal errors.  We find that the RME3-C estimator 

still has the lowest MSE for all sample sizes.  With errors from a t-distribution the IRLS estimator has smaller 

MSE than GME3 or GME4 for any sample size greater than 10 and the OLS estimator has smaller MSE than 

GME3 or GME4 for sample sizes greater than 50 observations. 

 The results for the OLS and IRLS estimators are similar in the case of chi-square errors and regressors as in 

the case of t- errors and regressors.  The MSE for OLS is roughly the same as in the normal case while the IRLS 

has higher MSE than in the normal case.  The GME3, GME4, and RME3-I estimators again perform relatively 

poorly as the sample size increases.  In Tables 3 and 4 we change the distribution for both the errors and the 

regressors.  In section 4.2 we examine whether each estimator is affected by the error distribution, the 

distribution of regressors, or both.   

4.2 Distribution of errors and regressors 

 In this section, we change the distributions of the errors and regressors.  We draw the random errors and 

regressors from a standard normal as well as from a t- distribution with 3 degrees of freedom and a chi-square 

distribution with 5 degrees of freedom, correcting the mean to 0 and the variance to 1.  Thus, we draw from 

three different distributions for both the errors and regressors, resulting in nine possible combinations.  Table 5 

gives results for all nine combinations. 

The results in Table 5 show that the MSE for the OLS estimator does not change much as we change the 

distribution of the errors and regressors (although there appears to be a slight increase in MSE when the errors 

are chi-square).  The IRLS estimator has lower MSE than the OLS estimator for all combinations, which is 

expected since we are imposing restrictions that are true.  However, the gains are much smaller when the 

regressors are drawn from a t- or chi-square distribution.  Holding the distribution of regressors constant, the 

MSE for the IRLS estimator changes very little in response to changes in the error distribution.  The GME and 

RME estimators perform best when the errors are normal regardless of the distribution of the regressors.  Thus, 

while the IRLS estimator is affected by the distribution of regressors the GME estimators are affected primarily 

by the distribution of the error term.   
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Table 6 gives the MSE of the alternative estimators with normal regressors and varying errors, but with 

error variance 2 5  .  Table 7 gives the MSE of the alternative estimators with normal errors and varying 

regressors with condition number ( ' ) 100a aX X  .  Since the data are relatively “noisy” in these experiments 

we expect the maximum entropy estimators to perform well relative to least squares.  As the variance of the 

error term increases and the signal-to-noise ratio decreases, the variance and the MSE of the OLS estimator 

increase.  Comparing the results in Table 6 to the first three rows in Table 5, we observe that the MSE of the 

OLS estimator is exactly 5 times larger in each case, which is the same factor by which we increase the variance 

of the errors.  The MSE of the IRLS and GME estimators also increase, but by less than 5 times.  There do not 

appear to be any significant gains for GME and RME relative to IRLS as the signal-to-noise ratio decreases.     

 GJM find that the GME estimator has lower MSE than the OLS, IRLS, and ridge regression estimators 

when the data are collinear.  Comparing the results from Table 7 to rows 1, 4, and 7 in Table 5, we observe that 

as we increase the condition number from 10 to 100, the MSE of the OLS estimator increases by roughly 100 

times.  The MSE of the IRLS estimator with parameter sign restrictions also increases, but by a much smaller 

amount.  The MSE of the GME3 and GME4 estimators is lower with the higher degree of collinearity.  As the 

collinearity increase, there is less information in the data and the parameter estimates are shrunk toward the prior 

means resulting in a lower variance for the GME and RME estimators.   

For GME we observe a slight increase in bias and a larger decrease in variance as we increase the condition 

number.  The RME3-I estimator has higher MSE for t- and chi-square errors since the increase in bias is not 

offset by the decrease in variance.  Because we specify the RME3-I estimators with a prior mean of 5, the 

increase in bias is larger than the decrease in variance.  The RME3-C estimator has roughly constant MSE as we 

increase the condition number.  All of the GME estimators have lower MSE than the OLS and IRLS estimators 

when the condition number is equal to 100.  Section 4.3 examines the effects of collinearity on the alternative 

estimators in more detail. 

4.3 Degree of collinearity 

 GJM show that GME has lower squared error loss than OLS and IRLS in their sampling experiments, and 

that the difference increases with the degree of collinearity.  We find the same results here, but we also examine 

the RME estimator.  In addition, we examine the effects of collinearity combined with a higher error variance.  
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Table 8 gives MSE for the alternative estimators as the degree of collinearity varies with 2 1   while Table 9 

does the same when 2 5  .  Table 10 examines the same changes in condition numbers, but with a smaller 

sample size (T = 50). 

 Table 8 shows that as the degree of collinearity increases, the MSE of the OLS estimator increases at a 

much faster rate than does the MSE of the IRLS, GME, and RME estimators.  This is consistent with the results 

obtained by GJM.  GJM find that the MSE of the IRLS estimator with the parameter estimates restricted to the 

range [-10, 10] increases at nearly the same rate as OLS.  This is not surprising since the OLS parameter 

estimates do not fall outside this range very often.  However, the MSE of the IRLS estimator with parameter 

sign restrictions does not increase nearly as much as it does for the OLS estimator when the condition number 

increases.  While the MSE of the GME and RME estimators is still lower than the MSE of the IRLS estimator, 

the difference is not nearly as large as in the experiments by GJM.  This can be attributed to the fact that we are 

using parameter sign restrictions rather than the restriction range that GJM chose.  We again find that the GME4 

estimator has the lowest MSE and that the RME3-I estimator with incorrect prior mean has higher MSE than the 

“unrestricted” GME estimators while the RME3-C estimator with correct prior mean has lower MSE than the 

“unrestricted” GME estimators. 

 Table 9 shows the MSE for the alternative estimators when the variance of the errors is equal to 5, thus 

reducing the signal-to-noise ratio.  The MSE for the OLS estimator is exactly five times the MSE obtained with 

an error variance of 1.  The MSE for the IRLS estimator is roughly two times larger than it is when the error 

variance is equal to 1, and the MSE’s of the GME3, GME4, and RME3-I estimators are roughly three times 

larger than when the error variance is equal to 1.  Thus, we find that the empirical risk of the IRLS estimator 

becomes closer to the empirical risk of the GME estimators as we increase the error variance. 

 Table 10 shows that the MSE of the GME3, GME4, and RME3-C estimators is lower when the sample size 

is smaller.  This is consistent with Tables 2-4.  The reason for this is that when the sample size and the signal-to-

noise ratio are small the GME estimators place less weight on the data and shrink the parameter estimates 

toward their prior means.  Thus, while the bias of the GME and RME estimators is greater when the data is less 

informative the variance of the estimators is smaller, resulting in a lower MSE.  The RME3-I estimator has 

higher MSE when we reduce the sample size because the parameter estimates are shrunk toward incorrect values. 
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4.4 Signal-to-noise ratio 

 We have already shown that GME and RME have much lower MSE than the OLS and IRLS estimators 

when the signal-to-noise ratio is low (the data are “noisy”).  We show this more clearly here as we examine the 

effects of increasing the error variance using the values 2 = 1, 2, 3, 4, and 5.  In Tables 11-14 we show this 

effect for normal errors and regressors, t- errors and regressors, chi-square errors and regressors, and for a 

condition number of 100, respectively. 

 In Table 11, the MSE of the OLS estimator increases in the same proportion as the error variance.  The 

MSE for the IRLS, GME, and RME estimators also increases as the error variance increase, but at a much 

slower rate.  As we increase the error variance, the GME estimators are shrunk more just as they are when we 

have a high degree of collinearity.  However, we now observe that the increase in bias is not offset by the 

reduction in variance.  The GME3 and RME3-I estimators perform comparably to IRLS.  The GME4 estimator 

has the lower MSE than IRLS for all values of 2 .  The RME3-C estimator, which shrinks the parameter 

estimates toward the correct values has much lower MSE than the alternative estimators.   

 With errors and regressors drawn from a t- distribution, as in Table 12, the MSE of the OLS estimator again 

increases in the same proportion as the error variance.  The GME and RME estimators do not generally perform 

well relative to IRLS with t- errors and regressors (see Table 3).  However, the advantage for IRLS disappears 

as we increase the error variance.  The RME3-C estimator has lower MSE than IRLS for all levels of 2  and 

the RME3-I estimator, which shrinks toward incorrect values, even has lower MSE than IRLS when 2 is equal 

to 5.  The RME3-I estimator is heavily biased in this case since the parameter estimates are shrunk toward 

incorrect values.  For the IRLS estimator, both the variance and bias increase with 2 .     

Drawing the errors and regressors from a chi-square distribution, as in Table 13, produces similar results to 

drawing from a t- distribution.  However, the GME and RME estimators perform better relative to IRLS and 

OLS under a chi-square distribution.  The GME4 and RME3-C estimators have lower MSE than the IRLS 

estimator for all levels of the error variance, and the RME3-I estimator has lower MSE than the IRLS estimator 

when 2 2  .  We again find that both the bias and variance of the IRLS estimator increase fairly rapidly with 

2 .  The bias and variance also increase for the GME and RME estimators, but at a much slower rate than they 

do for the IRLS estimator.     
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 Finally, comparing Table 14 to Table 11, we see again that as the degree of collinearity increases the MSE 

of the OLS estimator increases substantially.  The MSE of the IRLS estimator increases slightly while the MSE 

of the GME and RME estimators decreases.  With respect to the error variance, we find the greatest gains in the 

MSE of the GME and RME estimators relative to IRLS when the error variance is low.   

4.5 Specification error 

 In this section, we impose stronger restrictions on 2  than the parameter sign restrictions.  In our 

experiments the true value of 2  is 1.  Table 15 shows MSE for the alternative parameters as we vary the 

specification error.  Tables 16 and 17 show the same, but with a greater degree of collinearity.  Table 18 gives 

results with 2 5  , representing a smaller signal-to-noise ratio. 

As expected, imposing correct inequality restrictions on the parameter 2  leads to the restricted estimators 

(IRLS, RME3-I, and RME3-C) having a lower MSE than the OLS estimator.  As shown by Judge et al. (1988) 

the IRLS estimator has lower MSE than OLS even when the restrictions are nearly true, as when we restrict 

2 1  .  We observe that the MSE of the IRLS begins to increase as the specification error 0   while the 

MSE of the RME estimators increases even as we impose correct information.  This occurs because as we 

impose stronger restrictions we change the prior mean of the parameter estimates.  For example, the RME3-C 

estimator has a parameter support for 2  of  0 0.5 1 1.5 2   with a prior mean of 1 when we 

restrict 2 0  .  But when we restrict 2 0.5   we specify a parameter support of  0.5 0.9 1.3 1.7 2   with 

a prior mean of 1.28.  Thus, the bias increases as we impose stronger inequality restrictions.  The restrictions 

reduce the variance slightly for the RME estimators, but the larger increase in bias results in higher MSE.  We 

also note that the RME estimators violate the Mittelhammer and Cardell (1997) regularity conditions and are 

inconsistent when the parameter support does not contain the true parameters.       

In Tables 16 and 17, we show that increasing the degree of collinearity does not change the effects of 

specification error on the MSE of the alternative estimators.  The MSE of the IRLS estimator decreases until the 

specification error is equal zero and then it increases.  The MSE of the RME estimators increases even as true 

restrictions are imposed.  However, as we showed earlier the GME and RME estimators have lower MSE 

relative to the IRLS and OLS estimators as we increase the degree of collinearity.        
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In Table 18, as we increase the error variance, we observe the same effects of specification error on the 

IRLS and RME estimators.  All of our GME programs were written using the GAUSS constrained optimization 

module.  GAUSS code for sample programs demonstrating our Monte Carlo experiments are available at: 

http://www.bus.lsu.edu/academics/economics/faculty/chill/personal/irme.htm. 

 

5. Response surfaces for Monte Carlo experiments 

In this section, we estimate response surfaces for our Monte Carlo experiments.  Hendry (1984) and 

Davidson and MacKinnon (1993) discuss response surfaces as a means of summarizing the results from a set of 

Monte Carlo experiments.  We estimate the following response surface regression 

2 2

1 2 3 4 5 6 7 8 9 10

ˆ( )

( )
i i i i i i i i i i

MSE
T TE CHE TR CHR CN

MSE OLS


                            (20) 

 1, , MCi N , where iT  is the sample size of the estimation sample, iTE  is equal to one for t- errors and zero 

otherwise, iCHE  is equal to one for chi-square errors and zero otherwise, iTR  is equal to one for t- regressors 

and zero otherwise, iCHR  is equal to one for chi-square regressors and zero otherwise, iCN  is the condition 

number, 2

i  is the error variance,  i  is the constraint specification error, and MSE(  )  is the MSE of the 

estimator of interest.  We estimate response surfaces for the IRLS, GME3, GME4, RME3-I and RME3-C 

estimators using 88MCN   unique observations from our Monte Carlo experiments. 

We include a squared term for specification error in the IRLS equation since the MSE of the IRLS estimator 

is minimized when  i  0  and we do not expect a linear relationship between MSE and  i  for IRLS.  Since we 

do not impose inequality restrictions on the GME3 and GME4 estimators, we set 9 10 0    for these 

response surfaces.  Table 19 gives results from our response surface regressions, which summarize the results of 

our experiments.  Note that the 2R  value is higher for the unrestricted GME estimators.  Since the restrictions 

themselves explain some of the variation in MSE the amount explained by the design characteristics is lower for 

the restricted estimators.   

While the effect of sample size is not significant for the IRLS estimator, sample size has a positive impact 

on the MSE of the maximum entropy estimators.  The effect of sample size is significant at the 5% level of 

http://www.bus.lsu.edu/economics/faculty/chill/personal/maxent
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significance for the GME3, GME4, RME3-I, and RME3-C estimators.  This is consistent with the hypothesis 

that the GME and RME estimators should perform better relative to OLS when the sample size is smaller and 

there is less information in the data. 

The coefficients for drawing errors from a t- or chi-square distribution is also positive for all of the 

alternative estimators, but are not significant for the IRLS estimator.  The error distribution significantly impacts 

the MSE of the GME3, GME4, RME3-I, and RME3-C estimators.  Since the t- and chi-square distributions have 

thicker tails, there is a greater chance that the error bounds do not contain the true error values.  The effects are 

larger for the GME3 estimator than for the GME4 estimator since the wider bounds contain more of the 

unknown errors. 

The coefficient for drawing regressors from a t- distribution is negative and insignificant for all of the 

maximum entropy estimators.  The coefficient for t- regressors is positive, but insignificant for the IRLS 

estimator.  The coefficient for drawing regressors from a chi-square distribution is positive and insignificant for 

the GME4 and RME3-I estimators, and is negative and insignificant for the GME3 and RME3-C estimators.  

However, the coefficient for chi-square regressors is positive and significant at the 10% level for the IRLS 

estimator.  Our results indicate that the error distribution affects the GME and RME estimators since these 

estimators require us to place bounds on the unknown errors.  However, the distribution of regressors affects the 

IRLS estimator but not the GME and RME estimators.  This makes sense for GME and RME since we are 

required to place bounds on the unknown parameters, but not on the regressors. 

As expected, the coefficient on condition number is negative for all of the alternative estimators.  This 

coefficient is significant at the 5% level for the IRLS, RME3-I, and RME3-C estimators, but not for the GME3 

and GME4 estimators.  This is somewhat surprising since the GME3 and GME4 estimators have relatively low 

MSE as the condition number grows large.  However, since our dependent variable is 
ˆ( )

( )

MSE

MSE OLS


, the 

regressions may have negative coefficients due to the tremendous increase in the ( )MSE OLS  rather than 

anything in the MSE of our alternative estimators.  Looking at Tables 8, 9, and 10, we see that the MSE of the 

OLS estimator increases very rapidly while the MSE of the other estimators remains roughly constant.  The ratio 

of MSE’s quickly approaches zero for all of the alternative estimators. 
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The coefficient for the error variance is negative for all of the alternative estimators and is significant at the 

5% level for the GME3, GME4, RME3-I, and RME3-C estimators.  This is consistent with our expectations that 

the GME and RME estimators should perform well relative to OLS as we increase the signal-to-noise ratio.  

Finally, we observe that the coefficients for both   and 2  are positive, but not significant for the IRLS, 

RME3-I, and RME3-C estimators.  The insignificance of these variables is likely due to the fact that we did not 

vary the specification error over a very wide range.  Looking at Tables 15-18, we observe that the ratio of the 

MSE of IRLS, RME3-I, and RME3-C to the MSE of OLS is not changing much. 

 

6. Summary and Conclusions 

We carry out a Monte Carlo study to examine the effects of design characteristics on the inequality 

restricted maximum entropy estimator.  This research extends the original study by GJM in two important ways.  

First, in addition to the effects of collinearity, we examine the effects of the sample size, the distribution and 

variance of the unknown errors, the distribution of the regressors, the signal-to-noise ratio, and the specification 

error on the alternative estimators.  Examining these additional characteristics is important in examining when a 

researcher may want to use GME estimation.  In addition, we examine the effects of these design characteristics 

on an inequality restricted maximum entropy (RME) estimator.  We summarize our experimental results below. 

As expected, we find that the GME and RME estimators perform well in terms of MSE when the sample 

size is small.  When the sample size is small there is less information in the data, the GME and RME estimators 

are shrunk toward their prior means, and the variance of the GME and RME estimators is small relative to the 

variance of the OLS estimator.  As we increase the sample size, the variance of the GME and RME estimators 

increases slightly and the bias also increases.  Our GME and RME estimators do not satisfy the Mittelhammer 

and Cardell (1997) regularity conditions since the error bounds do not contain the true error values for all 

observations.  Thus, our GME and RME estimators are inconsistent.  As we increase the sample size there are 

likely more observations that fall outside of these bounds.  This is particularly true in the case of t- or chi-square 

errors when the tails of the error distribution are heavier.   

Comparing the MSE of the alternative estimators, we find that the GME4 estimator has lower MSE than the 

GME3 estimator.  The wider bounds increase the degree of shrinkage resulting in a smaller variance and a larger 
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bias.  As we increase the sample size the variance increases at a much slower rate for the GME4 estimator than 

for the GME3 estimator.  In addition, we find that the IRLS estimator with parameter sign restrictions performs 

nearly as well, and in some cases better, compared to the GME and RME estimators.  The RME3-C estimator, 

which shrinks the parameter estimates toward the true parameter values has the lowest MSE in all cases. 

As shown in Table 5, we find that the MSE of the GME and RME estimators is affected by the distribution 

of the errors.  Drawing errors from a t- or chi-square distribution leads to more errors falling outside the bounds 

since there is more mass in the tails of these distributions than in the normal distribution.  We find that the IRLS 

estimator is affected by the distribution of the regressors rather than the distribution of the errors. 

We find that the GME and RME estimators perform better relative to the OLS estimator as the condition 

number increases.  This is consistent with the findings of GJM and with theory since the degree of shrinkage is 

larger the higher the condition number.  The variance of the GME and RME estimators decreases as we increase 

the condition number, which results in a lower MSE in some cases as the condition number increases.  However, 

in contrast to GJM we find that the MSE of the IRLS estimator is much lower than the MSE of the OLS 

estimator and nearly as low as the MSE of the GME3, GME4, and RME3-I estimators.  GJM use the GME 

parameter bounds as restrictions for the IRLS estimator while we restrict each variable to take the correct sign. 

The GME and RME estimators perform well relative to OLS as the error variance increases.  The MSE of 

the OLS estimator increases by the same factor as the error variance increases.  The MSE of the IRLS, GME, 

and RME estimators also increase with 2 , but at a slower rate.  Again this is consistent with the hypothesis that 

shrinkage estimators should perform well when there is less information in the data. 

We observe that the MSE of the IRLS estimator decreases when we impose restrictions that are true or 

nearly true.  Consistent with theory, we find that the MSE of the IRLS is minimized when the specification error 

is zero.  That is, we impose restrictions that are exactly true.  However, we find that for our RME estimators 

additional restrictions increase the prior means and lead to an increase in bias and MSE.   

While imposing parameter sign information greatly improves MSE in the case of the IRLS estimator this is 

not necessarily the case for the RME estimator.  For the RME estimator the prior mean, or the value the 

parameters are shrunk toward, is very important.  We specify two RME estimators, one that shrinks the 

parameter estimates toward incorrect values (RME3-I) and one that shrinks the parameter estimates toward the 
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true parameter values (RME3-C).  In most cases we find that the GME3 and GME4 estimators with no sign 

restrictions have lower MSE than our RME3-I estimator.  This is in contrast to least squares estimation where 

imposing correct sign information always reduces MSE.  However, the RME3-C estimator always has lower 

MSE than the GME estimators.  We conclude that a researcher using GME estimation should impose parameter 

sign information only if they also have prior information on the magnitude of the unknown parameters.      

Our Monte Carlo experiments show that the GME estimator has lower MSE than the OLS and IRLS 

estimators when the information in the data is limited, such as for a small sample size, high condition number, or 

large error variance.  In these cases the GME estimator is slightly biased, but has much lower variance than the 

OLS estimator.  We also examine the RME estimator, which can greatly improve estimation if the researcher has 

an idea of the magnitude of the parameters, but which leads to an increase in MSE if we shrink the parameters 

toward the wrong values.  Although we do not report the results in our tables, we calculate the prediction MSE 

for a hold-out sample of observations in each of our experiments.  The results show that estimators with a lower 

MSE also predicted better out-of-sample.  Thus, the GME and RME estimators generally predict much better for 

a hold-out sample than does the OLS estimator. 
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Tables 

Table 1. Dimensions of the Experimental Design 

 

Variable Tested 

 

Location 

Sample 

Size 

Error  

Distribution 

Regressor 

Distribution 

Condition 

Number 

Error  

Variance 

Specif. 

Error( 2 ) 

Sample size Table 2 10 to 1000 Normal Normal 10 1 -1 

Sample size Table 3 10 to 1000 t- t- 10 1 -1 

Sample size Table 4 10 to 1000 Chi-square Chi-square 10 1 -1 

Error/Regressor

Distribution 

Table 5 100 N, t, 2  N, t, 2  10 1 -1 

Error Dist. Table 6 100 N, t, 2  Normal 10 5 -1 

Regressor Dist. Table 7 100 Normal N, t, 2  100 1 -1 

Condition no. Table 8 100 Normal Normal 1 to 500 1 -1 

Condition no. Table 9 100 Normal Normal 1 to 500 5 -1 

Condition no. Table 10 50 Normal Normal 1 to 500 1 -1 

Signal-to-noise Table 11 100 Normal Normal 10 1 to 5 -1 

Signal-to-noise Table 12 100 t- t- 10 1 to 5 -1 

Signal-to-noise Table 13 100 Chi-square Chi-square 10 1 to 5 -1 

Signal-to-noise Table 14 100 Normal Normal 100 1 to 5 -1 

Specif. Error Table 15 100 Normal Normal 10 1 -1 to 0.2 

Specif. Error Table 16 100 Normal Normal 40 1 -1 to 0.2 

Specif. Error Table 17 100 Normal Normal 100 1 -1 to 0.2 

Specif. Error Table 18 100 Normal Normal 10 5 -1 to 0.2 

 

 

 

Table 2. MSE as Sample Size Varies  

{Normal errors, Normal regressors, ( ' ) 10a aX X  , 2
1  , restrictions: 1 0  , 

2 0  , 
3 0  , 

4 0  } 

Sample 

Size 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

10T   19.89 54.937 13.089 4.159 3.504 7.268 0.296 

50T   19.09 51.414 9.323 4.955 2.899 7.017 0.751 

100T   28.67 50.184 8.743 7.453 2.937 6.578 1.406 

300T   27.42 57.605 17.961 30.913 3.308 20.197 4.274 

500T   28.20 53.108 8.838 64.210 5.789 27.123 6.045 

 

 

 

Table 3. MSE as Sample Size Varies 

{t- errors, t- regressors, ( ' ) 10a aX X  , 2
1  , restrictions: 1 0  , 2 0  , 3 0  , 4 0  } 

Sample 

Size 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

10T   24.53 

 

47.615 21.240 12.600 10.692 13.362 1.226 

50T   20.71 62.536 30.959 57.723 36.628 29.520 4.543 

100T   17.25 56.902 25.159 113.352 75.353 57.971 7.418 

300T   29.38 46.143 13.943 140.067 134.686 55.284 6.848 

500T   20.33 53.785 20.172 191.079 133.549 41.626 7.786 
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Table 4. MSE as Sample Size Varies 

{ 2 errors, 2  regressors, ( ' ) 10a aX X  , 2
1  , restrictions: 

1 0  , 
2 0  , 

3 0  , 
4 0  } 

Sample 

Size 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

10T   18.12 48.853 14.701 8.616 7.438 18.798 0.779 

50T   21.81 56.525 14.093 33.057 10.874 26.132 4.220 

100T   26.68 58.499 30.037 73.885 22.422 46.861 7.598 

300T   24.19 54.364 28.667 159.461 80.264 58.690 8.868 

500T   26.69 48.915 10.362 148.005 122.170 45.645 5.789 

 

 

 

Table 5. MSE as Distribution of Regressors and Errors Varies 

{T = 100, ( ' ) 10a aX X  , 2
1  , restrictions: 1 0  , 2 0  , 3 0  , 4 0  } 

Regressors/

Errors 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

N / N 28.67 50.184 8.743 7.453 2.937 6.578 1.406 

N / t 28.67 50.472 8.788 108.789 66.845 43.160 8.064 

N / 2  28.67 55.808 9.227 75.500 18.087 33.780 7.443 

t  / N 17.25 54.386 21.930 15.090 9.592 21.082 1.579 

t  / t 17.25 56.902 25.159 113.352 75.353 57.971 7.418 

t  / 2  17.25 54.470 21.298 87.336 28.690 45.041 7.040 

2  / N 26.68 50.264 25.857 9.234 5.494 22.574 1.404 

2  /  t 26.68 51.228 23.783 113.859 68.548 59.978 8.402 

2  /  2  26.68 58.499 30.037 73.885 22.422 46.861 7.598 

 

 

 

Table 6. MSE as Distribution of Errors Varies 

{T = 100, Normal regressors, ( ' ) 10a aX X  , 2
5  , restrictions: 1 0  , 2 0  , 3 0  , 4 0  } 

Regressors/

Errors 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

N / N 5.73 250.922 19.844 16.670 7.345 19.178 2.094 

N / t 5.73 252.358 19.240 159.310 104.763 63.016 7.245 

N / 2  5.73 279.041 20.106 121.995 40.102 54.086 7.135 

 

 

 

Table 7. MSE as Distribution of Regressors Varies 

{T = 100, Normal errors, ( ' ) 100a aX X  , 2
1  , restrictions: 1 0  , 2 0  , 3 0  , 4 0  } 

Regressors/

Errors 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

N / N 28.89 4708.97 10.901 4.817 2.624 6.545 1.399 

t  / N 17.24 5132.05 56.832 14.522 10.538 22.482 1.548 
2  / N 26.85 4744.44 141.346 8.402 5.823 23.957 1.413 

 

 

 

Table 8. MSE as Degree of Collinearity Varies 
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{T = 100, Normal errors, Normal regressors, 2
1  , restrictions: 

1 0  , 
2 0  , 

3 0  , 
4 0  } 

( ' )a aX X  Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

1 18.00 4.11 5.92 5.20 3.40 6.95 1.46 

10 28.67 50.18 8.74 7.45 2.94 6.58 1.41 

20 28.83 191.36 10.04 6.61 2.71 6.54 1.39 

40 28.87 756.06 10.58 5.71 2.64 6.56 1.39 

60 28.88 1697.23 10.75 5.38 2.63 6.53 1.40 

80 28.88 3014.86 10.83 5.17 2.63 6.53 1.40 

100 28.89 4708.97 10.90 4.82 2.62 6.55 1.40 

250 28.89 29414.68 10.93 4.71 2.62 6.54 1.40 

500 28.89 117649.34 10.93 4.69 2.62 6.54 1.40 

 

 

 

Table 9. MSE as Degree of Collinearity Varies 

{T = 100, Normal errors, Normal regressors, 2
5  , restrictions: 1 0  , 2 0  , 3 0  , 4 0  } 

( ' )a aX X  Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

1 3.60 20.54 14.58 18.12 9.86 24.00 2.05 

10 5.73 250.92 19.84 16.67 7.34 19.18 2.09 

20 5.77 956.78 20.35 16.23 7.27 19.14 2.09 

40 5.77 3780.28 20.46 15.67 7.26 19.14 2.08 

60 5.78 8486.13 20.45 15.70 7.25 19.12 2.12 

80 5.78 15074.32 20.39 15.71 7.25 19.11 2.07 

100 5.78 23544.85 20.36 15.71 7.25 19.11 2.07 

250 5.78 147073.37 20.24 15.52 7.25 19.10 2.07 

500 5.78 588246.69 20.20 15.54 7.25 19.10 2.07 

 

 

 

Table 10. MSE as Degree of Collinearity Varies 

{T = 50, Normal errors, Normal regressors, 
2

1  , restrictions: 1 0  , 2 0  , 3 0  , 4 0  } 

( ' )a aX X  Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

1 18.00 4.01 3.67 3.82 3.24 6.02 0.75 

10 19.09 51.41 9.32 4.96 2.90 7.02 0.75 

20 19.10 196.45 10.41 4.25 2.65 7.16 0.74 

40 19.11 776.63 11.06 3.82 2.58 7.11 0.74 

60 19.11 1743.58 11.19 3.67 2.56 7.05 0.74 

80 19.11 3097.32 11.23 3.62 2.56 7.05 0.74 

100 19.11 4837.84 11.23 3.61 2.56 7.06 0.74 

250 19.11 30220.44 11.29 3.42 2.55 7.04 0.74 

500 19.11 120872.59 11.32 3.40 2.55 7.03 0.74 
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Table 11. MSE as Signal-to-Noise Ratio Varies 

{T = 100, Normal errors, Normal regressors, ( ' ) 10a aX X  , restrictions: 
1 0  , 

2 0  , 
3 0  , 

4 0  } 

Error 

Variance 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 
2 1   28.67 50.184 8.743 7.453 2.937 6.578 1.406 
2 2   14.34 100.369 12.139 9.932 4.396 10.610 1.688 

2 3   9.56 150.553 14.973 12.032 5.573 13.846 1.887 

2 4   7.17 200.738 17.496 14.394 6.536 16.656 2.015 

2 5   5.73 250.922 19.844 16.670 7.345 19.178 2.094 

 

 

 

Table 12. MSE as Signal-to-Noise Ratio Varies 

{T = 100, t- errors, t- regressors, ( ' ) 10a aX X  , restrictions: 1 0  , 
2 0  , 

3 0  , 
4 0  } 

Error 

Variance 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 
2 1   17.25 56.902 25.159 113.352 75.353 57.971 7.418 
2 2   8.63 113.805 40.200 131.597 89.445 65.574 7.081 

2 3   5.75 170.707 52.954 144.537 98.186 69.618 6.749 

2 4   4.31 227.610 64.807 152.950 100.932 70.639 6.520 

2 5   3.45 284.512 76.113 159.697 101.889 71.219 6.204 

 

 

 

Table 13. MSE as Signal-to-Noise Ratio Varies 

{T = 100, 2  errors, 2  regressors, ( ' ) 10a aX X  , restrictions: 1 0  , 2 0  , 3 0  , 4 0  } 

Error 

Variance 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 
2 1   26.68 58.499 30.037 73.885 22.422 46.861 7.598 
2 2   13.34 116.997 51.805 93.454 30.960 54.639 7.944 

2 3   8.89 175.496 70.649 108.682 37.223 58.785 7.880 

2 4   6.67 233.995 88.350 119.405 41.962 61.786 7.797 

2 5   5.34 292.494 105.413 127.814 45.594 63.669 7.584 
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Table 14. MSE as Signal-to-Noise Ratio Varies 

{T = 100, Normal errors, Normal regressors, ( ' ) 100a aX X  , restrictions: 
1 0  , 

2 0  , 
3 0  , 

4 0  } 

Error 

Variance 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 
2 1   28.89 4708.97 10.901 4.817 2.624 6.545 1.399 
2 2   14.44 9417.94 13.508 8.131 4.215 10.584 1.705 

2 3   9.63 14126.91 15.948 11.016 5.440 13.886 1.900 

2 4   7.22 18835.88 18.231 13.472 6.428 16.591 2.019 

2 5   5.78 23544.85 20.356 15.714 7.251 19.110 2.067 

 

 

 

Table 15. MSE as Specification Error Varies 

{T = 100, Normal errors, Normal regressors, ( ' ) 10a aX X  , 2
1  , restrictions: 1 0  , 

3 0  , 

4 0  } 

 

Restriction 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

2 0   28.67 50.184 8.743 7.453 

 

2.937 6.578 1.406 

2 0.5   28.67 

 

50.184 8.152 7.453 

 

2.937 

 

7.404 1.542 

2 0.8   28.67 50.184 7.962 7.453 

 

2.937 

 

7.934 1.601 

2 0.9   28.67 50.184 7.932 7.453 

 

2.937 

 

8.123 1.621 

2 1   28.67 50.184 7.919 7.453 

 

2.937 

 

8.318 1.690 

2 1.1   28.67 50.184 7.924 7.453 

 

2.937 

 

8.528 1.712 

2 1.2   28.67 50.184 7.946 7.453 

 

2.937 

 

8.740 1.765 

 

 

 

Table 16. MSE as Specification Error Varies 

T = 100, Normal errors, Normal regressors, ( ' ) 40a aX X  , 2
1  , restrictions: 1 0  , 3 0  , 4 0  } 

 

Restriction 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

2 0   28.87 756.057 10.578 5.714 2.643 6.559 1.394 

2 0.5   28.87 756.057 9.894 5.714 2.643 7.415 1.538 

2 0.8   28.87 756.057 9.688 5.714 2.643 8.009 1.597 

2 0.9   28.87 756.057 9.656 5.714 2.643 8.174 1.609 

2 1   28.87 756.057 9.642 5.714 2.643 8.372 1.677 

2 1.1   28.87 756.057 9.648 5.714 2.643 8.451 1.705 

2 1.2   28.87 756.057 9.673 5.714 2.643 8.805 1.759 
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Table 17. MSE as Specification Error Varies 

T = 100, Normal errors, Normal regressors, ( ' ) 100a aX X  , 2
1  , restrictions: 

1 0  , 
3 0  , 

4 0  } 

 

Restriction 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

2 0   28.89 4708.970 10.901 4.817 2.624 6.545 1.399 

2 0.5   28.89 4708.970 10.211 4.817 2.624 7.389 1.540 

2 0.8   28.89 4708.970 10.006 4.817 2.624 7.952 1.594 

2 0.9   28.89 4708.970 9.975 4.817 2.624 8.149 1.614 

2 1   28.89 4708.970 9.962 4.817 2.624 8.358 1.682 

2 1.1   28.89 4708.970 9.968 4.817 2.624 8.561 1.710 

2 1.2   28.89 4708.970 9.992 4.817 2.624 8.789 1.763 

 

 

 

Table 18. MSE as Specification Error Varies 

T = 100, Normal errors, Normal regressors, ( ' ) 10a aX X  , 2
5  , restrictions: 1 0  , 3 0  , 4 0  } 

 

Restriction 

Signal-to-

Noise 

 

OLS 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

2 0   5.73 250.922 19.844 16.670 7.345 19.178 2.094 

2 0.5   5.73 250.922 19.255 16.670 7.345 20.011 2.201 

2 0.8   5.73 250.922 19.052 16.670 7.345 20.567 2.247 

2 0.9   5.73 250.922 19.012 16.670 7.345 20.756 2.268 

2 1   5.73 250.922 18.988 16.670 7.345 20.949 2.329 

2 1.1   5.73 250.922 18.980 16.670 7.345 21.144 2.354 

2 1.2   5.73 250.922 18.987 16.670 7.345 21.312 2.396 
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Table 19. Results from Response Surface Regressions (t-values in parentheses) 

 

Variable 

 

IRLS 

 

GME3 

 

GME4 

 

RME3-I 

 

RME3-C 

Constant 0.12444 -0.17813 -0.17592 0.08217 0.01442 

 (2.10) (-1.88) (-2.18) (0.94) (1.02) 

Sample Size -0.00008   0.00475 0.00325 0.00092 0.00019 

 (-0.30) (10.00) (8.02) (2.39) (3.01) 

t- Errors 0.04093 1.28927 0.89463 0.38590 0.06536 

 (0.42) (7.37) (6.00) (2.71) (2.83) 

Chi-Sq Errors 0.01318 0.86167 0.29855 0.23067 0.05234 

 (0.14) (4.92) (2.00) (1.62) (2.27) 

t- Regressors 0.12382 -0.13686 -0.02077 -0.05414 -0.03147 

 (1.29) (-0.79) (-0.14) (-0.38) (-1.37) 

Chi-Sq Regressors 0.16842 -0.02939 0.08980 0.05455 -0.02000 

 (1.76) (-0.17) (0.61) (0.38) (-0.87) 

Condition # -0.00071 -0.00034 -0.00010 -0.00086 -0.00013 

 (-3.02) (-0.81) (-0.27) (-2.44) (-2.26) 
2  -0.01539 -0.07309 -0.04339 -0.04107 -0.00894 

 (-1.17) (-3.04) (-2.12) (-2.11) (-2.84) 

  0.03300   0.06941 0.01097 

 (0.13)   (0.19) (0.18) 
2  0.14454   0.23856 0.03687 

 (0.57)   (0.64) (0.61) 
2R  0.334 0.795 0.704 0.442 0.417 

 


