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COMPETITIVE ANALYSIS OF U.S.
FOOD PROCESSING PLANTS

ABSTRACT

This paper presents a model-based approach for competitive analysis of

manufacturing plants in the U. S. food processing industry. As part of this approach, plant

competitiveness is measured using Operational Competitiveness Ratings Analysis (OCRA)

-- a new non-parametric method of computing relative inefficiency. Drivers of

competitiveness are identified in terms of policies related to plant structure and

infrastructure. Policies related to plant structure are those decisions that are related with

“bricks and mortar” and have long term implications, such as decisions related to plant

size and capacity. Policies related to plant infrastructure are decisions related to how the

“ bricks and  mortar” are used. These policies are typically under the direct control of the

operations managers and have a short-term orientation, such as decisions related to

equipment, quality, inventory, workforce and confusion-engendering activities (e.g. new

product introductions and product variety). The empirical analysis is based on detailed

cross-sectional data on 20 processed food manufacturing plants. With respect to plant

structure, the results suggest that small sized food processing plants are competitive, and

both capacity underutilization and overutilization are detrimental to plant competitiveness.

Among the significant results with respect to plant infrastructure, equipment maintenance,

quality management programs, packaging supplies inventory, workforce training and

product variety are positively associated with plant competitiveness. The results also

suggest that introduction of new products disrupts plant operations, at least in the short

run, and is negatively associated with plant competitiveness.
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1. INTRODUCTION

Competitive analysis of plants is fundamental to enhancing the competitiveness of

manufacturing firms. Such analysis can guide the process of planning and executing

organizational interventions such as process re-engineering, total quality management and

continuous improvement programs. However, “most management systems in place do not

provide the kind of information needed by companies that seek to create competitive

advantage through manufacturing” (Hayes et al. 1988, p. 130). After a review of the

models available for economic evaluation of manufacturing operations, Fine (1993, p.723)

concludes: “Firms need better models to improve their control and evaluation systems.”

More specifically, Oral (1993, p. 10) notes: “What is needed is in fact a more formal

approach that analytically captures the relationship between strategy and competitive

strength.”

This paper presents a model-based approach for competitive analysis of

manufacturing plants that makes it possible to investigate the relationship between

operations strategy and competitive strength of plants. As part of this approach,

Operational Competitiveness Ratings Analysis (OCRA) -- a new non-parametric relative

inefficiency evaluation method -- is used to measure competitiveness of 20 U.S. food

processing plants. Next, regression models are estimated to identify drivers of plant

competitiveness in terms of policies related to plant structure and infrastructure. The

results of regression analysis are both intuitive and consistent with the qualitative insights

from the research and practitioner literature on processed food manufacturing.
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The remainder of the paper is organized as follows. Section 2 contains a review of the

relevant practitioner and research literature. Section 3 describes the measure of plant

competitiveness. Section 4 describes the U. S. processed food manufacturing industry.

Section 5 contains a discussion of the research design and the data used to conduct the

empirical analysis. Section 6 presents the results of the empirical analysis along with a

discussion on the insights obtained from these results, followed by the concluding section 7.

2. LITERATURE REVIEW

2.1 Competitive analysis

Prescott and Grant (1988) were the first, to the best of our knowledge, to review

studies on competitive analysis. Their review comprised of 21 studies led to guidelines

aimed at helping managers understand the trade-offs associated with the different

competitive analysis approaches. More recently, Oral (1993) conducted another

comprehensive review of the studies on competitive analyses. His review suggests that the

approaches documented in the extant literature can be divided into two categories --

descriptive and analytical:

(i) The descriptive approaches are useful for understanding the general nature of

competition and its broad strategic implications. They provide a checklist of factors,

but contain few measurement guidelines, or actionable procedures for competitive

strategy formulation.

(ii) The analytical approaches are founded on models whose solutions provide insights for

strategy formulation. However, the resulting guidelines are generally not specific
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enough to be useful for strategic decision making. Furthermore, very few of these

analytical approaches have been empirically tested in order to assess their potential for

strategy formulation.

Oral and his associates are among the first to systematically conduct competitive

analysis using model based approaches. For example, Oral and Dominique (1989) examine

competitive strategy formulation with respect to manufacturing-marketing interface and

explicitly take into account the context of the firm and the environment in which it

operates. They propose an analytical framework which can be used to study how a firm

perceives the opportunities and threats in its environment and attempts to optimize its

objectives subject to internal and external constraints.

Oral (1993) extends the developments in Oral and Dominque (1989). In this paper

he proposes a model to measure the level of industrial competitiveness, and also describes

its phase-by-phase implementation in a large glass making company. The competitiveness

level of the firm is expressed as a function of two major factors: industrial mastery and

cost superiority. Industrial mastery is an indicator of a firm's success compared to its

competitors in terms of generating and managing capital and operational resources. Cost

superiority, on the other hand, is the indicator of a firm’s input usage rates and input costs.

The unit of analysis in these two studies by Oral and his associates2 or those

documented in Prescott and Grant (1987) is either the firm or the business unit. Studies on

competitive analysis where the unit of analysis is the operating unit -- i.e. plant or service

                                               
2 There are other papers by Oral and his associates on competitive analysis, including competitive analysis
of nations. The two papers referenced here are the ones most relevant to this study.
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center -- are relatively rare in the literature. Review of both practitioner and research

literature suggests that references to competitive analysis of a firm’s manufacturing or

service operations are predominantly proprietary or anecdotal in nature. There is a body of

practitioner literature on competitive benchmarking which provides normative guidelines

for identifying performance gaps between plants, and identifying practices necessary to be

at par with, or, outperform one’s competitors (Tucker et al. 1987; Hayes et al. 1988, p.

156-157; Camp 1989). In the research literature, references to studies on competitive

analysis of manufacturing and service operations of firms are extremely limited. At best,

the research literature on competitive analysis of plants can be characterized as being in

the developmental stages.

The few studies where model based approaches have been used to conduct

competitive analysis of the operating units of a firm are Parkan (1994) and Sinha (1996).

Parkan (1994) proposes models for computing “operational competitiveness ratings” of a

set of production units. He illustrates the application of these models to evaluate the

competitiveness of the branches of a major bank (Parkan 1994).

Sinha (1996) proposes “moving frontier analysis” -- a method for conducting

competitive analysis of dynamically-complex operations of a high technology

manufacturing plant. Using a wafer fabrication plant of a semiconductor manufacturing

company as a research site, he demonstrates the application of moving frontier analysis

over a 28-month period to determine (i) the gap between a plant’s performance and

industry best practices, and (ii) whether it will be possible to close this performance gap,

and if so, the time it will take to do so.
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Competitive analyses presented in Parkan (1994) and Sinha (1996) focus primarily

on the measurement of competitiveness, and do not provide much insight into the drivers

of competitiveness. The present study extends the developments documented in these two

papers by not only focusing on the measurement of competitiveness, but also investigating

the drivers of competitiveness.

2.2 Drivers of plant competitiveness

Drivers refer to choices that a firm makes with reference to its operations function

to enhance the competitiveness of its operating units. Understanding these choices and

their impact on competitiveness is at the heart of strategic management of a firm’s

manufacturing and service operations (Hayes et al. 1988; Fitzsimmons and Fitzsimmons

1994). The framework used to organize these choices was first proposed by Hayes and

Wheelwright (1984) in their effort to understand the decision patterns in the operations

function.3 Subsequently, the framework proved to be useful in providing a

“microeconomic” explanation of productivity differences at the plant level (Hayes and

Clark, 1985). According to the framework, there are two categories of drivers --

structural and infrastructural:

                                               
3 The categories in Hayes and Wheelwright’s (1984) framework are substantively similar to the categories
in the “production process level framework” used in studies commissioned by the McKinsey Global
Institute (1993) to investigate the differences in labor productivity in plants across several manufacturing
industries in the U.S, Germany and Japan.
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(i) Structural drivers are decisions related with “bricks and mortar” and are therefore

considered to have long-term implications. Examples of structural decisions are those

related to plant size, plant capacity, age of equipment in a plant.

(ii) Infrastructural drivers are decisions related to policies that determine how the “bricks

and mortar” are  managed. Typically, these decisions are under the direct control of

the operations managers, and are easier to change because they do not require the

large and costly modifications that structural decisions do. Infrastructural decisions

include policies related to equipment, quality, inventory, workforce and confusion-

engendering activities (e.g. new product introductions and product variety) in a plant.

While the categories within this framework are parsimonious, the domain of its application

has been restricted to investigating the drivers of plant productivity measured typically in

the form of total factor productivity or labor productivity. Productivity measurement using

such “traditional approaches” are frequently found, in practice, to be inconsistent with “a

firm’s competitive position and its short term and long term profitability” (Banker 1985, p.

240). The domain of application of this framework of structural and infrastructural

decisions is expanded in this paper by using it to investigate the drivers of plant

competitiveness.

3. MEASURE OF PLANT COMPETITIVENESS

Competitiveness of a plant is measured in terms of its relative efficiency -- that is,

efficiency of the plant relative to the efficiencies of plants in a sample. A formal

econometric approach for estimating relative efficiency is with reference to the “best
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practice frontier”. Best practice frontier, a term originally coined by Farrell (1957),

denotes maximal output that can be obtained given a set of input quantities for a given set

of plants in a sample4. The plants in a sample should be comparable in order to gain

insights into how a firm’s operations “compares with its best competitors with respect to

the manufacturing capabilities upon which its manufacturing strategy is based” (Hayes et

al. 1988, p. 148). At a conceptual level, competitive analysis based on such relative

efficiency measures is “consistent with the underlying economic theory of optimizing

behavior” and is oriented toward extreme observations of a body of data to extract

information from them (Bauer 1990, p. 39).

Data Envelopment Analysis (DEA) is probably the most well known econometric

method for estimating relative efficiency with reference to best practice frontier (cf.

Banker and Khosla 1995; Sinha 1996; Cooper et al. 1996). DEA is a non-parametric

method since the frontier is constructed without any assumptions about the functional

form of the underlying relationship between the inputs and outputs. With increasing

complexity of manufacturing plants, the relationships between the inputs and the outputs

are far from well understood. Hence, a non-parametric method for estimating relative

                                               
4 “Absolute frontier”, on the other hand, refers to maximal output which can be attained, given a set of
input quantities for all plants which can conceivably exist. From a theoretical standpoint, the distinction
between the two types of frontiers is that the best practice frontier is estimated without assuming the form
of the distribution of the one-sided error, where as the absolute frontier is estimated by assuming an
explicit distributional form for the one-sided error. From a practical standpoint, the distinction between
the two types of frontier is not likely to be large since the absolute and best-practice frontier necessarily
converge asymptotically. See Forsund, Lovell and Schmidt (1980) for more details.
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efficiency is useful because it does not require any a priori specification of the relationship

between inputs and outputs.5

At an intuitive level, estimating relative efficiency using DEA involves defining a

piecewise linear frontier using a set of real plants in its corners and “plants” invented by

their convex combinations in between. Only the plants on the frontier, real or invented, are

judged to be relatively efficient. To estimate the relative efficiency of a plant that is not on

the frontier, its position is compared with that of the plant on the frontier. The specific

plant on the frontier with which this comparison is made is generally an “invented plant” --

invented through a convex combination of nearby efficient plants that are real, and are also

referred to as the reference set of the inefficient plant.6

Figure 1 is a geometric portrayal of a frontier using single input-single output

example. Let P1....P5 represent five plants with coordinate values representing the amount,

x, of a single input used to produce an amount y of a single output. The plant Pj with

coordinates (xj,yj) is introduced to exhibit the phenomena of efficiency dominance.

Comparing P4 with Pj shows that the former obtained more output from the same input.

Hence, Pj is output-inefficient in amount y4 - yj. Similarly, comparison with P3 shows Pj to

be input-inefficient since P3 achieved the same output as Pj with input less in amount xj -

x3. Next, consider the plant P1 which may be evaluated from non-negative (convex)

combinations of the observed values of efficient plants such as P3 and P4. These

                                               
5 See Cooper, Sinha and Sullivan (1996) for more details on reasons for using non-parametric method for
efficiency evaluation of complex manufacturing operations.

6 See Charnes et al. (1978), Banker et al. (1984), and Banker et al. (1989) for a detailed review of DEA.
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combinations help to “invent” plants which are also efficient. The vertical arrow in Figure

1 locates a point that assigns all inefficiency to P1’s realized output while the horizontal

arrow assigns it to the input utilized. As designated by the broken line, other points may

be designated by DEA models. The solid line segments connecting P2, P3, P4, P5 represent

a frontier or the “production possibility set” -- i.e. the set of output and input pairs that

have been actually realized. Not all plants on the frontier represent best (i.e. efficient)

practice--e.g. P5’s input performance is dominated by P4 because it uses input quantity that

is more than what P4 uses to produce the same output quantity. The plants P2, P3 and P4

represent the best practice frontier (or, the “efficiency frontier”). A plant is on the best

practice frontier if and only if the performance of other plants do not show that some of its

inputs or outputs can be improved without worsening some of its other inputs or outputs.

A major problem in implementing DEA is that it may construct a frontier that may

contain far too many real plants necessary for estimating relative efficiencies. The problem

is particularly exacerbated when the number of production units (e.g. plants) in a sample is

small because many of the production units become self-evaluators. Small sample size is a

common problem encountered in conducting competitive analysis of plants or other types

of operating units of firms (cf. Schefczyk 1993; Sinha 1996), we have identified a method

that was developed recently to circumvent such a problem. The method is known as

Operational Competitiveness Ratings Analysis (OCRA) and was developed by Parkan

(1994). Like DEA, OCRA is a non-parametric method.7 At an intuitive level, OCRA

computes the inefficiency of a plant relative to a set of plants by taking into consideration
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all the relevant input-consuming and output-generating activities of the plants and

assigning ratings to gauge their relative inefficiency in these activities. Mathematical

formulation of the OCRA model for computing relative inefficiency is presented in

Appendix A.

4. PROCESSED FOOD MANUFACTURING PLANTS

Processed food is defined as all food products that undergo some form of

preservation, cooking, reconstitution or packaging before they are sold to the consumers.

In practical terms, this includes all food categories except fresh produce, alcoholic and

non-alcoholic beverages. This definition covers most of the products which fall under the

heading “Food and Kindred Products” (SIC 20).

A recent study by the McKinsey Global Institute (1993, p. 1) shows that the

processed  food industry “ is the largest single consumer goods industry, and as such plays

an important role in the health of an economy.” In the U.S., food processors account for

the largest share of employment in consumer goods manufacturing industry. The

importance of food processing is accentuated when one examines the entire food supply

system, with the farm sector at one end and consumers at the other end. The food

processors transform inputs in the form of raw commodities from the farm sector (using

other inputs such as labor, capital, packaging supplies and energy) into a variety of

packaged consumer products within the limits imposed by the biological, storage and

safety requirements of raw food and agricultural commodities and manufacturing

                                                                                                                                           
7 For a comparison between OCRA and DEA methods, see Parkan (1994, p. 202).
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technology. “It is this segment that largely shapes the time, form and location

characteristics of our food supply” (McCorkle Jr. 1988, p. 2).

Processed food manufacturers can be divided into four strategic groups based on

the marketing channels used to sell the products:

(i) Firms that sell  producer or industrial goods (e.g. flour and sugar) to other

manufacturers.

(ii) Firms that cater to food service market (e.g. commercial eating and drinking places,

schools, hospitals, airlines and other establishments) that serve food away from

home.

(iii) Firms that sell packaged consumer products carrying their own manufacturer’s brand

to food stores.

(iv) Firms that sell private label, generic and unbranded products to various distributors

or directly through food stores.

The sample of 20 processed food manufacturing plants in this study belong to category

(iii). The plants’ output is packaged consumer products that carry their own

manufacturer’s brand.

According to the McKinsey Global Institute’s (1993) study, product

standardization among the U.S. processed food manufacturers has reached such a level

that price is an important factor in competition. Price competition, in turn, puts pressure

on the firms to reduce their production costs. Recently, Miller and Roth (1994) conducted

an empirical study on manufacturing strategies across several U.S. industries. Their study

suggests that the consumer packaged food manufacturers are “marketeers” who compete
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primarily through infrastructural changes aimed at cutting costs. It is evident from both of

these recent studies that production efficiency is key to competing in the food processing

industry. Hence, relative efficiency is an appropriate measure of plant competitiveness in

this industry.

The Hayes and Wheelwright’s (1984) framework, discussed earlier, is followed to

organize the ensuing discussion under two headings: structural and infrastructural drivers.

4.1 Structural drivers

Capacity utilization. In spite of the advances in agricultural sciences, climatic conditions

and soil characteristics still restrict the production of many important crops to given

geographical areas. This restriction leads to heavy on-season use of many food processing

facilities and partial or minimal utilization of the capacity in the off-season (McCorkle

1988, p. 4).

Plant size. An optimal size of a plant is one that, under currently available technologies,

achieves lowest unit costs. The agricultural economics literature seems to indicate that in

food processing, production economies of scale can be substantial. According to Connor

and Wills (1988, p. 133-134), economies of scale can be a barrier to entry depending on

how great a cost disadvantage the suboptimal plant size poses. Reports in the recent

practitioner literature, on the other hand, suggest that small sized food processing plants

are competitive because they are more flexible (cf. Food Processing 1996, p. 54-55).
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4.2 Infrastructural drivers

Equipment policies. The focus here is on equipment maintenance because in a modern

food processing plant well-maintained equipment is key to (i) ensuring that food

processing is safe, and (ii) effectively utilizing automated processing, packaging and

material handling equipment to meet the volume and mix fluctuations in the demand for

consumer packaged food products. In food processing operations, scheduled preventive

maintenance is less costly than condition-based preventive maintenance, in which

performance is monitored for precursors of imminent failure (the monitoring system itself

requires maintenance). Efficient corrective maintenance is expensive, because skilled staff

have to be kept in readiness, but it offers highest all-round availability of equipment

(McFarlane 1995, p. 35).

Quality policies. Processing technologies such as aseptic processing and packaging, and

food irradiation8 that are integral to a modern processed food manufacturing plant require

stringent quality control. Furthermore, for a processed and packaged food product to be

considered a quality product that will sell in the market place, it must cater to consumers’

preferences such as those related to sensory properties (color, flavor, texture and overall

appearance), nutritional value, shelf life, packaging, ease of preparation, microbiological

safety etc. In essence, competitiveness of a food processing plant is determined by policies

related to both internal and external quality.

                                               
8 “Aseptic processing and packaging” is used to produce food products that are shelf-stable (i.e. free from
danger of microbiological spoilage even at room temperature. “Food irradiation” is used to irradiate food
products (typically using gamma rays) in order to reduce the population of spoilage organism, kill all non-
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Inventory policies. The seasonal nature of agricultural production and perishability of

crops make it necessary for the processed food manufacturers to carry raw materials and

finished goods inventory. In addition, packaging material inventory constitutes a

significant portion of inventory costs of a processed food manufacturer. This is due to the

fact that these processors use packaging technologies (e.g. aseptic packaging, and the

development of new packaging materials) to improve shelf-life and decrease cost of

storage. Further, because of the consumer-oriented nature of processed food product,

packaging materials play an important role in differentiating competing products.

Workforce policies. A technologically sophisticated workforce is becoming increasingly

necessary to operate, maintain and repair the processing and packaging equipment used in

modern food processing operations (McCorkle et al. 1988, p. 430). Hence, food

processors need to make substantial investments in technical training of their workforce in

order to be competitive.

Confusion related policies. The food processing industry is characterized by product

proliferation that is unlike any other industries. According to Kinsey and Heien (1988, p.

63): “There are about 50,000 food items in distribution each year, and about 2,500 net

“new” items are introduced every year. The failure rate is about 60 percent per year. Over

90 percent of all “new” food products eventually fail.” For food processors, product

proliferation can translate into operating at suboptimal production levels. New product

introductions, broad product variety and frequent schedule revisions are disruptive and

                                                                                                                                           
spore-forming pathogens, or kill all organisms associated with the product. See Sanderson and Scheigert
(1988, p. 93-95) for more details.
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detrimental to a plant’s performance, at least in the short run (Hayes and Clark, 1985).

Confusion related policies are aimed at minimizing the disruptions in the plant.

5. RESEARCH DESIGN

The empirical analysis for this study is based on detailed cross-sectional data from

20 plants of several well-known processed food manufacturing firms for the year 1989. The

dataset was made available to us by A. T. Kearney Inc., an international management

consulting firm, the industry partner in this study. The identity and the location of the plants

cannot be divulged, so numbers 1 to 20 were assigned to the plants and their products are

listed in column 1 of Table 1.

The empirical analysis is conducted in two steps:

Step 1. The competitiveness of the 20 plants in the study sample is measured in terms of

their relative inefficiencies using the OCRA method. The relative inefficiencies are

computed using input data in the form of costs of labor, capital, material and

energy, and output data in the form of revenue.

Step 2. Regression models are estimated to investigate the drivers of plant

competitiveness. The dependent variables in the regression models are the relative

inefficiencies of the plants. The independent variables are the proxies for the

infrastructural policies related to equipment, quality, inventory, workforce and

confusion-engendering activities. The proxies for structural policies related to plant
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Table 1

Food processed at the plants, processed food prices in 1989$, and the sources of the prices.

Column 1 Column 2 Column 3

Plants Products Price ( 1989$) Source of the price

1 Ice cream 2.60 (1/2 gal) Food Cost Review9, p. 6.

2 Ice cream 2.60 (1/2 gal) Food Cost Review, p. 6.

3 Potatoes 0.34 (one lb.) Food Cost Review, p. 6.

4 Packaged meat (turkey) 0.99 (one lb.) Food Cost Review, p. 6.

5 Packaged meat (chicken) 0.93 (one lb.) Food Cost Review, p. 20.

6 Snack food 2.86 (one lb.) Cost of Living Index10.

7 Cookies 2.38 (one lb.) Food Cost Review, p. 6.

8 Cereal 1.72 (18 oz) Cost of Living Index.

9 Cereal 1.72 (18 oz) Cost of Living Index.

10 Juice 1.86 (one lb.) Food Cost Review, p. 6.

11 Yogurt 0.55 (half pt= 8 oz ) Cost of Living Index.

12 Spices 2.37 (one lb.) United Nations Statistics11.

13 Packaged meat (sausage) 2.12 (one lb.) Statistical Abstracts of the United States12.

14 Packaged meat (beef) 1.88 (one lb.) Statistical Abstracts of the United States.

15 Cookies 2.38 (one lb.) Food Cost Review, p. 6.

16 Potatoes 0.34 (one lb.) Food Cost Review, p. 6.

17 Soup 0.69 (10 3/4 oz) Product Alert13.

18 Frozen meals 1.40 (11 oz) Food Cost Review, p. 15.

19 Packaged eggs 1.14 (dozen) Statistical Abstracts of the United States.

20 Pet food 0.50 (14 oz) Product Alert14.

                                               
9 Dunham, D., 1989. Food Cost Review, Economic Research Service, U.S. Department of Agriculture,
Agricultural Economic Report No. 636.
10 American Chamber of Consumers Research Association, Cost of Living Index, Vol. 22, No. 4.
11 United Nations Statistics, 1989-90, p. 181.
12 Statistical Abstracts of the United States, 1995, p. 503.
13 Product Alert, July 23, 1990. “Campbell’s Condensed Soup - Cream of Broccoli.”
14 Product Alert, December 18, 1989. “Tyrell’s Deluxe Canned Dog Food.”



21

size and capacity utilization are used as the control variables in the regression models.

5.1 Data on inputs and output

Following is a description of the data on the four inputs and one output:

Labor . This includes annual expenditures on direct and indirect labor and salaried

employees.

Materials. This includes annual expenditures on raw material and packaging supplies.

Capital. This includes the annual depreciation costs of facilities and equipment. Reliable

and consistent estimates of opportunity cost of capital were not available for any of the 20

plants and  hence, it is not included in this input cost category.

Energy. This includes the annual costs of energy and utilities.

Revenue. The output data on the plants were available in physical units, and were

transformed into revenue by multiplying the annual production volume by the publicly

available retail prices for the products. The retail prices used and their sources are listed in

columns 2 and 3 of Table 1. This transformation to price-adjusted production volume is

necessary to ensure that the output data across plants are comparable (cf. Chew 1988, p.

118).

5.2 Data on plant structure and infrastructure

The data used as proxies for the policies related to plant structure are:

Plant size. This is measured as the total number of hourly and salaried employees in a

plant.
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Capacity utilization . This is measured as the ratio of physical units of output to

production capacity of a plant.

The data used as proxies for the policies related to plant infrastructure are:

Equipment. The proxy is the ratio of annual maintenance costs to book value of facilities

and equipment. Maintenance costs include expenditures on maintenance labor,

maintenance materials, maintenance contractors and maintenance overhead. Separate costs

for preventive and corrective maintenance costs were not available for any of the plants in

the sample.

Quality . The proxy is the ratio of annual budget for quality control and laboratory to cost

of goods manufactured.

Inventory . The proxies used are the dollar value of annual inventory levels for raw

materials, packaging materials and finished goods, respectively. There were numerous

missing observations for the data on work-in-process inventory. Hence, we do not include

it as a variable in estimating the regression model.

Workforce . The proxies used are the average hours of training per employee, and yearly

averages of percentage-absenteeism and percentage-turnover for hourly workers. Data on

overtime was not available for any of the plants in the sample. Hence, we do not include

overtime as a variable in estimating the regression model.

Confusion. The proxies used are the product (SKU15) introductions per year and the

average number of products per production line.

                                               
15 SKU (Stock Keeping Unit) is defined as “individual color, size, flavor or pack of a product that requires
a separate code number to distinguish it from other items” (Food Marketing Institute 1995, p. 81).
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6. DATA ANALYSIS AND RESULTS

6.1 Measurement of plant competitiveness

The descriptive statistics for the input and output data of the 20 plants in this study

are presented in Table 2. The material costs are the most significant input costs followed

by labor, capital and energy. Figure 2 is a pie-chart showing both the categories and the

sub-categories of input costs as a proportion of the total input cost.

Column 1 of Table 3 contains the relative inefficiency scores of the plants

computed using the OCRA method16. To highlight the variability in the OCRA relative

inefficiency scores, the DEA relative efficiency scores for the plants using the same data

on inputs and output were computed. The DEA model used to compute the relative

efficiencies was the BCC model (Banker, Charnes and Cooper 1984), the most widely

used DEA model for relative efficiency evaluation. Mathematical formulation of the BCC

model is presented in Appendix C. Column 2 in Table 3 contains the DEA relative

efficiency scores. Consistent with the discussion in section 3, the OCRA relative

inefficiency scores show more variability than the DEA relative efficiency scores for the

same 20 plants. Correlational analysis between the OCRA measure of relative inefficiency

                                               
16 Using expressions (A.6) and (A.7), we determined the following calibration constants that were used in
the computation of relative inefficiencies: amaterials=0.29, alabor=0.06, aenergy=0.01, acapital=0.05,
brevenue=0.59.
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Table 2

Descriptive statistics for the inputs and output.
(All values in thousands of 1989$)

Mean Standard
deviation

Minimum Maximum

Labor  17396 17194 2433 70414
Materials  87970 94209 627 386262
Capital  11311 12183 1190 47000
Energy 2479 2592 332 9000
Revenue 191732 165271 11866 550208

Figure 2. Proportions of the input cost categories and subcategories

Indirect labor
5%

Salaried labor 
3%

Capital (depreciation) 
9%Energy

2%

Direct labor
7%

Packaging materials
18%

Processing materials
55%
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Table 3

Relative inefficiency (OCRA), relative efficiency (DEA) and total factor
productivity scores of the plants.

Column 1 Column 2 Column 3

Plants Relative inefficiency
(OCRA)

Relative efficiency
(DEA)

Total factor productivity

1 9.81 1.00 1.52

2 14.60 1.00 0.38

3 17.09 0.31 1.63

4 41.41 0.24 0.64

5 91.70 0.26 1.28

6 6.93 0.81 3.28

7 8.75 1.00 2.33

8 28.57 0.27 2.11

9 30.31 0.34 1.99

10 1.33 1.00 4.61

11 24.34 1.00 2.49

12 47.31 0.55 1.01

13 24.66 1.00 2.27

14 164.14 1.00 0.89

15 1.00 1.00 7.41

16 13.86 0.83 0.43

17 38.72 0.52 2.88

18 14.84 0.61 3.93

19 21.44 0.64 1.0003

20 110.04 0.08 0.25
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and DEA measure of relative efficiency suggests that the correlation is not significant (r =

-0.34, p = 0.14), implying that when the sample size of plants is small the two measures

are not correlated.

Having shown that there is more variability in the OCRA relative inefficiency

scores than the DEA relative efficiency scores, the variability in the OCRA relative

inefficiency scores is compared to the variability in Total Factor Productivity (TFP)

scores, a traditional measure of plant efficiency (cf. Hayes and Clark 1985). Column 3

contains TFP scores -- computed as the ratio of the output to the sum of four inputs -- for

the 20 plants. The data on output and inputs are the same as those that were used to

compute the OCRA relative inefficiency scores and the DEA relative efficiency scores.

The correlation between the OCRA and TFP scores is negative and significant (r = -0.44,

p < 0.05). The substantive difference in the variability between the OCRA and TFP scores

is that the OCRA scores can be exploited to obtain insights into drivers of plant

competitiveness in terms of policies related to plant structure and infrastructure, where as

the TFP scores cannot be exploited to obtain such insights.

6.2 Regression analysis

Regression analysis was conducted to estimate models that relate plant

competitiveness with policies related to plant structure and infrastructure. First, a basic

model was developed containing only the control variables, plant size and capacity

utilization,17 as the predictors. The basic model is of the following form:

                                               
17 We do not a use a separate control variable to capture the learning curve effect because reliable
estimates of cumulative production volume (a commonly used proxy for learning curve effect) were not
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Y X X= + + +β β β ε0 1 1 2 2  (1)

In the above model (1), the random error term, ε, is assumed to be independent and

identically distributed as N( , )0 2σ . Y is the dependent variable that denotes plant

competitiveness measured in terms of OCRA scores. X1 and X2 are the control variables --

plant size and capacity utilization.

Independent variables were added to this basic model (1) to develop models, one-

at-a-time, corresponding to each one of the policies related to plant infrastructure. The

rationale for conducting regression analysis corresponding to the infrastructural policies,

one-at-a-time, is that the number of plants in the study sample is small (N=20)18.

Diagnostic tests conducted as part of the regression analysis are discussed in Appendix B.

6.3 Regression results

Table 4 contains the descriptive statistics of the data on the variables in the

regression models. The results of the regression analyses for estimating the basic model

and the models corresponding to each one of the infrastructural policies are presented in

Table 5. Column 1 shows that in the basic model, plant size measured as logarithm of

                                                                                                                                           
available for the plants in the sample. Further, responses to questions in the survey questionnaire for data
collection on average age of the processing and packaging equipment indicates that the production
technology in the plants had been in use for 3 years or more, implying that the plants had gone down the
learning curve.
18 Hayes and Clark (1985) used a similar strategy for analyzing their data.
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Table 4
Descriptive statistics for the data on variables in the regression models

Variables Mean Standard
Deviation

Minimum Maximum

OCRA relative inefficiency 35.54 41.16 1.00 164.10
Total factor productivity 2.12 1.72 0.25 7.41
Number of employees 733 842 92 3630
Capacity utilization 0.54 0.21 0.16 0.94
Maintenance cost/book value 0.18 0.13 0.02 0.60
Quality budget/cost of goods manufactured 0.01 0.01 0.0004 0.04
Raw material inventory/cost of goods manufactured 0.03 0.02 0.0008 0.08
Finished goods inventory/cost of goods manufactured 0.17 0.37 0.002 1.60
Packaging supplies inventory/cost of goods manufactured 0.01 0.01 0.001 0.03
Training hours per employee 52.07 134.40 0 600
Percentage-absenteeism 0.04 0.05 0.01 0.24
Percentage-turnover 0.16 0.17 0.01 0.65
Number of new product introductions 277 463 3 1900
Average number of products per line 22 24.5 2 114



Table 5
Estimation of the regression models, dependent variable = ln (OCRA relative inefficiency)

 (Standard errors in parentheses)

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Variable Basic model Equipment
policies

Quality policies Inventory policies Workforce policies Policies affecting
confusion

intercept -2.53
(1.65)

-4.23***
(0.79)

-4.55***
(0.53)

-0.81
(0.86)

-4.89***
(0.89)

-1.27
(0.93)

ln(total number of employees) 0.80***
(0.26)

1.19***
(0.14)

0.65***
(0.11)

0.64***
(0.11)

0.98***
(0.09)

0.58***
(0.19)

capacity utilization -2.38
(1.40)

-3.04***
(0.66)

-0.35
(0.53)

-0.25
(0.59)

-1.36**
(0.52)

-1.32*
(0.70)

(capacity utilization)2 11.96**
(5.15)

9.32***
(2.32)

5.35***
(1.48)

5.55**
(1.76)

6.24***
(1.60)

6.60**
(2.49)

maintenance cost/book value - -2.38**
(0.98)

- - - -

ln(quality budget/cost of goods
manufactured)

- - -0.65***
(0.10)

- - -

ln(raw materials inventory/cost of
goods manufactured)

- - - -0.07
(0.10)

- -

ln(finished goods inventory/cost
of goods manufactured)

- - - 0.06
(0.08)

- -

packaging supplies inventory/cost
of goods manufactured

- - - -33.10**
(14.05)

- -

ln(training hours per employee) - - - - -0.17***
(0.05)

-

ln(absenteeism) - - - - -0.65***
(0.17)

-

ln(turnover) - - - - -0.003
(0.08)

-

ln(new product introductions) - - - - - 0.47**
(0.20)

ln(number of products per line) - - - - - -0.64**
(0.23)

F=4.80
R2=0.51
Adjusted R2=0.41

F=23.79
R2=0.90
Adjusted R2=0.86

F=60.34
R2=0.96
Adjusted R2=0.94

F=76.26
R2=0.94
Adjusted R2=0.88

F=25.69
R2=0.93
Adjusted R2=0.90

F=76.86
R2=0.89
Adjusted R2=0.84

                                               
* Statistically significant at the 0.10 level;
**  at the 0.05 level;
***  at the 0.01 level.
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number of employees in the plant is significant and positively associated with the OCRA

measure of relative inefficiency. Also, in the subsequent regression models where proxies

of infrastructural policies have been introduced one-at-a-time to the basic model, this

association continues to be positive and significant. These results are consistent with the

practitioner literature which suggests that small sized food processing plants are flexible

and competitive (cf. Food Processing 1996, p. 54-55).

In the basic model (1) both a linear and a quadratic term for capacity utilization

were used because the relationship between relative inefficiency and capacity utilization is

expected to be curvilinear -- i.e. both capacity underutilization and capacity overutilization

are detrimental to the competitiveness of a plant. The inclusion of both linear and

quadratic terms for capacity utilization caused multicollinearity problems in estimating the

regression models. These problems were addressed by re-estimating the models using

deviations from the mean capacity utilization. As seen in column 1, the linear term is

negative but not significant. However, the quadratic term is positive and significant. In the

subsequent models, both the sign and the significance of the quadratic term is similar to

the basic model. For the linear term, the signs continue to be negative in the remaining

regression models, and is significant in columns 2, 5 and 6 corresponding to equipment,

workforce and confusion related policies.

In column 2, the coefficient estimate of the ratio of maintenance cost to book value

of equipment, the proxy for equipment policy, is negative and significant. This result

indicates that maintenance expenditure is positively associated with a plant’s

competitiveness. In column 3, the coefficient estimate of the logarithm of ratio of quality
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budget to cost of goods manufactured, the proxy for quality policy, is also negative and

significant. This result provides empirical support to the conventional wisdom that

investments in quality management are positively associated with plant competitiveness.

In column 4, it is observed that out of the coefficient estimates of the three

variables used as proxy for inventory policy, only the coefficient of the ratio of packaged

supplies inventory to cost of goods manufactured is negative and significant. This result is

capturing a feature that is unique to the manufacturers of consumer packaged food

products. As noted earlier, given the perishable nature of processed foods and the fact that

(i) packaging technologies are used to improve shelf-life and decrease cost of storage of

food products, and (ii) packaging materials play an important role in differentiating

between competitors’ products, high inventory level of packaging supplies can be

positively associated with competitiveness of processed food manufacturing plants.

In column 5, it is noted that out of the three variables used as proxy for workforce

policy training and absenteeism are significant. The coefficient of the training variable is

negative, indicating that training is negatively associated with relative inefficiency of a

plant. This result empirically supports the fact that investment in training contributes

toward improving the competitiveness of a plant. The negative association between

absenteeism and relative inefficiency may at first appear to be counterintuitive, but it is

not. What this result is capturing is the fact that when workers are absent the remaining

workers increase their level of effort so as to fill the gaps left by their absent colleagues.

“It is as if when the tenth worker is absent the remaining nine do the work of the 10.5

workers !” (Hayes and Clark, 1985; p. 163).
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 In column 6, it is noted that coefficient estimates of the two variables used as

proxy for policy affecting confusion in operations are significant. However, the sign on the

coefficient of logarithm of the number of new product introductions per year is positive.

While this result may appear to be counterintuitive, it is actually capturing the short term

disruptive impact of new product introductions on plant competitiveness. The long term

impact of new product introductions on plant competitiveness can only be investigated

through a longitudinal study. The sign on the coefficient of the second proxy variable is

negative, indicating that competitiveness of plants is positively associated with product

variety per line. This result provides empirical support to the prevailing wisdom in both

the research and practitioner literature that the ability of a plant to effectively respond to

product variety demanded by the marketplace enhances its competitiveness.

6.4 Comparative regression results

Another set of regression analyses was conducted in order to contrast the results

obtained from the regression analyses using OCRA measure of relative inefficiency as the

dependent variable. While the estimation procedure, and control and independent variables

used in the next set of regression models are the same as in the earlier analyses, the

dependent variable is Total Factor Productivity (TFP).

Table 6 contains the regression results using TFP as the dependent variable. It is

interesting to note that compared to the earlier set of regression analyses, none of the

proxies for any of the infrastructural policies -- with the exception of absenteeism in the

workforce regression in column 5 -- is statistically significant. The explanation for positive
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association between absenteeism and total productivity is the same as the explanation for

negative association between absenteeism and relative efficiency, discussed above. In

summary, comparing the results of the two sets of regression analyses highlights the

promise and potential of the OCRA measure of relative inefficiency for conducting

competitive analysis and identifying the drivers of plant competitiveness.

7. CONCLUSION

The study documented in this paper is among the first research initiatives to use a

model-based approach for analyzing the competitiveness of manufacturing plants. Integral

to this approach is measuring competitiveness of plants using the OCRA method. OCRA

circumvents the problems encountered in using DEA to compute relative efficiencies with

small sample size of plants. This model-based approach can be used to examine the

relationship between plant competitiveness and policies related to plant structure and

infrastructure. Structural policies are decisions related to “bricks and mortar” that have

long term implications, e.g. policies related to plant size and capacity utilization.

Infrastructural policies are decisions related to the use of the “bricks and mortar” that are

typically under the direct control of the managers in a plant, e.g. policies related to

equipment, quality, inventory, workforce and confusion-engendering activities.



Table 6
Estimation of the regression models, dependent variable = ln (total factor productivity)

 (Standard errors in parentheses)

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6

Variable Basic model Equipment policies Quality policies Inventory policies Workforce policies Policies affecting
confusion

intercept 2.32*
(1.12)

-2.45*
(1.31)

2.40*
(1.16)

0.21
(1.47)

3.83**
(1.39)

2.49
(1.40)

ln(total number of employees) -0.21
(0.18)

-0.26
(0.23)

-0.13
(0.25)

-0.02
(0.20)

-0.28
(0.16)

-0.22
(0.28)

capacity utilization 2.70**
(0.95)

2.92**
(1.10)

2.25
(1.39)

1.71
(1.10)

2.16**
(0.81)

2.23*
(1.06)

(capacity utilization)2 -12.32***
(3.50)

-12.43***
(3.76)

-11.74***
(3.81)

-9.16**
(3.43)

-12.44***
(2.89)

-11.36**
(3.75)

maintenance cost/book value - 0.78
(1.63)

- - - -

ln(quality budget/cost of goods
manufactured)

- - 0.11
(0.24)

- - -

ln(raw materials inventory/cost of
goods manufactured)

- - - -0.10
(0.18)

- -

ln(finished goods inventory/cost
of goods manufactured)

- - - -0.003
(0.14)

- -

packaging supplies inventory/cost
of goods manufactured

- - - 33.13
(20.53)

- -

ln(training hours per employee) - - - - 0.17
(0.10)

-

ln(absenteeism) - - - - 0.45*
(0.24)

-

ln(turnover) - - - - -0.08
(0.14)

-

ln(new product introductions) - - - - - 0.12
(0.30)

ln(number of products per line) - - - - - -0.24
(0.34)

F=5.18
R2=0.52
Adjusted R2=0.42

F=3.44
R2=0.53
Adjusted R2=0.38

F=3.72
R2=0.53
Adjusted R2=0.40

F=2.54
R2=0.66
Adjusted R2=0.40

F=5.08
R2=0.79
Adjusted R2=0.64

F=2.54
R2=0.54
Adjusted R2=0.32

                                               
* Statistically significant at the 0.10 level;
**  at the 0.05 level;
***  at the 0.01 level.
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Among the significant results with respect to structural policies, plant size,

capacity overutilization and capacity underutilization are negatively associated with plant

competitiveness. Among the significant results with respect to infrastructural policies,

plant competitiveness is positively associated with expenditures on equipment

maintenance, quality management programs, packaging supplies inventory and workforce

training, and product variety. The results also suggest that introduction of new products

disrupts plant operations, at least in the short run, and is negatively associated with plant

competitiveness. Based on the application of this model-based approach for competitive

analysis of  processed food manufacturing plants in the U.S., it seems that the overall

approach and its building blocks are generalizable.

In conclusion, the model-based approach presented in this paper has unified the

developments in two bodies of literature: (i) the econometrics literature devoted to

developing models for estimating relative [in]efficiency, and (ii) the operations strategy

literature devoted to understanding decision patterns in the operations function of firms.

While the models for estimating relative [in]efficiency provide an analytically rigorous

measure of competitiveness, the econometric studies have largely ignored strategic

decision making that underlies competitiveness. On the other hand, studies in operations

strategy which have been predominantly concerned with the process and content of

strategic decision making in the operations function have largely ignored the need for

analytical rigor in measuring competitiveness. This model-based approach, founded on the

developments in these two bodies of literature, ensures that (i) the measure of plant
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competitiveness is analytically rigorous, and (ii) empirical application of the measure yields

managerially relevant insights into strategic operations decisions.

7.1 Future research directions

As extensions to the present study, two streams of  investigations are being

planned. The first stream of investigations will examine how the policies related to plant

structure and infrastructure fit -- i.e. complement, substitute, supplement, or contradict

each other -- and how this fit impacts plant competitiveness. These investigations will

require panel data-set -- cross-sectional and time-series data -- on processed food

manufacturing plants. The second stream of investigations will compare the drivers of

plant competitiveness within the processed food industry but across countries. Ideally,

these investigations will also require panel data-set on processed food manufacturing

plants but located in different countries.
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Appendix A. OCRA combined relative cost and revenue inefficiency
model

Suppose the competitiveness of K plants need to be compared that are involved in

I different types of input-consuming and J different types of output-generating activities.

Suppose there are separate observations on the amounts of inputs consumed and outputs

generated by each of these K plants. Let the vectors xk= ( , ,......., )x x xk k
I
k

1 2 and

yk= ( , ,......., )y y xk k
J
k

1 2 represent the kth plant’s inputs and outputs, respectively. The ith

element of xk, xi
k , denotes the number of units of type i  input consumed by the kth plant.

Similarly, the jth element of yk, y j
k , denotes the number of units of type j output

generated by the kth plant. Suppose separate unit-price observations are also available. Let

pk = ( , ,......., )p p pk k
I
k

1 2  and qk= ( , ,......., )q q qk k
J
k

1 2  be the kth plant’s input and output

unit-price vectors, respectively. The ith element of pk, pi
k , represents unit-price of the ith

input consumed by the kth plant. Similarly, the jth element of qk, q j
k , represents unit-price

of the jth output generated by the kth plant. Often, separate data on the amounts of inputs

consumed and outputs generated or their unit-price cannot be obtained. Data on the cost

of inputs consumed and revenues from outputs generated are generally available. Let the

vectors uk = ( , ,......., )u u uk k
I
k

1 2  and vk= ( , ,......., )v v vk k
J
k

1 2  denote the costs of inputs

consumed and revenues from the outputs generated, respectively. The ith element of uk,

ui
k , is the cost of the ith input consumed by the kth plant. Similarly, the jth element of vk,

v j
k , is the revenue from the jth output generated by the kth plant, where u p xi

k
i
k

i
k=  and
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v q yj
k

j
k

j
k= . It is assumed that amounts of inputs consumed and outputs generated are not

zero all at once, and all unit-prices are positive.

Let E(u,-v), a linear function of (u,-v), represent the combined relative cost and

revenue inefficiency of a plant. The relative inefficiency assigned to the kth plant is the

minimum value of Ek  such that the cost of inputs in any category is not less than the cost

actually incurred at the kth plant and the revenue generated in any revenue category is not

more than the revenue realized from the kth plant. This minimization problem can be

written as follows:

∆( , )
( , ): , ,...., ; ,

,..., ; , , ,
, ,....,u v

u v 1u 1u 1v 1v

u v u v
k k

u v
i i

k
j j

k

i j i j

E i I

j J
k K=

− ≥ = ≤

= ≥ ≠












=Min

   
,

1

1 0 0
1     

(A.1)

where 1 is the I-component unit vector (1,....,1).

The linear programming formulation whose optimum solution characterizes the

solution of the minimization problem (A.1) is as follows:
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where: su
kn  and sv

kn  are penalty variables; u
u

1u
Ni
n i

n

i
k

=  and v
v

1v
Nj
n j

n

j
k

=  are vectors of

normalized values of the costs of inputs consumed and revenues generated; α i
k   and β j

k

are the Lagrangian multipliers in relation to the constrained optimization problem (A.1)

for the kth plant; ai
k  and bj

k  are the calibration constants of the model and serve as the

lower bounds of α i
k  and β j

k , respectively -- the procedure for estimating the calibration

constants is described in the paragraph to follow. The main constraints of the linear

program (A.2) are strict equality because of the linearity assumption of the inefficiency

function E(u,-v). The optimum value of Ek , Ek* , represents combined relative cost and

revenue inefficiency of kth plant.

Calibration constants. The following procedure is used to determine the calibration

constants:
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(i) For each plant, determine the cost share of the ith input and the revenue share from

the jth output

Costi
k

i
k

i
k

i

I

j
k

j

J

= +














= =
∑ ∑Cost Cost Revenue  

1 1

(A.3)

Revenuej
k

j
k

i
k

i

I

j
k

j

J
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= =
∑ ∑Revenue Cost Revenue

1 1

(A.4)

for   and i I j J k K= = =1 1 1,...., , ,......, , ,....., .

Set a Cost b Revenuei
k

i
k

j
k

j
k= = and (A.5)

(ii) If the values of calibration constants do not change with plants in the sample -- i.e.

a a b bi
k

i j
k

j= = and  -- use the average cost category share as the value of the

calibration constant for the cost category, and the average revenue category share as

the calibration constant for the revenue category:

a Cost K i Ii i
k

k

K

=












=
=

∑
1

1 for ,...., (A.6)

b Revenue K j Jj j
k

k

K

=










=

∑
1

1 for = ,....., (A.7)

It should be noted that a bi
i

I

j
j

J

= =
∑ ∑+ =

1 1

1. This normalization is desirable to ensure that

the ratings computed for different calibration constant values are comparable. For a

detailed discussion on the development of the OCRA models, see Parkan (1994, 1996).
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Appendix B. Regression diagnostics

Following Neter et al. (1996), diagnostic tests for the residuals were conducted in

order to check for any departures from assumptions of the regression models. If the

residuals indicated that the dependent variable had a nonlinear relationship with one of the

variables in the model higher order terms of that variable were included. To mitigate the

effect of multicollinearity due to presence of higher order terms of the same variable

deviations from mean of that variable were used. Variance Inflation Factor (VIF) was

employed to detect the presence of multicollinearity. A VIF value greater than 10 was

taken as an indication that multicollinearity may be influencing the least squares estimates.

If the error variance varied systematically with independent variables, dependent variable,

or predicted values of dependent variable, then a transformation on the dependent variable

was done to overcome this problem. For example, a logarithmic transformation of the

dependent variable helped in dealing with the problem of nonconstancy of variance. There

were occasions when a simultaneous transformation of the independent variables was also

necessary. For each of the estimated models the normality assumption of the error terms

was tested. If the normal probability plot of the error terms was approximately a straight

line, then the normality assumption was considered to be valid. However, if the normal

probability plot showed departures from the normality assumption, then the dependent

variable, independent variables, or both were transformed. The presence of outliers in the

data was checked by using leverage values, internally studentized residuals and studentized

deleted residuals. Some of the influential observations were identified utilizing Cook’s

distance. If these diagnostic tests suggested that such observations were present, remedial
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measures such as mitigating the influence by taking logarithmic transformation of the

variables were used.
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Appendix C. The DEA-BCC relative efficiency evaluation model

Using notations similar to those used for presenting the OCRA model

formulations, the linear programming formulation of the BCC model can be written as

follows:

Max µ ρj j
j

J

v0

1   

  
0  -   

=
∑                                              (C.1)

  subject to,

ω i i
i

I

u0

1   

  

=
∑ = 1

 −
=

∑ω i i
k

i

I

u
   

  

1

 + µ ρj j
k

j

J

v

   1

 
0 -  

=
∑ ≤ 0 ; k = 1,2,....,K

   µ j ≥ ε ; j = 1,2,....,J

   ω i ≥ ε ; i = 1,2,...., I

ρ0  is unconstrained in sign.
where,

K = number of plants, indexed by k = 1, 2,.....,K;
I = number of inputs, indexed by i = 1, 2,......,I;
J = number of outputs, indexed by j = 1, 2,....,J;

ui
k = cost of ith input of  kth plant;

v j
k = revenue from  jth output of kth plant;

ui
0 = cost of ith input of the plant being evaluated with an index 0;

v j
0 = revenue from  jth output of the plant being evaluated with an

index 0;
ω i = weight to be determined and assigned to the cost of ith input;
µ j = weight to be determined and assigned to the revenues from jth

output;

ρ 0 = a variable to indicate returns to scale possibilities in accordance

with the following criteria: ρ0 0* <  implies increasing returns
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to scale,ρ0 0* =  implies constant returns to scale, ρ0 0* >

implies non- increasing returns to scale, where ρ0*  is the

optimum value of ρ0 ;
ε = a positive "non-Archimedean" element -- the reciprocal of the

"big M" used with artificial variables in ordinary linear
programming.

The dual formulation of (C.1) is as follows:

Minimize        θ 0  −
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∑   

   

ε li
i

I

1

  + l j
j

J

=
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1

                                        (C.2)
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k k
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1
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k

K
k

=
∑

1

λ  = 1;  

λk
i jl l, ,    ≥ 0

where l li j and  are non-negative input and output slack variables used to convert

inequalities to equivalent equations. For a plant under evaluation -- i.e. plant with an index

0 -- the optimal θ 0 , θ 0* , is a measure of relative efficiency of the plant. The condition

λk

k

K

=
∑ =

1

1  in (C.2) ensures that all solutions and, hence, the relative efficiencies of the

plants are evaluated only by reference to input and output data of the plants in a sample
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and their convex combinations. For details on the development of the BCC model, see

Banker et al. (1989, p. 144-146) and Banker (1984).



46

REFERENCES

Banker, R. D. (1985), “Productivity measurement and management Control,” in: P. K.
Kleindorfer (ed.), The Management of Productivity and Technology in
Manufacturing, Plenum Publishing, 239-257.

Banker, R. D. , Charnes, A., and Cooper, W. W. (1984), “Models for estimation of
technical and scale inefficiencies in data envelopment analysis,” Management
Science 30/9, 1078-1092.

Banker, R. D. , Charnes, A., Cooper, W. W., Swarts, J., and Thomas, D. A. (1989), “An
introduction to data envelopment analysis with some of its models and their uses,”
Research in Governmental and Nonprofit Accounting 5, 125-163.

Banker, R. D., and Khosla, I. (1995), “Economics of operations management: a research
perspective,” Journal of Operations Management 12, 423-435.

Bauer, P. W. (1990), “Recent developments in econometric estimation of frontiers,”
Journal of Econometrics 46/1/2, 39-56.

Camp, R. C. (1989), Benchmarking: The Search for Industry Best Practices that Lead to
Superior Performance, Quality Press, ASQC, Milwaukee, WI.

Charnes, A., Cooper, W. W., and Rhodes, E. (1978), “Measuring the efficiency of
decision making units,” European Journal of Operational Research 2, 429-444.

Chew, W. B. (1988), “ No-nonsense guide to measuring productivity,” Harvard Business
Review 66/1, 110-118.

Cooper W. W., Sinha, K. K., and Sullivan, R. S. (1996), “Evaluating the information
content of a measure of plant output: an application to high technology
manufacturing,” Annals of Operations Research (in press).

Farrell, M. J., (1957), “The measurement of production efficiency,” Journal of Royal
Statistical Society 120/ III/A (General), 253-281.

Fine, C., 1993. “Developments in manufacturing technology and economic evaluation
models,” in: S.C. Graves, A. Rinnoy Kan and P. Zipkin (eds.), Logistics of
Production and Inventory, Elsevier Science Publishers B. V., Amsterdam, The
Netherlands, 711-750.

Fitzsimmons, J. A., and Fitzsimmons, M. J. (1994), Service Management for Competitive
Advantage, McGraw-Hill, New York, NY.



47

Food Marketing Institute. (1995), Category Management 1: Getting Started, Food
Marketing Institute, Washington, D. C.

Food Processing, March 1996, 54-55.

Forsund, F. R., Lovell, C. A., and Schmidt, P. (1980), “A survey of frontier production
functions and of their relationships to efficiency measurement,” Journal of
Econometrics 13, 5-25.

Hayes, R. H., and Clark, K. B. (1985), “Exploring the sources of productivity differences
at the factory level,” in: The Uneasy Alliance: Managing the Productivity-
Technology Dilemma, Harvard Business School Press, Boston, MA, 151-188.

Hayes, R. H. and Wheelwright, S. C. (1984), Restoring Our Competitive Edge:
Competing Through Manufacturing, John Wiley & Sons, Inc., New York.

Hayes, R. H., Wheelwright, S. C., and Clark, K. B. (1988), Dynamic Manufacturing, The
Free Press, New York, NY.

Kinsey, J., and Heien, D. (1988), “Factors influencing the consumption and production of
processed foods,” in: C. O. McCorkle Jr. (ed.), Economics of Food Processing in
the United States, Academic Press, Inc., San Diego, CA, 47-81.

McCorkle Jr., C. O., (1988), “U.S. food manufacturing industries: an overview,” in: C. O.
McCorkle Jr. (ed.), Economics of Food Processing in the United States, Academic
Press, Inc., San Diego, CA, 2-46.

McCorkle Jr., C. O., Archibald, S. O., and McCalia, A. F. (1988), “Food processing
industry dynamics and economic policy,” in: C. O. McCorkle Jr. (ed.), Economics
of Food Processing in the United States, Academic Press, Inc., San Diego, CA,
409-434.

McFarlane, I. (1995), Automatic Control of Food Manufacturing Processes, Blackie
Academic & Professional, Glasgow, England.

McKinsey Global Institute. (1993), Manufacturing Productivity, McKinsey Global
Institute Washington, D.C.

Miller, J. G., and Roth, A. V. (1994), “A taxonomy of manufacturing strategies,”
Management Science, 40/ 3, 285-304.



48

Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996), Applied Linear
Statistical Models, Irwin, Homewood, IL.

Oral, M.(1993), “A methodology for competitiveness analysis and strategy formulation in
glass Industry,” European Journal of Operational Research 68, 9-22.

Oral, M. and Dominique, C. R. (1989), “An analytical approach to competitive strategy
formulation in mature industries,” IIE Transactions  21/ 3, 271-278.

Parkan, C. (1994), “Operational competitiveness ratings of production units,” Managerial
and Decision Economics 15, 201-221.

Parkan, C. (1996), “ Measuring the performance of hotel operations,” Socio-Economic
Planning Sciences (in press).

Prescott, J. E. and Grant, J. H. (1988), “A manager’s guide for evaluating competitive
analysis techniques,” Interfaces 18/3, 10-22.

Sanderson, G. W., and Schweigert, B. S. (1988), “Changing technical processes in U.S.
food industries,” in: C. O. McCorkle Jr. (ed.), Economics of Food Processing in
the United States, Academic Press, Inc., San Diego, CA, 83-115.

Schefcyzk, M. (1993), “Operational performance of airlines: an extension of traditional
measurement paradigms,” Strategic Management Journal 14, 301-317.

Sinha, K. K. (1996), “Moving frontier analysis: an application of data envelopment
analysis for competitive analysis of a high-technology manufacturing plant,”
Annals of Operations Research 66, 197-218.

Tucker, F. G., Zivan, S. M., and Camp, R. C. (1987), “How to measure yourself against
the best,” Harvard Business Review 65/1, 8-10.


