

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Making Changes Feasible on Small Farms

Abstract

By D. B. Ibach There is growing interest in the problem of low-income farmers on under-productive farms. This interest has been heightened by the need for full production in connection with the defense effort. This paper presents a research analysis of the problem that this poses as exemplified by the situation of small farmers in the Southern Piedmont of North Carolina. It describes a representative small farm in such terms as capital investment and organization; outlines what such a farm would require to make it as efficient as possible under the limits defined; and outlines a programmatic approach that would make it feasible to bring about the needed changes.

SMALL FARMS GENERALLY have not been reached adequately by soil conservation and other programs directed toward improvement in farming systems. Relatively few of their operators participate. Those who do can obtain some benefit in the form of increased yields of cash crops. But lack of necessary capital resources would prevent many of them from making desirable changes in farming even if they took advantage of assistance offered in the way of soil-improvement programs that result in increased production of forage crops and pasture.

Many operators of small farms also lack experience with livestock so that a balanced program inlving planning and management counsel and redit for adequate livestock, buildings and fencing, is often needed if they are to make desired changes in farming systems based on soil improvements. Many of these operators do not have alternative opportunities for productive employment. If the other necessary resources can be developed through a well-adapted credit arrangement, a good case can be made for grants or other forms of aid to provide the necessary soil improvement provided such assistance is not used for lands that are unsuited to farming. If the task is approached through development of a complete farm plan, this situation can be avoided.

An example of the problem and an illustration of how it may be met, may be developed through examination of a study of farming opportunities in the Southern Piedmont area of North Carolina. ${ }^{1}$

[^0]A sample of 217 farms in 11 intensive cotton-producing communities was studied in order to learn the characteristics of the farms, and to develop suggestions for improved farming systems. Cotton is the principal source of income, furnishing more than half of the total value of all products sold in 1944. In 1945, 36 percent of the total cotton acreage of the State was located within the 13 counties represented by the sample used in the study. Local conditions make the competitive position of cotton strong even at price relationships that are much less favorable to cotton than those of the present time.

The problem is not to replace cotton, but to obtain more profitable utilization of all farm resources. The combination of enterprises should provide a market for the feed and pasture that can be grown, and for farm labor throughout the year. Present farming systems promote a rapid rate of soil depletion and erosion. This, together with a high degree of dependence on one crop, is conducive to extreme risks.

Data showing the complete farm organization, production, yields, and important crop and livestock practices, were obtained from 22 farms in each of 11 communities. In that study 11 producing neighborhoods were selected within 6 soil associations in 13 counties. Complete neighborhoods were selected as sampling units, with the number of sampling units in each soil association in about the same proportion as the acreage in that association bears to the total acreage in all soil groups. Records from 217 farms (in 11 neighborhoods) were used to find out the more common systems of farming and modal levels of farm resources. These farms were classified by sizes and types within soil associations. Purposive sampling was again used

Table 1.-Capital investment of the representative small farm by classes and items, 1945

Table 2.-Present and improved organization, income, and expenses-representative small farm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{Farm organization} \& \multicolumn{5}{|c|}{Financial summary \({ }^{1}\)} \\
\hline Item \& Present organization \& Improved organization \& Sales \& \(\underset{\text { orga }}{\text { Pr }}\) \& ation \& \[
\begin{gathered}
\text { Impr } \\
\text { organi }
\end{gathered}
\] \& \begin{tabular}{l}
ved \\
ation
\end{tabular} \\
\hline \multirow[b]{5}{*}{Land use Cotton Corn Wheat Oats} \& \multirow[t]{5}{*}{Acres

8.5
7.9
6.1
4.1} \& Acres \& Cotton (cwt.) \& Quantity \& Dollars \& Quantity \& Dollars

\hline \& \& 8.5 \& Cotton seed (ton) \& 3.35 \& 129 \& 3.5 \& 134

\hline \& \& 5.0 \& Wheat (bu.) \& 40 \& 46 \& 72 \& 82

\hline \& \& 7.4 \& Lespedeza seed (cwt.) \& \& \& 60 \& 402

\hline \& \& 2.8 \& Milk (cwt.) \& 20 \& 58 \& 56 \& 162

\hline Barley

1 st yr. lespedeza \& (10.2) \& $$
\begin{gathered}
2.0 \\
(12.2)
\end{gathered}
$$ \& Cow or heifer (no.) \& \& \bigcirc \& 1 \& 80

\hline 2nd yr. lespedeza -- \& \multirow[t]{3}{*}{3.5
1.7} \& \multirow[t]{2}{*}{7.0
3.1} \& Chickens (ewt.) \& \multirow[t]{2}{*}{. 55} \& 13 \& 3.34 \& \multirow[t]{3}{*}{}

\hline Alfalfa \& \& \& Cull hens (ewt.) \& \& \& 2 \&

\hline Garden \& \& 1.0 \& Eggs (doz.) \& 180 \& 50 \& 2,400 \&

\hline Idle \& 5.0 \& 0.0 \& Total sales \& XX \& 826 \& XX \& 2,224

\hline Total crop land Per open pasture \& 36.8
6.1 \& 36.8
7.0 \& Expenses
Ginning (bales) \& \& \& \&

\hline Other \& 13.1 \& 12.2 \& Combining (acres) \& 6.1 \& 21 \& 12.2 \& 43

\hline Total land \& 56.0 \& 56.0 \& Comb. \& Cl. lesp. seed. \& \& \& --.. \& 219

\hline Livestock \& Number \& Number \& Seeds and plants \& \& 51 \& \multirow[t]{2}{*}{--} \& \multirow[t]{2}{*}{80}

\hline \multirow[t]{13}{*}{Milk cows
Heifers, 2 yrs. old
Heifers, 1 yr. old
Heifers, calf
Hens
Work stock} \& \multirow[t]{13}{*}{2
0
0
1
40
2} \& \multirow[t]{13}{*}{2
1
1
1
200
2} \& Fertilizer (4-10-6 (ton) \& 5.6 \& 157 \& \&

\hline \& \& \& 6-8-6 (ton) - \& \& \& 5.1 \& 143

\hline \& \& \& 16-0-0 (ton) \& 1.4 \& 55 \& 2.52 \& 98

\hline \& \& \& Lime and phosphate \& \& \& \& 50

\hline \& \& \& Feed \& \& 74 \& \& 204

\hline \& \& \& Livestock purchases .-. \& \ldots \& 16 \& --- \& 46

\hline \& \& \& Other livestock exp. \& -- \& 15 \& \& 20

\hline \& \& \& Hired labor - \& \& 22 \& --- \&

\hline \& \& \& Machy. exp. - \& --- \& 84 \& -- \& 84

\hline \& \& \& Bldg. and fence repair \& -- \& 51 \& ---- \& 59

\hline \& \& \& \& \& 34 \& \& 61

\hline \& \& \& Total expenses \& \& 622 \& \& 1,151

\hline \& \& \& Net eash income ._. \& \& 204 \& \& 1,073

\hline
\end{tabular}

${ }^{1}$ The prices used in developing this analysis are not forecasts. They represent lower levels than would probably be estimated by many informed price specialists. But for purposes of farm budgets as a basis for credit, it seemed preferable to stay on the conservative side. The prices used recognize that the general agricultural and business economy could be moderately prosperous if balance were achieved with lower prices. No controls are assumed.

North Carolina State Report to Improve Farming Opportunities in the South, June 30, 1946, supplied the prices used which are: Cotton $\$ 0.124$ per lb .; cottonseed $\$ 38.38$ per ton; lespedeza seed $\$ 6.70$ per cwt.; eggs $\$ 0.28$ per doz.; and milk $\$ 2.90$ per cwt. Unit costs used for principal items are combining $\$ 3.50$ per aere; ginning $\$ 4.90$ per bale; fertilizer $\$ 31$ to $\$ 39$ per ton depending on grade; dairy and poultry feeds $\$ 2.50$ and $\$ 3.25$ per cwt., respectively.
for the selection of one farm from each group for ecial study.
This paper deals with the small farms for which the problem is most difficult. These comprise 47 percent of the number included in the sample.

In terms of efficient farming, the first step should consist of farm enlargement. But the owners of many small farms would not find it possible, or feasible, to make this change even though general assistance were available. Some may not be located near other suitable crop land, or land that can be improved. Others may prefer their small farms. The typical small farm now carries 2 cows, whereas 10 cows are suggested for farms of medium size. Such a herd would demand a marked change in the work habits of the farm family. Many will want to continue part-time farming along with other employment; about two-fifths of the small farmers had off-farm work in 1945. If farm prices became less favorable, more would probably supplement their farm income through other work.

A Representative Small Farm

Table 1 shows details of the capital investment for a representative small farm. Both the present and the improved organization, and a summary of income and expenses for this representative mall farm are given in table 2. The combination of enterprises may vary with differences in land resources, operator's preference, and the local market situation. For example, a few hogs or a larger dairy enterprise might be substituted for the poultry enterprise.

The principal changes suggested in land use are a reduction in intertilled crops and an increase in the acreage of legumes that occupy the land during the entire season. Acreages of cropland and cotton would remain unchanged. There would be a reduction in cropland used for intertilled crops, and an increase in acreage of legumes grown alone. The slight increase in permanent pasture would be drawn from land now in woods. These minor changes, accompanied by use of more fertilizer and lime, particularly for hay and pasture, would result in more feed grain, better quality of roughage and pasture, and more months of good pasture during the year. The quantity of grain in terms of corn equivalent would be increased from about 300 to a little less than 600 bushels. Animal-unit months of pasture would be increased from 14 to 37 .

Table 3.-Estimated cost and value of new investments needed on representative small farm

Type of investment and item	Cost
Soil improvement	Dollars
Establish 3.1 acres of alfalfa	
Lime	25
Fertilizer; 2-12-12	43
Seed Establish 7.0 acres permanent pasture	30
Lime	28
Fertilizer; 0-14-7	41
Seed	35
Lime other cropland	54
Terrace half of cropland.	116
Buildings and fences	
Brooder house -	50
Laying house	224
Granary	65
Poultry fence	100
Livestock	439
2 heifer calves	$70 \quad 70$
Total cash cost	881
Value of farm-produced materials and farm labor included in buildings	610
Estimated total value of new investments.	1,491

New investments would include those for soil improvements, a poultry house for 200 hens, a brooder house, a granary, some additional fencing, and two dairy heifer calves of high-production ancestry (table 3). The soil improvements consist of liming all, and of terracing half, of the cropland; establishing a stand of alfalfa; and developing 7 acres of pasture through use of lime, fertilizer, and seeding. The initial investment for soil improvements is calculated to be $\$ 372$.

Total cash outlay for new investments is estimated at $\$ 372$ for the soil improvements, $\$ 70$ for livestock, and $\$ 439$ for buildings and fences. The value of the buildings when completed would be $\$ 1,049$, the difference being accounted for by the contribution of farm-produced lumber and unpaid labor. The two cows now on the farm would be replaced by the two heifer calves when they come into production.

Problems in Making the Change

Even the conservatively estimated cash outlay of $\$ 881$ for new investments presents a difficult problem. The net cash income of $\$ 204$ (table 2) estimated under the present organization will not permit this undertaking, even assuming there is no present indebtedness. Furthermore, this \$204

Table 4.-Calculated repayments on principal of new investment loans, other than for soil improvement, small farms

Item	Cash farm income, expenses and calculated repayment schedule by years					
	0	1	2	3	4	5
Cash receipts:	Dollars	Dollars	Dollars	Dollars	Dollars	Dollars
Crops	696	1,078	1,122	1,112	1,171	1,176
Livestock and produce	130	1,078 1,377	526 1.648	787 1899	-935	1,048
Total sales .---	826	1,377	1,648	1,899	2,106	2,224
Cash farm expenses -..-	622	969	1,089	1,119	1,135	1,151
Net cash farm income	204	408	559	780	971	1,073
Available for repayment ${ }^{1}$.	0	0	0	180	371	1,473
Increase over base year	0	0	0	180	371	473
Cumulative increase .-	0	0	0	180	551	1,024
Percent (5th year $=100)^{2}$	0	0	0	18	54	100
Cumulative repayments ${ }^{3}$	0	0	0	134	401	4742
Annual repayments	0	0	0	134	267	341
Available for other purposes ${ }^{5}$	0	0	0	46	104	132

[^1]must be applied on family living expenses. With only this net cash farm income, it must be assumed that there are off-farm wages to make up at least a reasonable minimum for family living. This minimum is, of course, a variable sum. Within the framework of prices used in this analysis, and for purposes of illustration here, it is assumed to be $\$ 600$. Thus the net cash farm income of $\$ 204$ falls $\$ 396$ short of reaching this minimum.

If the investment of $\$ 372$ for soil-improvement and conservation practices were handled as a grant, contingent upon carrying out a sound farm plan, this would leave a balance of $\$ 509$ for the other investments for which a loan would be needed. But if there were no off-farm work, or income from other sources, and if $\$ 600$ were a necessary minimum for family living, there would be operating deficits of $\$ 192$ and $\$ 41$ for the first and second years, respectively (table 4). Therefore the total loan advance is assumed to be $\$ 742$. It is commonly recognized that some minimum requirement for family living has the first claim on net farm income. A prudent lender will want to be assured that at least this reasonable minimum is taken into account. In this illustration it is assumed that the loan fund is the only source.
Table 4 shows how the principal sum may be retired during the last 3 years of a 5 -year period.

The repayments are based on the cumulative increases in available net income, after allowing for $\$ 600$ estimated family living expenses. As the net cash income is below this minimum for the first 2 years, no cash is available for interest payments during that time. The last line of table shows the amounts available for interest on unpaid balances, and for other purposes during the 5-year period.

Table 5 shows the farmer's estimated final cash position after paying his interest. Because no interest could be paid the first 2 years, a small unpaid balance is left to be met in the sixth year. In actual practice, this may be met earlier, as table 4 indicates small balances after the principal payments are made during each of the 3 years in which payments are made. But these balances, in reality, are too small to allow an adequate cushion for contingencies. This illustrates the severity of the problem on many small farms.

A Desirable Approach

In this kind of situation there is opportunity for joint efforts on the part of public agencies that offer programs to assist farmers in making needed changes. On many small farms other desirable changes cannot be made except as they are based on soil improvements. At the same time, soil im-

Table 5.-Loan advances, other than for soil improvement, repayments of principal, and interest payments as related to net cash available, small farms

Year	Loans for new investments ${ }^{1}$ (1)	Net cash income available 2 (2)	Total loan advances (3)	Principal payments (4)	Unpaid balance ${ }^{3}$ (5)	Interest paid at 5 Percent (6)	Total principal \& interest payments (7)	Available for other purposes (8)
1 2 3 4 4 6 7	$\begin{gathered} \text { Dollars } \\ 509 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \text { Dollars } \\ & -192 \\ & -41 \\ & 180 \\ & 371 \\ & 473 \\ & 473 \\ & 473 \end{aligned}$	$\begin{gathered} \text { Dollars } \\ 701 \\ 41 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 0 \\ 0 \\ 134 \\ 267 \\ 341 \\ 74 \\ 0 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 701 \\ 4777 \\ 4816 \\ 682 \\ 415 \\ 74 \\ 0 \end{gathered}$	Dollars 0 0 41 34 21 4 0	$\begin{gathered} \text { Dollars } \\ 0 \\ 0 \\ 175 \\ 301 \\ 362 \\ 78 \\ 0 \end{gathered}$	$\begin{gathered} \text { Dollars } \\ 0 \\ 0 \\ 5 \\ 70 \\ 111 \\ 395 \\ 473 \end{gathered}$

$1 \$ 439$ for poultry house, brooder house, granary and fencing, and $\$ 70$ for two heifer calves.
2 After deducting $\$ 600$ for family living. Minus signs the first 2 years indicate loans for this purpose.
${ }^{3}$ Beginning of year.
4 Includes $\$ 35$ and $\$ 39$ unpaid interest from first and second years, respectively.
provements are likely to be wasted if they are not accompanied by the other investments. A combined program, in which careful planning and management counsel are provided, and conservation and soil-improvement measures are supported by credit for other needed capital investments, offers a desirable approach.

Many Farms Involved

Table 6 provides some indication of the number farms in the southern Piedmont area of North Carolina which have adjustment problems similar to those presented here. The small farms in the sample had from 10 to 44 acres of cropland so the first two groups in table 6 consist of farms that were not represented. Group 1 represents rural residences of occupants who have full-time nonfarm employment, or are retired or otherwise unemployed. A large proportion of the occupants of units in group 2 probably have similar tenure status. But all of the farms in groups 3 and 4, and possibly three-fourths of those in group 5 , would be classed as "small,'" as defined in the study. This would make approximately 18,000 small farms, out of the 33,401 farms in the area. On many of these, the problem would be more difficult than on
the representative small farm here used as an illustration.

The Southern Piedmont area of North Carolina appears to offer good possibilities for demonstrating what can be done under difficulties through a joint approach involving the ACP and FHA programs, backed up by closely coordinated educational and technical assistance from other sources such as the Agricultural Extension and the Soil Conservation Services.

Table 6.-Number of farms by size groups, Southern Piedmont area, North Carolina, 1945^{1}

Group	Acres harvested	Number of farms
1	none	1,078
2	1 to 9	6,206
3	10 to 19	6,582
4	20 to 29	6,207
5	30 to 49	7,485
6	50 to 99	
7	100 to 199	4,308
8	200 and over	1,255
	Total	280

[^2]
[^0]: 1 Opportunities for adjustments in farming systems, southern piedmont area of north carolina, by W. W. McPherson, W. H. Pierce, and R. E. L. Greene, published as Technical Bulletin, No. 87, of the North Carolina Agricultural Experiment Station, Raleigh, N. C.

[^1]: ${ }^{1}$ After deducting $\$ 600$ for family living expenses from net cash farm income. This would be $-\$ 192$ and $-\$ 41$ for the first and second years respectively, but for purposes of this table these deficits are not recorded as they are covered in the original loan of $\$ 742$.
 ${ }_{2}^{2}$ Percent cumulative increase each year is of cumulative increase the fifth year.
 ${ }^{3}$ Percentage on preceding line multiplied by the total loan advance.
 ${ }_{5}^{4}$ Total loan advance if all of soil-improvement investment were handled as a grant.
 5 Amounts available for repayment, minus annual repayments.

[^2]: 1 U. S. Census of Agriculture, 1945, special report of MULTIPLE-UNIT OPERATIONS IN SELECTED AREAS OF SOUTHERN STATES.

