

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.
|
a) Tb D1751

- 456

Reserve

COMPARISON OF SAMPLE DESIGNS FOR A POPULATION OF FARMS

Earl E. Houseman

U.S. Department of Agriculture

Economics, Statistics, and Cooperatives Service

CONTENTS

Page
INTRODUCTION 1
SIMPLE RANDOM SAMPLING OF FARMS 6
Known Numbers of Farms Reporting 9
Farmland As An Auxiliary Variable. 11
CLUSTER SAMPLING 12
STRATIFICATION--SAME SAMPLING FRACTIONS APPLIED TO ALL STRATA 18
STRATIFICATION--ALLOCATION OF SAMPLE TO CRDS 22
APPENDIX 28

COMPARISON OF SAMPLE DESIGNS
 FOR A POPULATION OF FARMS

Earl E. IIouseman *

INTRODUCTION

Data from an annual farm census conducted by the State of Wisconsin for 1970 and 1971 were used to obtain variances for a study of many alternative sampling plans. Sixteen characteristics were selected for study with regard to patterns of distribution over the State and the proportion of farms reporting. "Number of farms reporting" is commonly used when referring to the farms that are producing a particular commodity or reporting a positive nonzero answer to a question. Thus, if Y_{1}, \ldots, Y_{N} are the values of some characteristic Y for all farms in the population, the "number of farms reporting" is the number of farms for which $Y_{i}>0$.

Wisconsin is a good State for purposes of this study, especially because of its wide variation in agriculture from north to south. The State is divided into nine crop reporting districts (CRDs) (fig. 1). CRDs are State subdivisions used for statistical purposes, and are generally made up of homogeneous groups of counties.

Summary data for 1970 and 1971, which include crops grown and total number of farms in the State, were derived directly from the original data (tables 1 and 2). No adjustments have been made for undereunumeration or overenumeration, definitions, or other factors. The totals and averages as shown in columns 2 and 3, for example, are not official estimates. Numbers in parentheses in the table columns correspond to algebraic descriptions in the appendix. A column that appears in more than one table always has the same number. Likewise, corresponding data for two different years also have the same column number.

Note that the proportions of farms reporting (column 7), range from less than 1 percent for potatoes and snap beans to 100 percent for farmland. In fact, the characteristics were ordered according to the proportion reporting. Population (number of persons living on farms) was included because the variation among farms is low, is reported by nearly all farms, and is distributed geographically more or less in proportion to numbers of farms. Some characteristics are more uniformly distributed than others (table 3).

[^0]

Figure 1
Table l--State summary, 1970

	:		:		A1		farms		:			Farms re	eporting				
	:		:		:	:	Standard	:	Relative:		:		:	:	Standard	:	Relative
Characteristic	:	Unit		Total	:Average	:	deviation	.	variance:		:		:Average	:	deviation	:	variance
	:			(thousands)	: per	:	per	:	per	Number	:	Proportion:	: per	:	per	:	per
(1) $1 /$:		:		farm	:	farm		farm		:		: farm	:	farm	:	farm
	:		:	(2)	(3)	:	(4)	.	(5)	(6)	:	(7)	(8)	:	(9)	:	(10)
	:		:														
Farmland	:	Acres	:	17,825	175.3		149.3		0.725	101,685		1.000	175.3		149.3		0.725
Population	:	No.	:	424	4.17		2.79		0.450	96,428		. 948	4.39		2.69		0.372
Alfalfa	:	Acres	:	2,907	28.6		32.3		1.277	71,434		. 702	40.7		31.5		0.593
All corn	:	do.	:	2,612	25.7		46.8		3.33	67,573		. 665	38.6		52.9		1.88
	:																
All pasture	:	Acres	:	3,316	32.6		56.9		3.04	62,401		. 614	53.1		64.7		1.49
Milk cows	:	No.	:	1,657	16.3		18.9		1.34	59,728		. 587	27.7		17.0		0.37
Beef cattle	:	do.		596	5.86		23.5		16.07	26,895		. 264	22.2		41.5		3.50
Clover \& timothy		Acres	:	569	5.60		22.2		15.76	19,294		. 190	29.5		43.5		2.19
	:																
Hay for silage	:	do.	:	552	5.42		19.7		13.20	16,169		. 159	34.1		38.3		1.25
Cattle marketed	:	No.	:	188	1.85		23.7		163.90	7,600		. 075	24.8		83.4		11.36
Soybeans	:	Acres	:	127	1.25		10.7		73.4	4,125		. 041	30.7		43.6		1.99
Peas	:	do.	:	102	1.00		11.6		134.2	3,180		. 031	32.0		57.4		3.24
	:		:														
Sheep	:	No.	:	77.7	0.76		9.0		138.2	2,742		. 027	28.3		47.0		2.76
Spring wheat	:	Acres	-	15.3	0.15		3.3		488	1,194		. 012	12.8		27.9		4.74
Potatoes	:	do.	:	40.1	0.39		11.1		789	741		. 0073	54.1		188.0		4.76
Snap beans	:	do. 1	:	6.1	0.06		2.3		1501	234		. 0023	25.9		40.8		2.45
	:		.														

1/ Numbers in parentheses correspond to algebraic descriptions in the appendix.
Table 2--State summary, 1971

	:		:		: A11	farms		:			Farm	s reportin		
	:		:	Total	:	Standard	: Relative	;		:	:	,	Standard	Relative
Characteristic	:	Unit	:	(thousands)	Average:	deviation	: variance	:		:	:	Average :	deviation:	variance
	:		:		per	per	per	:	Number	:	Proportion:	per :	per	per
(1) 1/	:		:		farm :	farm	farm	:		:	:	farm :	farm	farm
	:		:	(2)	(3) :	(4)	(5)	:	(6)	:	(7)	(8) :	(9) :	(10)
	:		:											
Farmland	:	Acres	:	17,637	179.7	155.6	0.750		98,156		1.000	179.7	155.6	0.750
Population	:	No.	:	406	4.13	2.85	. 476		92,669		. 944	4.38	2.75	0.394
Alfalfa	:	Acres	:	3,016	30.7	35.1	1.306		70,196		. 715	43.0	34.6	0.649
All corn	:	do.	:	3,102	31.6	55.1	3.04		75,068		. 765	41.3	59.7	2.09
	:		:											
All pasture	:	do.	:	3,085	31.4	57.7	3.37		60,156		. 613	51.3	66.4	1.68
Milk cows	:	No.	:	1,658	16.9	20.6	1.48		57,335		. 584	28.9	19.4	0.45
Beef cattle	:	do.	:	631	6.43	24.9	15.06		28,157		. 287	22.4	42.5	3.61
Clover \& timothy	:	Acres	:	542	5.53	15.8	8.21		18,273		. 186	29.7	25.1	0.71
	:		.											
Hay for silage	:	do.	:	673	6.86	23.1	11.35		17,124		. 175	39.3	42.2	1.15
Cattle marketed	:	No.	:	185	1.89	27.5	212.6		7,109		. 072	26.1	99.1	14.44
Soybeans	:	Acres	:	104	1.06	10.5	97.3		3,219		. 033	32.3	48.2	2.23
Peas	:	do.	:	101	1.03	15.6	230.8		3,123		. 032	32.3	81.5	6.36
	:		-											
Sheep	:	No.	:	71.4	0.728	8.12	124.6		2,564		. 026	27.9	42.1	2.27
Spring wheat	:	Acres	:	17.4	0.177	2.45	190.6		1,299		. 013	13.4	16.6	1.54
Potatoes	:	do.	:	42.3	0.431	12.3	809		669		. 0068	63.2	134.5	4.53
Snap beans	:	do.	:	39.7	0.404	12.7	993		544		. 0055	72.9	155.0	4.52
	:		:											

1/ Numbers in parentheses correspond to algebraic descriptions in the appendix.
Table 3--Percent ldistribution of each characteristic by crop reporting district (1970)

Column (4) presents standard deviations among all farms and column (5) contains the relative variances, which may be interpreted as relative variances of a sample mean for samples of size 1. Note the inverse relation between the proportion reporting, column (7), and the relative variance, column (5). For a sample of a given size, it points to major differences in the coefficients of variation (c's of v) of sample estimates for characteristics depending on the proportion of farms reporting.

Exercise 1. Suppose a simple random sample of farms is to be selected and that the desired c of v of estimates is 2 percent. Using the 1970 data in table 1, find the sample sizes for farm population and snap beans so that the c of v of \bar{y} will be 2 percent, where $\overline{\mathrm{y}}$ is a simple average of the values of Y in the sample. Answer: 1,125 and 99,002. The answer, 1,125, was obtained without using the finite population correction (fpc) since the sampling fraction is only about 1 percent. For snap becons, the fpe must be used.

Exercise 2. With reference to exercise 1, suppose the c of v for snap beans is set at 10 percent instead of 2 percent. How large must the sample be? Answer: 60,619, which means a sompling fraction of 60 percent. In a simple random sample of 60,619 farms, what is the expected number of growers of snap beans and what is the expected number of farms reporting farm population? Answer: 139 and 57,485.

The answers to the above exercise clearly point to a sampling problem often referred to as the problem of sampling for "rare items." In the absence of special techniques to identify growers of a particular commodity prior to sampling, it might appear that a census is necessary because the required sampling fractions are very large. However, there have been strong tendencies for rare items to be incompletely enumerated unless special precautions are taken. For example, suppose that in the section of a questionnaire on crop acreages, separate questions are asked for all leading crops. Then, an "all other" question is asked to get the names and acreages of any remaining crops. Crops in the "other" category might be underenumerated by a substantial fraction. To reduce total error, efforts to reduce response error may be more important than spending additional resources on a complete census.

The mathematical relationship between columns (5) and (10) is very useful, namely,

$$
\begin{equation*}
\mathrm{v}^{2} \doteq \frac{\mathrm{v}_{\mathrm{r}}^{2}+1-\mathrm{P}}{\mathrm{P}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& v^{2}=\frac{\sum_{i}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}{\bar{Y}^{2}(N-1)} \text { is the relative variance among all } \\
& \text { farms, column (5). } \\
& V_{r}^{2}=\frac{\sum_{r}\left(Y_{r i}-Y_{r}\right)}{\bar{Y}^{2}\left(N_{r}-1\right)} \begin{array}{l}
\text { is the relative variance among farms } \\
\text { reporting, column (10), }
\end{array} \\
& N_{r}=\text { is the number of farms reporting, column (6), } \\
& P=\frac{N_{r}}{N} \text { is the proportion of farms reporting, column (7), }
\end{aligned}
$$

$$
\begin{aligned}
& \bar{Y}=\frac{\sum Y_{i}}{N} \text { is the average for all farms, column (3), and } \\
& \bar{Y}=\frac{\sum_{r} Y_{r i}}{N_{r}} \text { is the average per farm reporting, column (8) }
\end{aligned}
$$

The subscript " r " is used in reference to a subset of farms reporting, that is, the farms for which $Y_{i}>0$.

Exercise 3. Equation 1 is exact if the population variances are defined by dividing sums of squares by N and N_{r} instead of $N-1$ and $N_{r}-1$. Show that this is true.

Notice in tables 1 and 2 that the range of variation in v_{r}^{2}, column (10), is small compared to the variation in the values of v^{2}, column (5). Also note that v_{r}^{2} is not related in a definitive way to P. The characteristics which have the largest values of v_{r}^{2} probably have frequency distributions with a high degree of skewness; that is, a relatively small number of farms having the largest values of Y_{i} probably account for a substantial part of the total of Y.

Good sampling practice would call for trying to identify (prior to sampling) farms with extremely large values of Y_{i} and including all (or a large fraction of) such farms in the sample. If farms with large values of Y_{i} are identified and put in a separate stratum that is completely enumerated, the $\mathrm{v}_{\mathrm{r}}^{2}$ for the part of the population sampled will tend to be smaller and contained within rather narrow limits. In any event, equation 1 is often an important aid in forming prior judgments of sampling variances and in developing techniques for approximating sampling errors pertaining to the numerous estimates that might be produced from a sample survey.

In planning surveys, it is often helpful to have rough approximations of sampling variances available without delay. An experienced sampler can make good guesses at the values of V_{r} and P, and from equation 1 can make a good judgment of the magnitude of V and hence the magnitude of the sampling error for any size sample that might be under consideration.

For simple random sampling, ignoring the fpc , it follows from equation 1 that:

$$
\begin{equation*}
v^{2}(\bar{y}) \doteq \frac{v^{2}}{n}=\frac{v_{r}^{2}+1-P}{n P} \tag{2}
\end{equation*}
$$

where $v^{2}(\bar{y})$ is the relative variance of the sample mean, \bar{y}, which is an estimate of \bar{Y}. One might add a factor for design efficiency to equation 2. That is, if one judged the efficiency (variance) of the sampling plan under consideration, for example, to be 0.6 or 1.2 times the variance for simple random sampling, one could adjust $\frac{v^{2}}{n}$ accordingly. Of course, one's ability to make prior judgments of sampling error improves with experience and knowledge of information about variance. Even for characteristics that have not been included in a previous survey, conjecture
about sampling error can provide a good indication of whether the sampling standard error of an estimate (or class of estimates) is, for example, the order of 7 or 8 percent or perhaps 3 or 4 percent. Past information and conjecture about sampling error should play or be developed to play an important role in determining the size of sample for a survey and the content of a questionnaire, and the extent of domain estimation (breakdown of the data) that any given sampling plan is likely to satisfactorily support. I/

Equation 2, or a similar equation, is sometimes helpful in developing a method for approximating sampling errors of estimates from a sample survey. This is in lieu of computing variances for all estimates according to an exact formula for the particular sampling design involved. It should be pointed out that for simple random sanpling, equation 2 extends easily to domain estimates. Suppose that \bar{y}_{d} is an estimate of the domain mean \bar{Y}_{d}, where \bar{Y}_{d} is the domain total divided by the total number of farms (elements) in the domain. Instead of equation 2, we have:

$$
\begin{equation*}
v^{2}\left(\bar{y}_{d}\right)=\frac{v_{d}^{2}}{n}=\frac{v_{d r}^{2}+1-P_{d}}{n P_{d}} \tag{3}
\end{equation*}
$$

where
and

$$
\mathrm{v}^{2}\left(\overline{\mathrm{y}}_{\mathrm{d}}\right) \text { is the relative variance of } \overline{\mathrm{y}}_{\mathrm{d}} \text {, }
$$

$v_{d r}^{2}$ is the relative variance among nonzero values of Y within the domain,

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{d}}=\frac{\mathrm{N}_{\mathrm{dr}}}{\mathrm{~N}} \text { is the number of farms in the domain with nonzero } \\
& \text { val } \mathrm{Y} \text { divided by the total number of farms in }
\end{aligned}
$$

Thus, nP_{d} (the expected number of nonzero values of Y in the sample and in the domain) is a major factor determining the relative variance of \bar{y}_{d}.

Exercise 4. With reference to equation 2, nP is the expected number of farms reporting in a somple of n farms. Study equation 2 with this in mind and with reference to data presented in tables 1 and 2. Does it appear that most of the differences in sompling variances for various cormodities is explained by variation in nP ?

Note that \bar{y} may be regarded as the product of two random variables, p and \bar{y}_{r}, where $p=\frac{n_{r}}{n}$ is the proportion reporting in a random sample of n and
$\bar{y}_{r}=\frac{\sum^{n} y_{r i}}{n_{r}}$ is the average of y for the n_{r} farms reporting. It follows from equation 2 that:

$$
\begin{equation*}
v^{2}(\bar{y})=v^{2}\left(p \bar{y}_{r}\right)=\frac{v_{r}^{2}}{P n}+\frac{(1-P)}{P n} \tag{4}
\end{equation*}
$$

I/ Houseman, Earl E. "The Survey as a Measurement Instrument," Agricultural Economics Research, U.S. Dept. Agr., ERS, Vol. 24, No. 4, October 1972, p. 87.

Let $P_{n}=\bar{n}_{r}$ and $V_{p}^{2}=\frac{1-P}{P}$. This gives:

$$
\begin{equation*}
v^{2}(\bar{y})=\frac{v_{r}^{2}}{\bar{n}_{r}}+\frac{v_{P}^{2}}{n} \tag{5}
\end{equation*}
$$

which provides a basis for determining how much of the variance of \bar{y} is associated with the variance of p and how much is associated with the variance of \bar{y}_{r}. Note that \bar{n}_{r} is the expected value of n_{r} for samples of n farms and V_{p}^{2} is the relative variance of p for $n=1$.

The comparative magnitudes of the two components of variance shown in equation 5 have implications on matters of sample design and estimation including the possibility of double sampling, that is, using a large sample to estimate the values of p , or N_{r}, for various characteristics, and subsamples of the large sample to estimate the values of \bar{y}_{r}.

Exercise 5. From the results presented in table 1, determine the relative variance of \bar{y} for soybeans assuming a simple random sample of 1,000 farms. Answer: 0.0734. Find the values of the two components given in equation 5. As a check, they should add to 0.0734 , except for rounding errors.

Exercise 6. An estimator of N_{r}, the total number of farms reporting, is $N p$ where N is the total number of farms in the population and p is the proportion of farms reporting in a sample of size n. Assuming $\mathrm{n}=10,000$, find the standard error of $N \bar{y}$ and of $N p$ for potatoes using the 1970 data. Answer: The standard error of $N \bar{y}$ is 10,718 acres or 26.7 percent. The standard error of N is 82.2 farms or 11.1 percent.

Known Numbers of Farms Reporting

Since the c's of v are large for characteristics where P is small, consideration of all possible ways of reducing the sampling variance for such characteristics is important. How valuable would information on the number of farms reporting be in reducing sampling variance? This is part of the general question on value and cost of auxiliary data that might be incorporated in a sampling frame.

Suppose the numbers of farms reporting, N_{r} in column (6), are known. Then, one could use $N_{r} \bar{y}_{r}$ as an estimator of a population total. Assuming a simple random sample of all farms, how does the variance of $N_{r} \bar{y}_{r}$ compare with the variance of $N \bar{y}$? Although $\bar{y}_{r}=\frac{\sum_{i}}{n_{r}}$, is the ratio of random variables because n_{r} (the number of farms reporting in a sample of size n) is a random variable, the variance of \bar{y} comes under a special condition that does not require the formula for the variance of a ratio of
random variables. 2/ Among all possible samples of size n, there are samples which have the same number, n_{r}, of farms reporting. The relative variance of $N_{r} \bar{y}_{r}$ among such samples is $\frac{\mathrm{V}_{r}^{2}}{\mathrm{n}_{r}}$. An approximate average relative variance among all samples of n is obtained by substituting the expected value of n_{r} in place of its observed value. Thus $\frac{v_{r}^{2}}{\bar{n}_{r}}$ is a good approximation (unless \bar{n}_{r} is very small) of the relative variance of $N_{r} \bar{y}_{r}$ among all samples of n. Therefore, since $\bar{n}_{r}=n P$, the relative variance of $N_{r} \bar{y}_{r}$ is approximately $\frac{V_{r}^{2}}{n P}$; and since the relative variance of $N \bar{y}$ is $\frac{v^{2}}{n}$, we have $\frac{V_{r}^{2}}{P}$ for comparison with V^{2} where $n=1$. Let $D=\frac{V_{r}^{2}}{P V^{2}}$, which shows the variance of $N_{r} \bar{y}_{r}$ as a proportion of the variance of $N \bar{y}$. Values of D, which will be referred to as design factors, are presented in column (11) of table 4. As an example, . 66 for alfalfa means that in 1970 the variance of $N_{r} \bar{y}_{r}$ is 66 percent of the variance of $N \bar{y}$, or that knowledge of N_{r} could have reduced the sampling variance by 34 percent.

Exercise ?. Suppose a list of the 741 growers of potatoes in 1970 is available and that a simple random sample of n_{r} growers is selected from this list. For comparison with the answer to exercise 6, assume that $n_{r}=73$, which is the expected number of potato growers in a sample of 10,000 farms. The estimator $i s N_{r} \bar{y}_{r}$, where $N_{r}=741$ and \bar{y}_{r} is the mean of a sample of n_{r} growers selected for the Zist. Find the standard emror of $\mathrm{N}_{\mathrm{r}} \overline{\mathrm{y}}_{\mathrm{r}}$. Answer: 9, 717 acres or 24.2 percent.

Generally, an agricultural statistics program must be based on a list frame (a list of farms or farm operators), an area frame, or a combination of the two. For a statistically efficient basis for sampling for a wide variety of agricultural surveys, auxiliary data about sampling units is important. But there is a substantial cost in obtaining and including auxiliary data in a sampling frame. Column (11) provides some indication of the importance of having information about which farms are producing various agricultural products.

[^1]Table 4--Design factors for two escimators and some other measures

-- = Not applicab1e.
1/ Numbers in parentheses correspond to algebraic descriptions in the appendix.

Farmland As An Auxiliary Variable

Owing to increasing specialization in agriculture, acres in farmland have become less effective as an auxiliary variable, except in special situations. Variance equations for the relative variances of the ratio and mean estimators in a good form for comparison and interpretation, and assuming $n=1$, are:

$$
\begin{align*}
& \mathrm{v}^{2}\left(\overline{\mathrm{X}} \frac{\overline{\mathrm{y}}}{\overline{\mathrm{x}}}\right)=\mathrm{v}_{\mathrm{Y}}^{2}+\mathrm{v}_{\mathrm{X}}^{2}-2 \rho \mathrm{~V}_{\mathrm{Y}} \mathrm{~V}_{\mathrm{X}} \text { and } \tag{6}\\
& \mathrm{V}^{2}(\overline{\mathrm{y}})=\mathrm{V}_{\mathrm{Y}}^{2} \tag{7}
\end{align*}
$$

where X is acres of farmland,

[^2]$\mathrm{V}_{\mathrm{Y}}^{2}$ is the relative variance of Y and its values are found in column (5) except for the first entry, and

0 is the correlation between X and Y .
Thus, dividing the relative variance (or variance) of the ratio estimator by the relative variance (or variance) of the mean estimator gives:

$$
\begin{equation*}
D=1+\frac{\mathrm{V}_{\mathrm{X}}^{2}}{\mathrm{~V}_{\mathrm{Y}}^{2}}-2 \rho \frac{\mathrm{~V}_{\mathrm{X}}}{\mathrm{~V}_{\mathrm{Y}}} \tag{8}
\end{equation*}
$$

If the value of D is 0.9 , for example, the variance of the ratio estimator is 10 percent less than the variance of the mean estimator. Thus, the value of D is an inverse measure of efficiency.

Values of D, equation 8, for 1970 are listed in table 4, column (12). Values for 1971 are not shown because they are very similar. Notice that the ratio estimator is effective for only three characteristics: alfalfa, corn, and pasture. All three are acreages, each is reported by a high proportion of the farms, and each accounts for about 15 to 20 percent of the farmland. For the remaining characteristics, the ratio estimator is ineffective.

The value of D is less than 1 when $\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{V}_{\mathrm{Y}}}>20$. To help understand the conditions where the ratio estimator is effective, the values of ρ and $\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{V}_{\mathrm{Y}}}$ are given in columns
(13) and (14).

Exercise 8. Examine equation 8 and note that when V_{X} is small relative to V_{Y}, the value of D will be close to 1 , especially for small to moderate values of ρ. On the other hand, when V_{X} is considerably larger than V_{Y}, the potential for loss or gain (value of D) is quite sensitive to the magnitude of the correlation. Study the results in columns 12, 13, and 14. Note that for the characteristics at the bottom of the list that $\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{V}_{\mathrm{Y}}}$ is small and the values of D are close to 1 . Compare the results for population and hay for silage, two characteristics that have the same correlation. Suppose $0=.8$ for population, alfalfa, and potatoes. Find the values of D, assuming the values of $\frac{\mathrm{V}_{\mathrm{X}}}{\mathrm{V}_{\mathrm{Y}}}$ are as given in table 2, column (14). Answer: 0.58, 0.36 , and 0.95 . What do you conclude?

CLUSTER SAMPLING

In the State-farm censuses of Wisconsin, farms were identified by townships, which are the smallest political subdivisions of the State. For most purposes, a township is too large to be suitable as a sampling unit. However, a study of the township as a sampling unit reveals several aspects of the general problem of choosing a sampling unit and of selecting auxiliary information about them. Some questions of interest are: How does the design efficiency of the township (compared to the individual farm) relate to P (the proportion reporting), to the geographic distribution of the characteristics, to the method of estimation, and to

A few townships had only one or two farms. Hence, for purposes of this analysis, townships with fewer than four farms were combined with adjacent townships, giving a total of 1,462 individual townships and township combinations which will be referred to simply as "townships." The average number of farms per township was $\frac{101,865}{1,462}=69.6$ in 1970 and $\frac{98,156}{1,462}=67.1$ in 1971 .

Notation used in the specifications of alternative plans for sampling townships will be:
$Y_{i j}$ is the value of Y for the $j^{\text {th }}$ farm in the $i^{\text {th }}$ township,
N_{i} is the total number of farms in the $i^{\text {th }}$ township,
$Y_{t i}=\sum_{j}^{\sum Y_{1 j}}$ is the total of Y for the $i^{\text {th }}$ township,
M
$N=\Sigma N_{1}$ is the total number of farms in the population,
M is the number of townships in the population,
m is the number of townships in a sample of townships,
n_{i} is the total number of farms in the $i^{\text {th }}$ township in
a sample,
m
$n=\Sigma n_{1}$ is the number of farms in a sample of townships
$\bar{N}=\frac{N}{M}$ is the average number of farms per township,
$\bar{Y}_{t}=\frac{\sum_{i} Y_{t i}}{M}$ is the average value of Y per township,
$\bar{Y}=\frac{\sum_{i} Y}{N}$ is the population average per farm, and in a
sample of townships $y_{t i}, \bar{y}_{t}$, and \bar{y} correspond to $Y_{t i}, \bar{Y}_{t}$, and \bar{Y}.
For the individual farm as the sampling unit, the notation will be:
Y_{i} is the value of Y for the $i^{\text {th }}$ farm in the population,
$\bar{Y}=\frac{\sum Y_{i}}{N}$ is the population average per farm which is the same as \bar{Y} under the township notation, and f instead of n will be used for the number of farms in the sample.

Other notation follows from the above definitions.

Four alternatives have been selected for comparison:

1. A simple random sample of m townships is selected from the population of M townships. The sample townships are enumerated completely. The estimator of the population total of Y and its relative variance are given by:

$$
\begin{align*}
& \hat{\mathrm{y}}_{1}=M \frac{\sum_{\mathrm{i}}^{\mathrm{m} i}}{\mathrm{~m}}=M \bar{y}_{\mathrm{t}} \\
& \mathrm{v}^{2}\left(\hat{\mathrm{y}}_{1}\right)=\frac{\mathrm{V}^{2}\left(Y_{t i}\right)}{m} \tag{9}\\
& \text { where } v^{2}\left(Y_{t i}\right)=\frac{\left.\sum_{\left(Y_{t i}\right.}-\bar{Y}_{t}\right)^{2}}{\bar{Y}_{t}^{2}(M-1)} \tag{10}
\end{align*}
$$

2. The same specifications as in the first alternative apply except that a ratio estimator is used, the auxiliary variable being number of farms. The estimator and its relative variance are:

$$
\begin{align*}
& V^{2}\left(\hat{y}_{2}\right)=\frac{1}{m}\left\{V^{2}\left(Y_{t i}\right)+V^{2}\left(N_{i}\right)-2 \operatorname{Cov}\left(Y_{t i}, N_{i}\right)\right\} \tag{12}\\
& \sum_{i}^{M}\left(N_{i}-\bar{N}\right)^{2} \\
& \text { where } v^{2}\left(N_{i}\right)=\frac{i}{\bar{N}^{2}(M-1)} \\
& \text { and } \operatorname{Cov}\left(Y_{t i}, N_{i}\right)=\frac{\sum_{i}^{M}\left(Y_{t i}-\bar{Y}_{t}\right)\left(N_{i}-\bar{N}\right)}{\left(\bar{Y}_{t}\right)(\bar{N})(M-1)}
\end{align*}
$$

Exercise 9. Note that $\hat{\mathrm{y}}_{2}$ is simply the average per farm in the sample multiplied by N. Is n in equation 11 a constant? Explain why the variance formula, equation 12 is the correct one to use.
3. A random sample of m townships is selected with replacement and probabilities proportional to N_{i}. The estimator and its relative variance are:

$$
\begin{array}{r}
\hat{y}_{3}=N\left(\frac{1}{m}\right) \sum_{i}^{m} \frac{y_{t i}}{n_{i}} \\
\left.M^{M}{ }^{Y_{t i}}-\bar{Y}\right)^{2} \tag{14}\\
V^{2}\left(\hat{y}_{3}\right)=\frac{1}{m} \frac{\sum_{i} N_{i}\left(\frac{N_{i}}{N \bar{Y}^{2}}\right.}{}
\end{array}
$$

4. The above three plans are to be compared with a simple random sample of f farms. The estimator and its relative variance are:

$$
\begin{align*}
\overline{\mathrm{y}}_{4} & =N \bar{y} \tag{15}\\
\mathrm{v}^{2}\left(\hat{\mathrm{y}}_{4}\right) & =\frac{1}{\mathrm{f}}\left[\frac{\sum\left(\mathrm{Y}_{\mathrm{j}}-\overline{\mathrm{Y}}\right)^{2}}{\overline{\mathrm{Y}}^{2}(\mathrm{~N}-1)}\right] \tag{16}
\end{align*}
$$

To compare the alternatives, we will assume a constant sampling fraction, namely 1 . This means $m=1$ and that $f=69.6$ for 1970 and $f=67.1$ for 1971. The relative variances of the four estimators (table 5, columns (15), (16), (17), and (18) respectively) are used to compare townships as sampling units to farms.

Divide the variances among townships, columns (15), (16), and (17), by the variances among farms, column (18). For 1970, these design factors are shown in columns (19), (20), (21), and (22) of table 6. Take corn as an example. The design factor 26.0 means that the sampling variance for the first alternative is 26 times larger than the sampling variance for the fourth. Thus, columns (19), (20), and (21) display the high degree of inefficiency that generally exists for a "large" sampling unit. "Large" refers to the numbers of farms in the sampling units for which $Y_{i}>0$. Note, for example, that the average number of farmers per township
that grew potatoes was less than 1 . If potato growers are widely scattered (not concentrated in a few townships), townships are small in size with regard to potato growers compared with characteristics at the top of the list. The wide differences among characteristics points up the importance of making a good choice of size of area sampling units depending on the objectives of the survey.

Exercise 10. Suppose a simple random somple of 100 townships is selected and equation 9 is used. What is the relative variance of \hat{y}, for corm? Answer: 0.01245. In a sample of 100 townships, one would expect about 6,950 farms in 1970. Assuming a simple random sample of 6,950 farms, what is the sampling variance of $\hat{y} 4$? Answer: 0.000479. Do the two variances differ according to the design factor, 26.0, shown in column (19) of table 6?

Exercise 11. Study colums (19), (20), and (21). Prepare a logical explanation for the reduction in the design factors as P decreases -- that is, the loss in efficiency of the township is greatest when P is large. Under what conditions is this reasonable? What are the implications with regard to a measure of size of sampling units?

It is also interesting to compare the four alternatives by using the mean per township estimator, column (15), as a base. Thus, the 1971 variances in table 5 were divided by the 1971 variances in column (15); the results are in the right half of table 6 .

[^3]Table 6 -- Design factors, township compared with individual farm

Exercise 12. Study column (24). For the ratio estimator, the design factor is 0.065 for farm population and 1.01 for potatoes. Explain this large difference.

Exercise 13. Assume that the township is the sampling unit and consider the following two alternatives: (1) Select a sample of townships using equal probabilities of selection. Use the ratio estimator, \hat{y}_{2}, for characteristics where the design factor in colum (24) is less than 1 and the mean estimator, \hat{y}_{1}, for characteristics where the design factor is approximately 1 or larger. (2) Select the townships with probabilities proportional to N_{i} (number of farms) which would require using $\hat{\mathrm{y}}_{3}$ as the estimator for all characteristics. Which of these two alternatives would you choose? Why?

Exercise 14. In 1970 there were 234 growers of snap beans. Suppose there was one grower in each of 234 townships. In this case, how would the sampling variances for the four estimators ($\hat{\mathrm{y}}_{1}, \hat{\mathrm{y}}_{2}$, and $\hat{\mathrm{y}}_{4}$) compare?

Exercise 15. Suppose the 234 growers of snap beans were all located within 5 townships. How would the sampling variances for the four estimators compare? Do you agree that the sompling variance would be very large for all of the estimators, even for sampling fractions as large as 25 or 50 percent?

Exercise 16. What do the above analyses of the township as a sampling unit indicate regarding selection and use of auxiliary data for incorporation in a sampling frome? Does it appear that a substantial investment in a sampling frame, including obtaining relevant auxiliary information, might be worthowile and perhaps necessary in some cases? Discuss.

STRATIFICATION--SAME SAMPLING FRACTIONS APPLIED TO ALL STRATA

Simple geographic stratification, using a constant sampling fraction, can generally be relied on to provide some reduction in sampling variances. Quite of ten the reductions are small, but the cost of stratification might also be very small. Unless one engages in a high degree of refinement, geographic stratification is generally inexpensive and easy to apply. How effective is it?

Design factors are for 1971 for three levels of stratification: 9 crop reporting districts (column 27), 72 counties (column 28), and 1,462 townships (column 29). These design factors are for stratified random sampling with a constant sampling fraction (table 7). They are sampling variances for the three levels of stratification expressed as a proportion of the sampling variance for a simple random sample of farms.

Exercise 17. For corm, find the relative standard error of the mean of a random sample of 1,000 farms stratified by counties. Use the relative variance from table 1 and the design factor from table 7. Answer: 5.2 percent.

Study the results in columns (27), (28), and (29) with regard to the distributions of the commodities by CRD (table 3). One might have anticipated that the gains from stratification would have been greater for commodities with the most geographic concentration. However, the last four commodities on the list are more concentrated than those at the top, but the impact of stratification was somewhat less. Remember, the comparisons being discussed assume a constant sampling fraction.

Be cautious about judging the impact of stratification from differences among stratum means. For stratified random sampling, the sampling variance is an average of within-stratum variances. In general, it is better to try judging the impact of
stratification with regard to within-stratum variation. That is not easy to do when the within-stratum variances differ widely from stratum to stratum as in the case of potatoes.

$$
\text { Table } 7 \text {-- Design factors for stratified random sampling, } 1971
$$

Characteristic (1) $1 /$	Level of stratification (constant sampling fraction)				Optimum allocation by CRD (30)
	None	$\begin{array}{r} \text { CRD } \\ (27) \\ \hline \end{array}$	County (28)	Township (29)	
Farmland	1.000	. 981	. 964	. 908	--
Population	1.000	0.996	0.985	0.947	0.989
Alfalfa	1.000	0.929	0.898	0.813	0.908
All corn	1.000	0.934	0.893	0.849	0.797
All pasture	1.000	0.926	0.908	0.733	0.783
Milk cows	1.000	0.993	0.962	0.897	0.978
Beef cattle	1.000	0.981	0.968	0.935	0.837
Clover \& timothy	1.000	0.826	0.780	0.636	0.616
Hay for silage	1.000	0.996	0.986	0.951	0.976
Cattle marketed	1.000	0.995	0.992	0.971	0.578
Soybeans	1.000	0.982	0.948	0.908	0.543
Peas	1.000	0.997	0.991	0.982	0.489
Stock sheep	1.000	0.997	0.995	0.988	0.806
Spring wheat	1.000	0.982	0.957	0.919	0.619
Potatoes	1.000	0.998	0.983	0.958	0.472
Snap beans	1.000	0.996	0.987	0.935	0.315
Average, all characteristics	1.000	0.969	0.950	0.896	0.714

--. = Not available.
1/ Numbers in parentheses refer to algebraic descriptions in the appendix.
Table 8 shows average alfalfa and potato acreages per farm by CRDs. This illustrates that one cannot accurately judge gains from stratification solely from information contained in this table. For alfalfa, the relative variance among the CRD means is less than 1 and for potatoes more than 12. But as shown by table 7 the gain from stratification is less for potatoes. Note the gains from optimum allocation, column (30).

Table 9 illustrates in another way the point about between-stratum variances as a basis for judging stratification. The simple analysis of variance table is used to display between- and within-stratum variances for alfalfa with stratification by CRD and township. Note the size of the mean square among CRDs compared to the mean square among townships. Defining strata with the idea of maximizing the variance among them can be misleading, especially if their number is not fixed.

Before considering alternative allocations of a sample to CRDs, it is interesting to examine the impact of stratification when the township is the sampling
unit. For comparing the township with the individual farm as sampling units, the variances in columns (16) and (32) within-state and within-CRD variances, respectively (table 10), must be multiplied by 67.14 to convert the variances among townships to a basis of one farm. Multiplying column (16) by 67.14 and dividing by column (5) gives column (33), the design factors for the township compared to the farm when there is no stratification. To illustrate, the design factor for "population" is (67.14) (0.038) $=5.36$. Column (34) is derived from columns (31) and (32) in the 0.476
same way. The design factors in column (34) are somewhat less than those in column (33). In other words, the loss in efficiency when the township in the sampling unit is not as great when stratification is applied. One might also say that gains from stratification are somewhat greater for the township than for the individual farm. From another view, one might say that stratification is more important when the sampling units are large.

Table 8 -- Means per farm by CRD, alfalfa and potatoes, 1971

		Average	creage	per farm
CRD	:	Alfalfa	:	Potatoes
	:		:	
1	:	24.0	Acre	0.14
2	:	10.9		0.66
3	:	25.1		0.99
4	:	36.5		0.02
5	:	24.0		2.15
6	:	39.0		0.07
	:	42.2		0.09
8	:	32.1		0.10
9	:	30.3		0.86
State average	:	30.7		0.43
	:			

Table 9 -- Analysis of variance, alfalfa, 1971

Source of variation	$:$	Degrees of freedom	Sum of $:$	squares	Mean square
Total	$:$	98,155	$121,050,012$		1,233
Among CRDs	$:$	8	$8,615,115$	$1,076,889$	
Within CRDs	$:$	98,147	$112,434,897$	1,146	
Among townships	$:$	1,461	$24,066,000$	$16,4721 /$	
Within townships	$:$	96,694	$96,984,000$	1,003	

1/ Derived. The within-township mean square 1,003 was available on the computer printout but the sums of squares for townships were not. Although these numbers were derived, they are accurate to at least three digits.
Table 10 -- Individual farm and township variances, overall (State) and within CRDs, 1971

Characteristic (1) $3 /$:	Individual farms 1/		Townships 2/		Township design factor	
		Within State (5)	Within CRD (31)	Within State (16)	$\begin{gathered} \text { Within CRD } \\ (32) \end{gathered}$	Within State (33)	$\begin{gathered} \text { Within CRD } \\ (34) \\ \hline \end{gathered}$
Farmland	:	0.750	0.736	--	--	--	--
Population		0.476	0.474	0.038	0.041	5.36	5.81
Alfalfa		1.306	1.213	0.350	0.224	18.0	12.4
All corn		3.04	2.84	0.608	0.380	13.4	8.98
All pasture		3.37	3.12	1.297	0.931	25.8	20.0
Milk cows		1.48	1.47	0.223	0.212	10.1	9.68
Beef cattle		15.06	14.77	1.580	1.188	7.04	5.40
Clover and timothy		8.21	6.78	4.226	2.184	34.5	21.6
Hay for silage	-	11.35	11.31	0.960	0.910	5.68	5.40
Cattle marketed		212.6	211.6	11.40	10.24	3.60	3.25
Soybeans	.	97.3	95.5	12.01	9.94	8.29	6.99
Peas	-	230.8	230.0	10.44	9.19	3.04	2.68
Sheep	.	124.6	124.2	3.69	3.19	1.99	1.72
Spring wheat		190.6	187.2	19.6	15.6	6.90	5.59
Potatoes	-	809	807	36.0	33.5	2.99	2.79
Snap beans		993	989	64.9	63.3	4.39	4.30

[^4]Exercise 18. Colrom (27) in table 7 equals the entries in column (31) divided by the entries in colrmm (5). It shows the effectiveness of stratification by CRD when the farm is the sompling unit. With reference to table 10, divide column (32) by colvom (16), which gives corresponding design factors for the township. Compare the results with column (27). What does this comparison show regarding the effectiveness of stratification?
(20) $\frac{\text { Exercise 19. }}{}$

STRATIFICATION--ALLOCATION OF SAMPLE TO CRDs

To illustrate the impact on sampling variance of alternate allocations of a sample to strata, CRDs will be used as strata. Three characteristics have been selected for this purpose: alfalfa, beef cattle, and potatoes. Alfalfa and potatoes represent two widely different geographic patterns of production. Beef cattle falls between the two.

For stratified random sampling, general formulas for the estimator of a population total and its relative variance are:

$$
\begin{align*}
\hat{y} & =\Sigma N_{h} \bar{y}_{h} \tag{17}\\
v^{2}(\hat{y}) & =\frac{1}{N^{2} \bar{Y}^{2}} \quad\left[\Sigma \frac{N_{h}^{2} S_{h}^{2}}{n_{h}}\right] \tag{18}
\end{align*}
$$

Where N_{h} is the population number of farms in stratum h,
$N=\Sigma N_{h}$ is the total number of farms in the population,
\bar{y}_{h} is the sample mean for stratum h,
n_{h} is the size of the sample in stratum h,
$S_{h}^{2}=\frac{\sum_{h}\left(Y_{h i}-\bar{Y}_{h}\right)^{2}}{N_{h}-1}$ is the variance within stratum h,
$Y_{h i}$ is the value of Y for the $i^{\text {th }}$ farm in stratum h,
$Y_{h}=\frac{\sum Y_{h i}}{N_{h}}$ is the population mean for stratum h, and
$\overline{\mathrm{Y}}$ is the overall population mean.
Equation 18 gives the relative variances of y for a sample of size n, where $n=\Sigma n_{h}$. For comparison with previous results, the relative variance of \hat{y} should be expressed on the basis of a hypothetical sample of one farm. This is accomplished by multiplying the right side of equation 18 by n. Thus,

$$
\begin{equation*}
v^{2}(\hat{y})=\frac{n}{N^{2} \bar{Y}^{2}}\left[\Sigma \frac{N_{h}^{2}}{} S_{h}^{2}\right] \tag{19}
\end{equation*}
$$

is a general expression for the relative variance of y expressed on the basis of a sample of one farm. Equation 19 will be used to find the relative variance of \hat{y} for alternate allocations.

Exercise 20. For beef cattle and 1970, verify the sample allocations shoum in colvoms (35), (37), and (38) of table 13. Use the within-stratwo standard deviations shour in colum (41) of table 13 and N_{h} and Y_{h} shoum in table 11.

Exercise 21. Using equation 19, verify the following two relative variances for ifalfa in table 12: 1.261, the relative variance for 1971 when the somple is allosated in proportion to Y_{h} in 1971; and 1.192, the relative variance for 1971 when the sample is allocated according to the 1970 optimum.

You probably know that sample allocations which differ by a small amount from optimum will result in a small or negligible increase in variance. This is fortunate because in practice, optimum allocation can at best only be approximated. Moreover, the optimum allocation varies among the characteristics included in a survey.

When the within-stratum standard deviations, S_{h}, are equal, the optimum allocation is the same as allocating the sample in proportion to N_{h}. It follows when the standard deviations, S_{h}, are moderately different that the variance for optimum allocation will be only slightly less than the variance for an allocation proportionate to N_{h}. And assuming small variation in the unknown values of S_{h}, estimates of S_{h} must be precise, or an effort to reduce variance by optimizing the allocation could result in an increase in variance. This suggests that rather large differences in the S_{h} might be necessary before optimizing the allocation is worthwhile.

Turn to tables 12, 13, and 14 and study the sample allocations in relation to the variances and design factors presented at the bottom of each table. Reference to table 11 may be helpful in understanding or interpreting the results. In particular, note the wide variation in S_{h} for potatoes. The largest S_{h} in 1971 was about
33 times larger than the smallest and the reduction in variance attributable to optimum allocation was substantial. Perhaps of greater importance, from a practical point of view, is the fact that when the 1970 optimum allocation was used in 1971, the design factor was 0.502 compared to 0.472 for the 1971 optimum. That is, the 1970 optimum allocation was nearly as effective in 1971 as the 1971 optimum.

Exercise 22. Due to an interest in allocating the sample to minimize the sampling varionce for potatoes, suppose a proposal has been made to allocate the samplu according to the 1970 optimum allocation for potatoes. What would the relative variances in 1971 be for alfalfo and beef cattle?

Usually some prior information about the values (or relative values) of Y_{h} is available. Suppose accurate estimates of the stratum totals, Y_{h}, exist for a previous year, but no estimates of the S_{h} are available. A sample could be allocated in proportion to the estimates of Y_{h} or in proportion to some function of the estimates of Y_{h}, such as the square root of the estimates. If Y_{h} is approximately in proportion to $\mathrm{N}_{\mathrm{h}} \mathrm{S}_{\mathrm{h}}$, a sample allocated in proportion to Y_{h} will be close to optimum.

Exercise 23. Show, algebraically, that the optimum size of sample from stratum h is proporitional to the stratum total Y_{h}, when $\frac{\mathrm{S}_{\mathrm{h}}}{\mathrm{P}_{\mathrm{h}}}$ is constant.

For the three commodities, examine the differences between the allocations in proportion to Y_{h} in 1970 and the optimum allocations. Generally, strata which have the largest values of \bar{Y}_{h} will have the smallest coefficients of variation, $\frac{S_{h}}{\bar{Y}_{h}}$, which means (compared to optimum) that allocating a sample in proportion to Y_{h} will allocate too much of the sample to strata with large values of Y_{h} and not enough to strata with relatively small values of Y_{h}. This phenomenon is apparent in tables 12 , 13 and 14. With experience, and in the absence of estimates of S_{h}, one might decide to allocate the sample in proportion to estimates of Y_{h} and then arbitrarily increase the sample by 50 percent or more for strata having the smallest values of Y_{h}.

Table 11 -- Stratum (crop reporting district) totals for 1970

Table 12 -- Alternative sample allocations and sampling variances, alfalfa

Table 13 -- Alternative sample allocations and sampling variances, beef cattle

Table 14 -- Alternative sample allocations and sampling variances, potatoes

Table
Column Number
(1) Characteristics

Description

(2) N
N_{i}, where Y_{i} is the value of characteristic Y for the $i^{\text {th }}$ farm in the population of N farms.
(3)

N
$\frac{\Sigma Y_{i}}{N}=\bar{Y}$
(4)

$$
\sqrt{\frac{\sum\left(Y_{i}-\bar{Y}\right)^{2}}{N-1}}
$$

$\frac{\sum_{i}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}{\bar{Y}^{2}(N-1)}=V^{2}$
$\frac{N_{r}}{N}=P$
(8)
(9)

(10)
$\frac{\sum^{N}{ }^{\mathrm{r}}\left(\mathrm{Y}_{r i}-\bar{Y}_{r}\right)^{2}}{\bar{Y}_{r}^{2}\left(N_{r}-1\right)}=V_{r}^{2}$
(11)
$\mathrm{V}_{\mathrm{r}}^{2}$
PV^{2}
(17)

This column is the relative variance among townships when selected with probabilities proportionate to N_{ti}. See equation 14.

Table Column Number Description
$\frac{1}{\bar{N}}\left[\frac{\sum\left(Y_{i}-\bar{Y}\right)^{2}}{\bar{Y}^{2}(N-1)}\right]=\frac{V^{2}}{\bar{N}}$ where $\bar{N}=\frac{N}{M}$
This is the relative variance of \bar{y} for a random sample of $n=\bar{N}$ farms.
(20)
(21) (15) (18)
(16)
(18)
(17)
(18)
(22)
(23)
(18)
(18)
(15)
(15)
(24)
(25)
(16)
(15)
(17)
(15)
(26)
(27)
(28)
(30)
(18)
(15)

Columns (27), (28), and (29) are average within-stratum variances divided by the overall variance.
h is the index for strata,
N_{h} is the number of farms in stratum h,
$Y_{h i}$ is the value of Y for the ith farm in stratum h, and
\bar{Y}_{h} is the average value of Y in stratum h.
$\frac{\left(\frac{n}{N^{2}}\right) \sum \frac{N_{h}^{2} S_{h}^{2}}{n_{h}}}{\frac{\sum\left(Y_{i}-\bar{Y}\right)^{2}}{(N-1)}}$

Description

where n_{h} is the size of sample from stratum h,
$\mathrm{n}=\sum_{\mathrm{n}}^{\mathrm{h}}$, and
$S_{h}^{2}=\frac{\sum_{h}}{i \frac{\left(Y_{h i}-\bar{Y}_{h}\right)^{2}}{N_{h}-1}}$
The quantity $\varepsilon \frac{N_{h}^{2} S_{h}^{2}}{n_{h}}$ is the variance of an estimate of the population total for a sample of size n. The factor $\frac{n}{N^{2}}$ changes this variance to the variance of a mean of a stratified random sample assuming a hypothetical sample of $n=1$. For column (30), optimum allocation of n to CRD's is used to determine the n_{h}.
$\left(\frac{1}{\bar{Y}^{2}}\right)\left(\frac{\sum N_{h} S_{h}^{2}}{N}\right)$
This is the average within-CRD variance among farms divided by $\overline{\mathrm{Y}}^{2}$. It is the relative variance of a stratified random sample with allocation proportionate to N_{h}, assuming a hypothetical sample of $n=1$.
$\frac{1}{\bar{Y}_{t}^{2}}\left(\frac{\sum M_{h} S_{t h}^{2}}{M}\right) \quad \sum_{\sum\left(Y_{t h i}-R N_{h i}\right)^{2}}^{\frac{i}{}}$
where $S_{t h}^{2}=\frac{1 t_{h i}}{M_{h}-1}$
$Y_{\text {thi }}$ is the total of Y for the $i^{\text {th }}$ township in stratum h,
$N_{h i}$ is the number of farms in the $i^{\text {th }}$ township in stratum h.
This column is the average within-CRD variance among townships for the combined ratio estimator, divided by $\overline{\mathrm{Y}}_{\mathrm{t}}^{2}$.
$\frac{\overline{\mathrm{N}} \text { times column (16) }}{\text { Column (5) }}$
where $\overline{\mathrm{N}}$ is the average number of farms per township,
$\frac{\overline{\mathrm{N}} \text { times column (32) }}{\text { Column (31) }}$
through (40) These columns show alternative allocations of a sample of 1,000 farms to CRDs.
S_{h}, standard deviations of Y within CRDs.

[^0]: *The author is statistical consultant, retired from U.S. Department of Agriculture.

[^1]: 2/ Hansen, Hurwitz, and Madow. Sample Survey Methods and Theory, John Wiley \& Sons, Inc., Vol. 1, p. 159.

[^2]: V^{2} is the relative variance of X , which for 1970 is 0.725 , the first entry
 X in column (5),
 Y is any characteristic other than farmland,

[^3]: Not applicable
 1/ Numbers in parentheses refer to algebraic descriptions in the appendix.

[^4]: $\frac{1 /}{2}$ Mean per farm estimator, relative variances among individual farms.
 $\frac{2 /}{3}$ Ratio estimator (see equation 11), relative variances among township on the basis of one township.

