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The Empirics of Information Sharing in Supply Chains: 
The Case of Food Industry 

 
Hamid Mohtadi 

 
 

Abstract 
 

Using the Supermarket Panel Data gathered by The Food Industry Center at the University of 

Minnesota, the behavior of food retailers is examined in their adoption of Information 

Technologies that facilitate information exchange with suppliers.  Using a theoretical framework 

developed by Mohtadi and Kinsey (MK) (2004) the predictions of that paper are examined.  

Logistic Regressions based on Maximum Likelihood Estimation support the hypothesis that food 

retailers with greater market power and numerous suppliers are more inclined to share, rather 

than to withhold, sales information.  Stock-outs play a key role in the process as well.  Finally, 

the structure of the market plays an interesting role in the type of information sharing platforms 

that the retailers adopt. 

 

Thanks are extended to The Food Industry Center for making available to the author the 

Supermarket Panel Data.  I also wish to thank Jean Kinsey at the University of Minnesota and 

Scott Adams at the University of Wisconsin for specific comments and feedback on the earlier 

drafts of this paper.  
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The Empirics of Information Sharing in Supply Chains: 
The Case of Food Industry 

 
 

 
INTRODUCTION 

 
How do supermarkets, grocers, and other food outlets decide on the adoption of electronic 

commerce as a vehicle to share information with their supply chain partners and increase 

efficiency and predictability?  What role does firm size and the structure of the supply chain play 

in this decision?  This paper is aimed at answering these questions, based on econometric 

analysis of the 2003 Supermarket Panel data collected by The Food Industry Center at the 

University of Minnesota.  The adoption of digital and Internet technology (IT) is credited for an 

otherwise unexplained increases in U.S. productivity during the 1990's.  Understanding the 

nature of the changes and their impact on firm behavior and industry structure is crucial for 

public policy and corporate strategy.  This issue is particularly important for the food industry: 

first, the food industry has been a leader in the IT initiatives for more than 30 years beginning 

with the initiative to design the scannable bar code.  Secondly, the industry's thin profit margins 

could render cost-savings from the adoption of electronic commerce significant at the margin. 

Thirdly, the ever-evolving structure of this industry, with ongoing mergers and acquisitions, can 

be better understood in light of cost and market advantages made possible through the adoption 

of IT.  

 

The underlying conceptual basis for this empirical project stems from a recent paper by Mohtadi 

and Kinsey (2005) (from now on, MK) that analyzed the informational relationship among firms 

along the food industry's supply chain using game theory modeling.  It is also related to a second 

paper by Kauffman and Mohtadi (2004a) that extended the analytical model of MK (2005) and 
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generalized it to other industries.  These papers developed a number of hypotheses that will be 

presently tested.  In this vein, the goal of this research is to empirically determine the causes and 

incentives that lead firms to adopt technologies that allow them to share information up the 

supply chains, rather than to explore the impact of technology adoption on productivity.  There 

are several papers on the impact of IT on firm performance in the food industry (e.g., Dooley, 

Maud and King, 2004; and Kink and Park, 2002).  But far fewer studies have focused on the 

causes and determinants of firms’ technology adoption practices.  This paper is aimed at filling 

this gap.  In doing so, it will also provide empirical examination of the papers by MK (2005) and 

Kauffman and Mohtadi (2004a) in this area.  

 

The history of IT adoption among food retailers in the U.S. begins with Wal-Mart’s initiative to 

share daily sales data to reduce inventory and costs and develop inventory control strategies with 

key suppliers.  In 1992, U.S. food retailers followed suit and developed an initiative known as 

Efficient Consumer Response (ECR). But this initiative faltered for two reasons; (a) the 

incompatibility of computer systems between retailers and suppliers, and (b) retailers' reluctance 

to share sales data directly with manufacturers.  A later and similar initiative (1996), known as 

the Collaborative Planning, Forecasting, and Replenishment (CPFR) that involved retailers 

sharing sales data with the manufacturers (or wholesalers) in real time and often over the Internet 

(Kinsey, 2000), has helped to solve the first problem, i.e., the computer incompatibility problem, 

but has not resolved the second issue, i.e., the “trust” issue, arising from concern about supplier 

opportunism.  In particular, some retailers fear that suppliers who learn of their inventory, sales, 

and ordering practices may somehow share this information with rivals or otherwise use it in 

ways that would diminish retailers' profitability (Kinsey and Ashman, 2000).  This reluctance is 
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also reported in Clemons and Row (1993), Progressive Gorcer (1995) and Nakayama (2000) and 

is at the root of the analytical model of MK.  

 

In fact, in the food industry, Nakayama (2000) shows that information exchange plays a role in 

the power relationship between supermarkets and their suppliers, impacting their mutual trust 

and the adoption of information technology among firms.  For example, when the food retailer 

uses electronic data interchange (EDI) for inventory coordination, the supplier's knowledge of 

retailer's parameters and strategies could lead to greater monitoring of retailer's sales and the 

timing of invoices and payments.  This reduces the retailer's incentive to share its point of sale 

(POS) data directly with his supplier(s).  This is a classic application of the asset hold-up 

problem: the retailer's fear of ex-post supplier opportunism reduces the retailer's incentive to 

invest in specific information sharing assets.1  The trade-off between the need to share 

information and the need to protect information is best illustrated in the following question that 

the retailer asks: “What is the minimum set of information to share with my supply chain 

partners without risking potential exploitation?” (Lee and Whang 2000).  Gal-Or (1985) showed 

how information withholding may be a Nash equilibrium outcome despite its social inefficiency. 

 

In general, intimate knowledge of the market conditions is often buyer's strategic asset.  But 

because suppliers may use such information against buyers, this tempers buyers’ desire to adopt 

IT and risk losing competitive advantage in procurement (Whang, 1993).  The result is that 

buyers have a diminished incentive to share information due to the risk of exposure (Laffont and 

Tirole, 1999), while still taking advantage of the strategic value of their private information 

                                                
1See for example (Schmalensee and Willig, 1989), chps. 2,3,4. 
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(Chen, 1998; Gavirneni, et al., 1999).  While the issue of information sharing horizontally, i.e., 

across firms, has been viewed in strategic settings for monopolistic, duopolistic, oligopolistic, 

and competitive structures (e.g., Gal-Or, 1985; Li, 1985 and 2002; Raith, 1996), the retailer 

reluctance to share information vertically along its supply chain, as opposed to horizontally, is 

tied to its concerns about supplier’s potential for opportunistic behavior.2  This is seen both from 

the above discussion of the evidence and the literature, but is also at the basis for the analytical 

model of MK.  It occurs because the food retailer’s adoption of information technologies would 

enable it to increase its procurement efficiency via its supply chain partners.  This would, 

however, force it to share strategic and often valuable information (e.g., its knowledge of market 

forecasts) with suppliers that exposes the retailer to the suppliers’ opportunistic behavior.  But 

the MK paper also yields something new: That a large retailer facing a large number of 

suppliers is less concerned about opportunistic supplier behavior, as the tendency for 

opportunistic behavior is more limited due to increased supplier competition.  This finding has 

an important implication which the present paper intends to examine.  It predicts that such 

retailers are likely to be more willing to share information and thus adopt information sharing 

technologies with their suppliers than independent retailers facing a single or few large suppliers.  

 

The next section discusses the analytical and the empirical framework.  This is followed by a 

section on data and measurements issues.  A subsequent section discusses the results, and the 

final section makes concluding remarks.  

 

 

                                                
2 For a more detailed survey of the related literature in industrial organization and management science, see  
   Kauffman and Mohtadi (2004a). 
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ANALYTICAL AND EMPIRICAL MODELS  

 

Analytical Model:  

Two key insights from the MK (2005) constitute the main hypotheses that are tested in this paper.  

The first is represented by an equation that relates the food retailer’s incentive to share 

information (and therefore adopt information sharing technologies), to the retailer’s gains from 

information sharing.  Of importance is the fact that the retailer’s profits increase with the 

number of suppliers the retailer faces and the scale of demand (sales).  Denoting net profits 

under information sharing arrangements by Γ1, MK (2005) find that:  

(1)                       ,)()
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where, n is the number of suppliers facing the retailer, a is the scale of demand, co is the 

operational cost associated with the product (documentation, transportation), v is the actual 

(manufacturing or processing) cost of the product, b is the slope of demand and rF represents the 

amortized (flow) cost of the fixed investments associated with information sharing IT adoption. 

It is cleat that,  

(1a)                                         01 >
∂
Γ∂
n  and 01 >

∂
Γ∂
a  

The first result obtains because a large number of suppliers works to the advantage of the retailer 

by reducing supplier’s ability to act opportunistically based on information it gathers from the 

retailer’s market demand.  Hence, large retailers facing numerous suppliers are more willing to 

adopt technologies and strategies that allow them to share information with their suppliers. 
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Notice that this is separate from the question of supplier size, a, which also exerts a positive 

influence on Γ1. Thus, we have: 

 

Hypothesis 1: Retailers with large sales and those facing a large number of suppliers are more 

willing to share sensitive market data along the supply chain with their suppliers.  

 

The second insight addresses the reverse question by exploring the retailer incentive in 

withholding information.  The disincentive to share information arises from concern for supplier 

opportunism despite obvious efficiency loss, such as reduced coordination of retailer-supplier 

orders and deliveries, that information withholding entails.  Denoting such information 

withholding gains by 2Γ , it is found that 2Γ  depends on a number of firm and market 

characteristics.  In particular, 
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Here, in addition to the variables defined earlier, s is the storage cost.  The terms involving Ω 

with various subscripts indicate the extent of unexpected supply and demand shocks that lead 

either to overstocks or stock-outs.  Specifically, 0>Ωu  represents “mean supply driven overstock” 

(hence the reason for being multiplied by s), while 0<Ωu and  s
0>Ωδ  represent the mean value of 

supply and demand driven stock-outs.  As in equation 1, rF’ represents the amortized (flow) cost 

of the fixed investments associated with IT adoption, but in this case IT is associated with 

technologies that enable the retail firm to exploit its information advantage over the supplier 
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rather than to share information with the supplier.  Examples might include the forecasting of 

demand or category management.  As a result, the demand driven component of stock-out is 

eliminated (in theory entirely so) to the retailer, but not to the supplier.  Thus, as was mentioned 

earlier, large demand variability can actually benefit a retailer who is able to forecast its demand 

but would be otherwise vulnerable to supplier opportunism.  Thus, we see from equation (2) that 

the gains form withholding information, 2Γ  , rise with stock-outs, s
0>Ωδ  , holding the number of 

suppliers (n) constant.  But a rise in n reduces the incentive to withhold information (by reducing 

2Γ ) via the term involving stock-outs, s
0>Ωδ .  This is the information withholding effect and 

shows that information withholding pays less when the retailer has market power vis-a-vis many 

suppliers.  Why is this?  Withholding information from a supplier is aimed at preventing supplier 

opportunism, but a rise in the number of suppliers reduces supplier opportunism.  Thus, gains 

from withholding information diminish.  In fact, we can verify that,  

(2a)                                               0
0

2 <
Ω∂

Γ∂
∂
∂

>
sn δ

 

 

Intuitively, a larger number of stock-outs represent great demand uncertainty.  But such an 

uncertainty provides value to a retailer who can forecast the demand with some accuracy.  When 

such a retailer is relatively small, the cost of supplier opportunism from sharing market demand 

data with a much larger supplier dominates the efficiency gains from such information sharing. 

Higher stock-outs imply higher value of demand prediction making it less likely that a small firm 

would adopt IT technologies that would lead to easier supplier opportunism.  Examples of such 

supplier opportunism that are tied to the suppliers’ knowledge of the retailers sales data might 

include suppliers offering excessively large “forward buys” to the retailers on the latter’s “high 

demand” products that would help suppliers shed inventories, or refusing to pay promotion 
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dollars for “fast moving” items since they would sell anyway, etc.  As the firm faces an 

increasingly number of suppliers, concern for supplier opportunism is reduced due to increasing 

competition among suppliers.  

 

This above discussion leads to second of key propositions of the MK (2005) that we present as 

hypothesis to be tested in this paper: 

 

Hypothesis 2. Large food chains that face many suppliers are less likely to withhold key market 

and stock-out data with their suppliers while small and independent retailers facing few large 

suppliers are more likely to withhold stock-out data.  

 

In the next sub-section we make operational the above hypotheses by presenting them in a 

testable empirical framework.   

 

Empirical Model 

Let, θ  be a binary variable such that, 

(4a)                                 θ =1     if an information sharing IT is adopted.  

(4b)                                  θ =0    if an information sharing IT is not adopted 

Then from equation (1) the decision to adopt occurs if the profit 1Γ  exceeds some threshold 

profit level, *
1Γ .  Expressing this in terms of the probabilities (denoted by Prob.)  

(5)                                      εθ +=Γ>Γ== ),,()(Pr)1(Pr *
11 Xanfobob  
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Whereε  is an error term and f is increasing in the arguments, n and a and X  is a vector of 

control variables.  Then from the theoretical results (1a) we can see that hypothesis 1 would hold 

if the following two inequalities hold: 

 

(6)                          Hypothesis 1:  0)1(Pr
>

∂
=∂

n
ob θ  and 0)1(Pr

>
∂

=∂
a

ob θ  

 

Equation (2) yields results that are consistent with the above hypothesis.  But as we see from (2a) 

this equation also yields an interesting result based on the interaction of the stock-out effect.  To 

operationalize this equation, we note that the probability of withholding information, given the 

knowledge of the stock-out variable, can be expressed as: 

   (7)                              '),().(Pr)|0.(Pr 0
*

220
εθ δδ

+Ω=Γ>Γ== >Ω >
Yngobob  

Where *
2Γ is some threshold profit level, 'ε  is an error term and Y is a vector of control 

variables.  Given the result from equation (2a), we see that the interaction of the stock-out effect 

and the number of firms is such that g’<0 or that, 
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But note that this probability is inversely related to the probability of sharing information or that 

)|0(Pr1)|1(Pr
00 >> ΩΩ =−==

δδ
θθ obob .  From this, we can present an operational version of 

Hypothesis 2, as follows: 
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The next section presents the empirical results.  
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DATA AND MEASUREMENTS  

To test the above hypothesis, logistic regression is used because the choice of specific 

technology is a binary variable.  The regressions are aimed at determining factors that influence 

the probability that a food retailer uses certain types of technologies that are likely to be 

associated with information sharing up the supply chain.  The data is based on a subset of the 

2003 survey of US supermarkets, consisting of 391 stores3.  A list of the categories of both the 

dependent and the independent variables is given in Table 1.   

 

As can be seen from the right hand side column in Table 1, several of the variables are converted 

from categorical to binary variables.  The reasons for doing this are different for different 

variables.  In the case of the IT variables, the clear issue is whether a technology is adopted or 

not.  However, unlike the approach taken by Dooley, Maud, and King (2004) in which a single 

IT variable was created by adding up all the binary variables, the special focus of this paper on 

IT adoption suggests that a better approach in this case would be to keep the binary variables 

distinct and separate in order to maintain the specificity of each.  (A detailed discussion of the 

technologies and their relation to information sharing strategies of the retail firm is presented in 

the next section.)   

 

In the case of variable Q11 (relation of store to warehouse or supplier) the categorical variable is 

converted to two binary variables representing either membership in a self-distributing chain or 

having the warehouse as independent wholesale supplier.  The interest in this dichotomous 

choice follows from a generally maintain hypothesis that self-distributing stores are more likely 

                                                
3 The use of 391 stores, instead of over 890 original stores, is to allow for a consistent data set across the years 
   2000-2003 for later use as a panel data analysis.  
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to share information vertically since in this case, the supply chain, or at least a segment of it in 

this case, is internal to the firm.  The stock-out variables in Q14 play an especially significant 

role in our empirical analysis based on the theoretical findings of the previous section.  Here, an 

average stock-out level was calculated based on the simple average of the reported stock out 

variable in the three categories of cereal, poultry, and yogurt.  Finally, horizontal market 

competition is thought to have an impact on a firm decision to share or not to share information 

with its suppliers as per Gal-Or, 1985; Li, 1985 and 1999; Raith, 1996.  These variables are 

captured by sales or price leadership status of the store (Q27-SL=1 and Q29_PL=1) and by 

distance from the main competitor (Q25).  Distance from one’s competitor signals more 

insulation from the competitor making it more likely to allow the retailer to share it information 

with the supplier.  

 

RESULTS  

Results from Maximum Likelihood Estimation (MLE) of the logistic regression are presented in 

this section.  Rather than using a broadly defined measure of supply chain technologies, we focus 

on three key technologies that form a critical role in information sharing processes; (a) the 

Electronic Transmission of Movement Data to headquarters or key suppliers (ETMD), (b) 

Scanning Data for Automatic Inventory Refills (SDAIR) and (c), Vendor Managed Inventory 

(VMI) consisting of vendor generated non-DSD (non-direct store delivery) orders via store 

movement data.  Of these technologies, the first ETMD is a reflection of the retail firm’s 

initiative and its intention in committing itself to share sensitive market or inventory information 

with its suppliers.  On the other hand, the two other technologies, SDAIR and VMI entail a 

                                                                                                                                                       
 



 14 

reduced level of retailer involvement and initiative: SDAIR involves automatic inventory refills 

and is therefore an automatic and routinized process; VMI involves vendor management of the 

retailer’s data and therefore demands more initiative from the supplier than from the retailer. 

These observations have important implications for our empirical results.  For example, we 

would expect stronger support for our hypothesis in the case of the ETMD technology than in the 

case of the other two technologies.  This is because by focusing on the optimal choice of the 

retailer our theory presumed an active role on the part of the retailer while the supplier remained 

more or less passive with respect to the technology choice. This would be a better fit for the 

ETMD platform than for SDAIR or VMI platforms.  

 

Of the independent variables, three are key variables that are associated with Hypotheses 1 and 2. 

These are store size by sales area, the number of stores in the supply chain, and the extent of 

average stock-out that a store experiences.  The two variables, “store size by sales area” and 

“number of stores in the supply chain” require some explanation.  The variable “store size by 

sales area” is used as a proxy for the scale of demand denoted by “a” in the theory section. 

Although a variable known as “average weekly sales” by stores is also available from the Panel 

data, that variable is subject to a number of problems.  Foremost among them is the fact that the 

time period over which the average is calculated is inconsistent across observations; varying 

from different months in 2002 to the year 2003.  By contrast, store size by sales area is a more 

stable variable, even if measured in different months.  It is therefore more likely to produce a 

consistent measure of sales, representing the scale of demand “a” more accurately.  
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The variable, “number of stores in the supply chain,” indicates the size of the supply chain.  In 

the absence of direct data on the number of suppliers which is needed to test Hypotheses 1 and 2, 

we shall use the variable, “number of stores in the supply chain,” as a proxy for the number of  

suppliers.  This is a plausible assumption as larger chains are able to exert market power over 

numerous small suppliers.4  

 

Finally, a number of control variables are introduced that examine the importance of horizontal 

competition as well as the question of whether the store is part of a self-distributing chain or is 

served by a separate warehouse-wholesaler.  

 

Testing Hypothesis 1  

In what follows, tables 2 - 4 focus on the effects of store size and number of stores on the 

probability of adopting an information-sharing platform, as per Hypothesis 1, while Tables 5 - 6 

focus on the effects of stock-out on that same probability as per Hypothesis 2.  Other variables 

introduced in these tables play the role of various controls.  

 

The structure of Tables 2 - 4 which report these direct effects is as follows:  Tables 2 and 2a are 

associated with the ETMD technology.  Table 2 reports the results for the pooled sample of all 

stores.  In this table whether a store is part of a self-distributing chain or is an independent store, 

is captured by the dummy variable, “self-distributing.”  Although the sample also included a 

third category where the respondents “did not know” the store’s status (see Table 1), the total 

                                                
4 One exception to this might be self-distributing stores which may elect fewer safer sources of supply to insure 
greater continuity. However, by carefully separating out this group of stores through either dummy variable or 
stratified sample, we are able to eliminate the potential for confounding that could arise from this effect. The author 
wishes to thank Jean Kinsey for this discussion.   
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number of such observations was only 3.  Given this small size, it is safe to equate the base value 

of “self-distributing=0” to the case of independent stores.  By contrast to Table 2, Table 2a 

reports the results of separate logistic regressions for two stratified sub-samples of self-

distributing stores and independent stores.  Similar structure is repeated in Tables 3 and 3a for 

the case of the SDAIR technology and Tables 4 and 4a for the case of VMI technology.  

 

In Tables 2, 3, and 4, the first four columns represent four different logistic estimates, but focus 

only on the role of store size and vertical structure (i.e. self-distributing versus independent) as 

independent regressors.  With respect to store size, both variables, sales area and total size, were 

highly correlated.  Thus only one variable, in this case sales area, was chosen to be used in most 

of the regressions (except the first two), primarily because sales area is a closer index of the scale 

of demand (see equation 1) than is total store size.   

 

The last two columns specify logistic regression runs that also add horizontal competition/market 

structure variables as control variables to the previous set.  The difference between the two 

columns is that column E excludes the “self-distribution” dummy variable while column F 

includes that variable.  

 

We will now discuss each table.  Table 2 focuses on ETMD technology.  This is the first of three 

supply chain technologies that is directly related to information sharing.  From the table, store 

size by sales area is positively and significantly associated with the probability of adopting 

ETMD technology.  However, the number of stores in the supply chain has a positive effect only 

when self-distribution is not controlled for and disappears in the presence of the self-distribution 
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variable.  In turn, self-distribution plays a strong and significant role in the technology adoption 

decision.  But this would suggest that what appears to be as a confirmation of Hypothesis 1 from 

Table 2, may be simply a reflection of the dominance of the self-distribution effect.  We address 

this issue by stratifying the sample into self-distributing and independent stores.  The results are 

reported in table 2a.  Interestingly, both the number-of-stores variable and the size variable (our 

n and a in the theory section) are now significant for the independent store, but not for the self-

distributing stores.  Thus, it appears that both the number of stores and the size of store influence 

the probability of adopting EDTM technology. ; quite distinct from the self-distribution effect.  

In so far as EDTM technology is concerned, we therefore find strong empirical support for 

Hypothesis 1, where both the number of stores [as a proxy for the number of suppliers, (n) per 

earlier discussion] and the sort size (a) exert positive influence on the probability of adopting 

information sharing technologies.   

 

The second technology that is directly involved in information sharing strategies is called 

Scanning Data for Automatic Inventory Refills (SDAIR).  The results for this technology are 

reported in Table 3.  These results are interesting in that in the pooled sample (Table 3) both size 

and the number of stores are significant whether or not the self-distribution variable is present. 

However, in the stratified sample (Table 3a) the size variable and the number-of-stores variable 

both lose significance for independent stores while only the size variable remains significant for 

self-distributing chains.  Econometrically, this outcome can occur if, in the pooled sample, the 

residuals are correlated with the dummy variable “self-distribution” (e.g., a systematically higher 

or systematically lower residual for the self-distributing chains).  In that case, the stratified 

sample resolves this problem by running separate logistic regressions on each of the two sub-
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samples.  Thus, on the whole, the results of Table 3a are to be trusted more.  Here, the 

coefficients of size are significant only in two instances and those of the “number of stores 

variables” are only border-line significant (see below for our explanation.)   
 

Next, we will focus on a third type of information sharing technology, namely, Vendor Managed 

Inventory (VMI) consisting of vendor generated non-DSD orders via store movement data. A 

comparison of Tables 4 and 4a shows a rather similar pattern as the one for the SDAIR 

technology, where the significance of the number-of-stores in Table 4 in the pooled sample 

disappears in the stratified sample and where the size variable loses significance in the stratified 

sample.  In short, we observe weak support for Hypothesis 1 in the case of SDAIR and VMI 

technologies and strong support for that hypothesis in case of ETMD technology.    

 

All three findings above, the strong support of Hypothesis 1 for the ETDM technology and the 

weak support for that hypothesis for SDAIR and VMI technologies are entirely consistent with 

the fact that ETDM involves the retailer’s active participation while the other two technologies 

are those in which the initiative is with the supplier and not the retailer.  This observation was 

earlier discussed in greater detail.  It will be further reinforced when we test Hypothesis 2 below.    

 

Testing Hypothesis 2:  

We can test Hypothesis 2 by considering the role that stock-outs play in influencing the stores 

decision to adopt information sharing technologies with their suppliers.  Equation (9) indicated 

that the likelihood of adopting information sharing technologies by a retailer increases with the 

product “n.Ωδ”, where n is the number of suppliers and Ωδ is the mean value of stock-outs. 
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Again, using the variable “number of stores in the chain,” as a proxy for the number of suppliers 

under Hypothesis 2, results of testing for this hypothesis are reported in Tables 5 and 5a. 

Accordingly, the critical variable to look for is the interaction variable, “Average_stockout X 

number of stores.”  On this variable, Table 5 shows the indicated positive and significant sign, 

but only for the VMI technology.  However, since “self-distribution” does not enter in this table 

as a dummy variable, it is hard to gauge whether this positive effect is associated with self-

distributing stores or independent retailers.  Table 5a is therefore presented in which the various 

runs of table 5 are repeated for the stratified samples of self-distributing stores and independent 

stores.  For the case of VMI technology, the results from Table 5a reiterate the significant and 

positive sign of the key interaction variable, “Average_stockout X number of stores,” that was 

found in Table 5.  Thus results for the VMI technology support Hypothesis 2, but are found only 

among the self-distributing stores.  In addition, Table 5a reveals a new pattern that was not 

observed in the pooled sample of Table 5: our key interaction variable is found to be significant 

and positive for the case of the ETDM technology among independent food retailers.  Thus 

results for the ETMD technology support Hypothesis 2, but only for independent food retailers. 

What makes these results interesting is the fact that different technologies appear to be associated 

with information sharing under different market structures.  The explanation for this lies in 

understanding the meaning of the interaction variable when combined with the characteristics of 

the technologies.  Our theory section showed that stock-outs trigger a need to share technologies 

to minimize their level and their adverse effects on profits.  But at the same time, retailers are 

also concerned about the potential for exploitation of their information by the suppliers.  The 

more numerous are the suppliers (empirically approximated the size of the retail chain), the less 

is the retailer distrust of the supplier and the more likely are retailers to adopt information 
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sharing technologies with their suppliers.  What ties this hypothesis to the technology platform is 

the question of how much of a choice does the retailer exercise in its technology adoption 

decision.  The ETDM technology involves, by its definition, the transmission of data by the 

retailer and thus much involves retailer initiative and choice.  Such a decision requires much 

autonomy and independence.  This is the characteristic of independent retailers, rather than 

retailers that are a part of self-distributing chains where critical decisions are taken at corporate 

headquarters.  By contrast, the VMI technology involves vendor management of information and 

is likely to involve a great deal of supplier initiative.  Thus, it is more likely to be initiated at a 

company-wide level and at headquarters and is therefore more likely to be associated with self-

distributing stores.  

 

In short, the nature of information sharing technology platforms in the food industry is highly 

influenced by the specific market structure of the firms involved.  

 

Finally, Table 5a tells us that store size is also important in technology adoption decisions.  It is 

an important determinant for independent stores for the ETMD and VMI technologies and for 

self-distributing stores for SDAIR and VMI technologies.  

  

CONCLUSION 

Vertical information sharing has posed a sensitive strategic challenge among retail firms who, by 

their location at the end of the supply chain, possess the most valuable segment of the 

information real estate and one that is valuable to all members of the supply chain.  The 

challenge is this: on the one hand information sharing increases the efficiency of the retailers by 
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better coordinating supplies and orders, and on the other hand, it may compromise the bargaining 

power of the retailers, opening them to opportunistic behavior on the part of suppliers.  

 

Nowhere is this dilemma more apparent than in the food sector.  Basing its theoretical 

framework on a paper by Mohtadi and Kinsey (2005) and its empirical analysis on the 

Supermarket Panel Data conducted by The Food Industry Center at the University of Minnesota, 

this paper examines this issue.  The empirical results generally support the theory, but point to a 

dichotomy: firms that are part of larger chains are more likely to adopt technologies leading to 

vertical sharing of information, but firms that belong to smaller chains are less likely to do so.  

The fundamental explanation for this finding does not seem to be the cost and the affordability of 

the technology.  Such effects are already controlled for by variables such as store size and yet, 

significant residual effects remain.  The MK (2005) paper and Kauffman and Mohtadi (2004a) 

papers argued that opportunistic behavior on the part of agents (in this case, the suppliers) is 

responsible for this result and the empirical findings here seem to point to that direction.   

 

Thus, there appears to be a “digital divide in information sharing” between the two types of 

market structures.  This divide, however, is distinct from the issue of cost of IT adoption and the 

question of its affordability by smaller stores and stems from issues related to incomplete 

markets.  Kauffman and Mohtadi (2004b) analyzed a related divide between large and small 

firms in terms of the types of procurement technology that they adopt.  The findings in this paper 

also shed light on how different market structures adopt different types of technologies.  This is 

consistent with Kauffman and Mohtadi (2004b).  
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Are there public policy implications of these findings; both with respect to adoption versus non-

adoption of IT platforms as well as with respect to the adoption of different types of platforms? 

Should there be regulatory mechanisms that are aimed at evening out the playing field?  These 

are among some of the questions that this paper raises, but does not answer.  Yet, such answers 

must be sought if further concentration of the food industry is likely to continue.  
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      Table 1:  Description of Select variables from 2003 Supermarket Survey 
                      University of Minnesota- The Food Industry Center 
 
 

Variable 
Codes*  

Information Technologies (IT) 
involving information sharing: 

Original Form of the 
Var. in Survey:  

Variables converted for this 
research: 

Q1d 
 

Electronic transmission of movement 
data to headquarters or key suppliers 
(ETMD)  

Q1g 
 

Internet/Intranet link to corporate 
headquarters and/or key suppliers 

Q1i 
 

Scan-based trading (payment to 
vendor triggered by sale to 
consumer) 

Q1j 
 

Scanning data for automatic 
inventory refill (SDAIR) 

Q1l 
 
 

Vendor managed inventory (vendor 
generated non-DSD orders via store 
movement data) (VMI)  

These variables were in 
categorical form as 
follows: 
 
Used >3 years=1  
 
Used 1-2 years=2 
 
Used 1 yr=3 
 
Plan to use next year=4  
 
No plan to use=5 
 
Do not know=6  

The variables were converted 
to binary variables, Q1d-
adopt… 
Q1l-adopt. for use in logistic 
regressions: 
 
If Q1d…Q1l = 1, 2, or 3, 
then  
Q1d-adopt…Q1l-adopt =1,  
i.e., technology is adopted. 
 
If Q1d…Q1l = 4, 5, or 6, 
then  
Q1d-adopt…Q1l-adopt =0,  
i.e., technology is not 
adopted.  Size Variables:   

Q4 Selling area   

Q5 Total area   

 Vertical Structure:   

Q10 # of stores in the supply chain   

Q11 Relation of store to warehouse or 
supplier: 

Categorical Variables: Binary variable Q11-Selfdis 
is created:  

 Store uses a wholesaler Q11=1 

 Store is part of self-distributing chain Q11=2 

 Unknown Q11=3 

Q11-Wohlesale=1 if Q11=1 
Q11-Wohlesale=0 otherwise 
Q11-Selfdist=1 if Q11=2 
Q11-Selfdist=0 otherwise 
 

 Stock-out Problem: Categorical Variables: Binary variables are  created: 
Q14a Cereal 

Q14b Poultry 

Q14c Yogurt 

large problem: Q14a=1 
small problem: Q14a =2 
No problem: Q14a =3 
Not known; Q14a =4 
Same for Q14b & Q14c. 

Q14a-stkout=1 if Q14a=1,2 
Q14a-stkout=0 if Q14a=3,4 
 
Same for Q14b and Q14c. 

 Horizontal Competition:   

Q25 Distance from the main competitor    

Q27 (10) Competitive sales rank of the four 
main competitors (1- 4: Leader=1) 

Q27 = 1 if self is leader 
Q27=2-4 if others 

Q27-SL =1 if Q27=1 
Q27-SL = 0 if Q27=2-4  

Q29 Price leadership of store & its 3 main 
competitors 

Q29 = 1 if self is leader 
Q29=2-4 if others 

Q29-PL =1 if Q27=1 
Q29-PL = 0 if Q27=2-4 

        

          * The codes are those actually used in the Supermarket Panel (2003) survey itself.  



Table 2: Maximum Likelihood Logistic Estimates of the Effects of Store and Market Characteristics on the 
Probability of Adopting ETMD (Electronic Transmission of Movement Data to Head Quarters/Suppliers)
(test of hypothesis 1)

Pooled Sample

A B C D E F
Size Variables
Sales area (in 1000 sq feet) 1.030 1.031 1.055** 1.043** 1.05** 1.040**

  (0.97)  (1.03)  (6.23)   (4.63) (5.21)  (4.12)
Total Size (in 1000 sq feet) 1.024 1.013

(0.97) (0.53)
Vertical Supply Chain Structure
Number of stores (in 10 store units) 1.008** 1.004 1.009** 1.004 1.008 1.004

 (2.31)  (1.19)  (2.5)  (1.23)  (2.35)  (1.08)
Self-distributing 3.020**  3.430** 3.538**

 (3.21)  (3.66)  (3.48)
Horizontal Competition/Market Structure
Distance to first competitor 0.970* 0.979

(-1.66) (-1.39)
Sale-leader (self) 1.860* 1.174

 (1.67)  (1.38)
Price-leader (self) 0.980 0.763

(-0.06) (-0.82)
Log likelihood -201.9 -196.4 -207.0 -199.8 -193.3 -186.8
Pseudo R2 0.18 0.21 0.17 0.20 0.19 0.22

Notes:  Estimates are odds ratios  
            Numbers in parenthesis are z values 
            * means significant at 10 percent or better  
            ** means significant at 5 percent or better 

Dependent Variable: Probability (ETMD adopt=1)
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Table 2a: Same as Table 2 but for Stratified Samples of Self-Distributing and Independent Stores
(test of hypothesis 1)

Columns A-C: Subsample Columns D-F: Subsample of
of Self-Distrubuting Stores Independent Stores
A B C D E F

Size Variables
Sales area (in 1000 sq feet) 1.053 1.029 1.023 0.978 1.026** 1.026**

  (1.14)  (1.76)   (1.32) (-0.51)   (2.30)  (2.15)
Total Size (in 1000 sq feet) 0.981  1.045

 (-0.51)   (1.25 )
Vertical Supply Chain Structure
Number of stores (in 10 store units) 1.002 1.002 1.002 1.588** 1.584** 1.574**

  (0.66)  (0.65)   (0.69)  ( 2.77)  (2.81)  (2.74)
Horizontal Competition/Market Structure
Distance to first competitor 1.008 0.982

  (0.07)  (-1.15)
Sale-leader (self)   4.09* 1.389

  (1.71)  (0.67)
Price-leader (self) 0.642 0.667

 (-0.76)  (-0.92)
Log likelihood -49.8 -50.5 -45.7 -39.3 -137.8 -129.8
Pseudo R2 0.05 0.05 0.09 0.05 0.15 0.16

Notes:  Estimates are odds ratios   
            Numbers in parenthesis are z values
            * indicates marginal significance at 10 percent or better
            ** means significant to 5 percent or better 

Dependent Variable: Probability (ETMD adopt=1)
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Table 3: Maximum Likelihood Logistic Estimates of the Effects of Store and Market Characteristics 
on Probability of Adopting SDAIR ( Scanning Data for Automatic Inventory Refill)
(test of hypothesis 1)

Pooled Sample

Dependent Variable: Probability (SDAIR adopt=1)

 A B C D E F
Size Variables
Sales area (in 1000 sq feet) Q4/1000 0.980 0.980 1.0298** 1.0257** 1.0259** 1.0241**

(-0.68)   (-0.58) (4.01)   (3.38) (3.46) (3.15)
Total Size (in 1000 sq feet) Q5/1000 1.045 1.040

(1.69)   (1.45)
Vertical Supply Chain Structure
Number of stores (in 10 store units)  Q10/10 1.005** 1.004** 1.005** 1.004* 1.005 1.004

(2.69) (1.87) (2.62)   (1.71) (2.35) (1.62)
Self-distributing 1.967 2.161 1.781

  (1.43)   (1.66) (1.18)
Horizontal Competition/Market Structure
Distance to first competitor 0.911 0.918

(-1.38) (-1.25)
Sale-leader (self) 1.366 1.313

(0.64) (0.57)
Price-leader (self) 0.629 0.583

 (-0.95)   (-1.1)
Log likelihood -96.9 -95.9 -98.9 -97.5 -91.8 -91.1
Pseudo R2 0.18 0.19 0.16 0.18 0.18 0.19

Notes:  Estimates are odds ratios  
            Numbers in parenthesis are z values
            *means significant at 10 percent or better 
            **means significant to 5 percent or better 

 30



Table 3a: Same as Table 3 but for Stratified Samples of Self-Distributing and Independent Stores
(test of hypothesis 1)

Columns A-C: Subsample Columns D-F: Subsample of
of Self-Distrubuting Stores Independent Stores
A B C D E F

Size Variables
Sales area (in 1000 sq feet) 0.99 1.028** 1.028** 0.95 1.02 1.01

 (-0.24)  (3.07)   (3.01) (-0.70)   (0.90)  (0.49)
Total Size (in 1000 sq feet) 1.03  1.06

 (1.02)   (1.01 )
Vertical Supply Chain Structure
Number of stores (in 10 store units) 1.00 1.00 1.00 1.01 1.01 1.01

  (1.60)  (1.46)   (1.42)  ( 1.36)  (1.52)  (1.21)
Horizontal Competition/Market Structure
Distance to first competitor 0.98 0.88

  (-0.18)  (-1.28)
Sale-leader (self) 1.18 1.31

  (0.29)  (0.30)
Price-leader (self) 0.51 0.99

 (-1.16)  (-0.01)
Log likelihood -56.0296 -56.952 -52.2752 -39.2822 -39.9132 -37.7619
Pseudo R2 0.15 0.14 0.16 0.05 0.04 0.08

Notes:  Estimates are odds ratios   
            Numbers in parenthesis are z values
            ** means significant to 5 percent or better 

Dependent Variable: Probability (ETMD adopt=1)
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Table 4: Maximum Likelihood Logistic Estimates of the Effects of Store and Market 
Characteristics on the Probability of Adopting VMI ( Vendor Managed Inventory) 
(test of hypothesis 1)

Pooled Sample

Dependent Variable: Probability (VMI adopt=1)
 A B C D E F
Size Variables
Sales area (in 1000 sq feet) 1.007 1.009 1.022** 1.019** 1.022** 1.019**

(0.30) (0.37) (3.58) (3.01) (3.26) (2.88)
Total Size (in 1000 sq feet) 1.013 1.009

(0.61) (0.42)
Vertical Supply Chain Structure
Number of stores (in 10 store units) 1.004** 1.003 1.004** 1.003 1.004** 1.003

(2.14) (1.51) (2.16) (1.52) (2.35) (1.59)
Self-distributing 1.458 1.469 1.598

  (1.16)   (1.21) (1.35)
Horizontal Competition/Market Structure
Distance to first competitor 1.010 1.013

(0.90) (1.08)
Sale-leader (self) 1.145 1.085

(0.37) (0.23)
Price-leader (self) 0.901 0.848

( -0.28)  (-0.48)
Log likelihood -176.195 -175.529 -177.763 -177.044 -165.498 -164.594
Pseudo R2 0.08 0.08 0.08 0.08 0.08 0.09

Notes:  Estimates are odds ratios   
            Numbers in parenthesis are z values
            ** means significant to 5 percent or better 
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Table 4a: Same as Table 4 but for Stratified Samples of Self-Distributing and Independent Stores
(test of hypothesis 1)

Columns A-C: Subsample Columns D-F: Subsample of
of Self-Distrubuting Stores Independent Stores
A B C D E F

Size Variables
Sales area (in 1000 sq feet) 1.01 1.018** 1.02** 1.00 1.02* 1.02

 (0.43)  (2.38)  (2.42) (0.11)  (1.81)  (1.56)
Total Size (in 1000 sq feet) 1.00  1.01

 (0.15 )   (0.43 )
Vertical Supply Chain Structure
Number of stores (in 10 store units) 1.00 1.00 1.00 1.01 1.01 1.01

  (1.37)  (1.39)   (1.52)  ( 0.72)  (0.79 )  (0.90)
Horizontal Competition/Market Structure
Distance to first competitor 1.08 1.01

  (1.20)  (0.92)
Sale-leader (self) 1.26 0.70

  (0.49)  (-0.56)
Price-leader (self) 0.52 1.97

 (-1.42)  (1.39)
Log likelihood -79.065 -80.014 -72.5 -96.3244 -96.9266 -89.0611
Pseudo R2 0.064 0.065 0.101 0.0245 0.0216 0.0322

Notes:  Estimates are odds ratios 
            Numbers in parenthesis are z values.
            * indicates marginal significance at 10 percent or better
            **means significant to 5 percent or better  

Dependent Variable: Probability (ETMD adopt=1)
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Table 5: Maximum Likelihood Logistic Estimates of the Effects of Stockouts and number of Stores  on the 
 Probability of Adopting Different Technolgies
(test of hypothesis 2) Pooled Sample

Dependent Variables: Probability of Adopting the Technology

 ETMD ( Elect.Trans.  SDAIR ( Scanning Data VMI (Vendor Managed 
of Movement Data… for Auto. Inventory Refill) Inventory) (Non-SDS)

Size
Sales area (in 1000 sq feet) 1.050** 1.050** 1.028** 1.027** 1.025** 1.024**

(5.26) (5.25) (3.82) (3.75) (3.76) (3.72)
Horizontal Competition
Distance from the main competitor 0.974* 0.973* 0.907 0.905 1.010 1.009

(-1.7) (-1.77) (-1.43) (-1.44) (0.80) (0.74)

Competitive sales rank of 1.755 1.93* 1.303 1.331 1.125 1.161
main competitor (1.50) (1.72) (0.55) (0.59) (0.32) (0.41)

Price leadership of the store 0.894 0.848 0.612 0.588 0.923 0.891
against its 3 main competitors (-0.36) (-0.52) (-1.00) (-0.89) (-0.23) (-0.34)

Stock-out Effects 
Average_Stockout 0.405** 0.515 0.563

 (-2.31) (-0.89) (-1.19)
Average_stockout X number of stores 0.999 0.999 1.004 1.005 1.007* 1.007**
(in 10s) (-0.18) (-0.06) (1.08) (1.13) (1.84) (1.90)
Average_stockout X self distribution 5.802 8.772 1.712 2.554 0.750 1.024

(2.29) 2.820 (0.74) (1.07) (-0.46) (0.03)
-193.1 -190.37898 -92.3 -91.890 -166.1 -165.3
0.194 2.820 0.176 0.179 0.078 0.205

Notes:  Estimates are odds ratios  
            Numbers in parenthesis are z values 
            * indicates marginal significance at 10 percent or better
            **means significant to 5 percent or better  
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Table 5a: Same as Table 5 but for Stratified Samples of Self-Distributing and Independent Stores
(test of hypothesis 2)

Dependent Variables: Probability of Adopting the Technology

 ETMD ( Elect.Trans.  SDAIR ( Scanning Data VMI (Vendor Managed 
 of Movement Data… for Auto. Inventory Refill) Inventory) (Non-SDS)

subsample: subsample: subsample: subsample: subsample: subsample:
self-dist. stores indep. stores self-dist. stores indep. stores self-dist. stores indep. stores

Size
Sale area (in 1000 sq feet) 1.025 1.034** 1.030** 1.009 1.023 1.022*

(1.42) (2.76) (3.28) (0.48) (2.74) (1.84)
Horizontal Competition
Distance from the main competitor 0.989 0.982 0.977 0.878 1.084 1.011

(-0.1) (-1.19) (-0.24) (-1.28) (1.13) (0.83)

Competitive sales rank of 4.015* 1.408 1.120 1.337 1.256 0.718
main competitor (1.69) (0.67) (0.20) (0.32) (0.48) (-0.50)

Price leadership of the store 0.609 0.741 0.503 0.838 0.521 2.031
against its 3 main competitors (-0.85) (-0.69) (-1.17) (-0.20) (-1.40) (1.43)

Stock-out Effects 
Average_Stockout 1.182 0.386** 1.034 0.887 0.313 1.11

(0.18) (-1.96) (0.04) (-0.12) (-1.55) (0.18)

Average_stockout X number of stores 0.999 2.424** 1.004 1.033 1.008** 0.958
(in 10s) (-0.17) (2.02) (1.04) (1.14) (2.04) (-0.79)

Log likelihood -45.94 -132.12 -52.460 -37.817 -71.3 -88.91
Pseudo R2 0.086 0.141 0.153 0.075 0.116 0.034

Notes:  Estimates are odds ratios  
            Numbers in parenthesis are z values 
            * indicates marginal significance at 10 percent or better
            ** means significant to 5 percent or better 
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