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Abstract

The magnitude of basis risk between Actual Production History (APH) and Group Risk Plan
(GRP) contracts across corn farms in Illinois counties is estimated using pseudo-simulated
yields with farm specific geospatial climate data. A two-step hierarchical Bayes small area
estimator was used to address problems related to lack of representative sample, aggrega-
tion bias, properly accounting for spatial and temporal heterogeneity and uncertainty in
parameter estimates.

We found wide variation in expected basis risk across farms within and between counties.
Expected basis risk was found to sharply increase under APH plans with higher coverage
levels.
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1. Introduction and Background

Area level crop insurance and farm level crop insurance are two major categories of crop
insurance provided to farmers by the Federal Crop Insurance Program (FCIP). Indemnities
for farm level policies are triggered when the observed yield falls below the yield guaran-
tee.Area level policies are designed to insure farmers against widespread or catastrophic losses
and indemnities are triggered when the observed county average yield falls below a trigger
amount (yield guarantee). Area-based policies cost considerably less to administer with the
potential of reducing adverse selection and moral hazard. This is because claim agents are
not required to carry out a damage assessment before issuing payments, and farmers are less
likely to know the true distribution of the expected county yield thus preventing them from
self-selecting into specific plans. In addition, incentives for farmers to engage in negligent
behavior after obtaining coverage is significantly reduced since a poor yield on one or few
farms may not be sufficient to lower the observed county average yield down to the trigger
level. The low cost of administration makes premium for area level policies considerably
lower compared to premiums for farm level policies. However, a disproportionate amount
of farmers prefer farm level policies such Actual Production History (APH) over area level
policies such as Group Risk Plan (GRP) for farm risk management.

In 2011, the risk management agency (RMA) responsible for administering the FCIP
covered over 265 million acres, assuming over $80 million in liability. However only 6% of
the total FCIP liability (RMA, 2011) was attributed to GRP. Past studies have attributed
the observed behavior to basis risk. Basis risk result from the lack of correlation between
farm level crop losses and county level crop losses.

This study attempt to quantify the magnitude of basis risk involved across corn farms
in Illinois counties using pseudo-simulated yields with farm specific geospatial climate data.
To reliably estimate basis risk one must first efficiently rate contracts for the area and farm
level policy involved.

Challenges faced by researchers to reliably estimate premiums still prevails and include
making distributional form assumptions, properly accounting for spatial and temporal het-
erogeneity, lack of representative sample and dealing with aggregation bias (Just and Pope,
1999; Ozaki et al, 2008; Claassen and Just,2009). Recent findings from an empirically
grounded simulation by Ramirez and Carpio (2011) showed that the high level of subsidy
needed to keep the Federal Crop Insurance Program (FCIP) solvent can mostly be explained
by the use of biased premium estimates and not adverse selection by farmers presumed to
have a better knowledge about their risk exposure than the insurer.

Following Awondo et al. (2012), we treat the lack of a representative sample as a classic
small area estimation problem and employ a two-step hierarchical Bayes model (Fay and
Herriot, 1979; Datta and Ghosh, 1991; Datta et al., 1999; Prasad and Rao, 1990; Ghosh and
Rao, 1994; Prasad and Rao, 1999; You and Rao, 2003) that combines direct county estimates
and county-level data to obtain more efficient expected county yields and expected loss
(actuarially fair premium) for GRP policy. The resulting estimate is either shrunken toward
or away from the direct estimate (simple county averages). Next we simulated actuarially
fair premiums for Actual Production History (APH) and proceed to derive expected basis
risk based on GRP and APH premiums.

Small area estimation is an active area of research aimed at obtaining reliable estimates
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from subpopulation (district, county, state, country, sex, race, sex-race combination, etc)
when the data has few observations at least in some subpopulation (Datta and Ghosh, 1991;
Datta et al., 1996, 2000, 2002; Rao, 1999, 2003). Suppose that the number of farms from
which data is collected vary from county to county and in some cases likely to be far smaller
than the actual total number of farms within the county. In this case, the observed county
average yield and hence expected county yield based on the data could be unreliable giving
rise to a classic SAE problem.

Following Awondo et al. (2012), we derived design consistent estimates under both simple
random sampling (with equal weights on each observation) and weighted random sampling
(with unequal weights) to accounts for the design. USDA-NASS area frame design for
agricultural surveys which is the methodology used by NASS to develop and sample Primary
Sampling Units (PSUs) and segments sometimes chooses segments based on the Probability
of Selection Proportional to Size (PPS)(USDA-NASS, 2009). Thus putting more weight on
large farms within a county. In this case, failure to account for the sampling design could
lead to design inconsistent estimates (Datta et al., 1996, 2000; Prasad and Rao, 1999; You
and Rao, 2003).

The rest of the paper is organized as follows. In section two, we specify the model use for
estimation. Section three discusses the data and data generation process while section four
presents results and discussions. Finally, we conclude with a summary of major findings and
suggestions for future research.

2. Model specification and estimation

We specify a two-step hierarchical Bayes small area estimator for expected corn yields
at county level. For simplicity, we use a nested error regression (NER) model with cross
sectional data for both farm level and county level. The specification can easily be extended
to longitudinal and time series data to fully represent temporal effects following Ghosh et al.
(1996); Datta et al. (1999, 2002) and Torabi (2012). The model develop is based on the basic
unit level NER model by Battese et al. (1988) and extensions by Prasad and Rao (1999) and
You and Rao (2003).

The basic unit level NER model takes the form.

yij = xT
ijβ + ui + eij, j = 1, ..., ni, i = 1, ...,m (2.1)

Where yij is the yield on farm j in county i, xij is the vector of auxiliary variables, β is the
vector of fixed parameters, ui is the random effect of area i and eij the random individual
error term. The county effects ui are assumed independent with zero mean and variance σ2

u.
Similarly, the errors eij are independent with mean zero and variance σ2

e , ui’s and the eij’s
are assumed mutually independent.If Ni is large,N−1

i ΣNi
j=1eij ≈ 0 and we can approximate

the mean yield for county i by θi
1.

θi = X̄T
i β + ui (2.2)

1where X̄i and xij are vectors both with dimensions kX1 and X̄i = ΣNi
j=1

xij

Ni
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Lets suppose that data was collected from ni corn farms where each sample (ni) is weighted
by the size of the farm with weights w̆ij. We can combine equation 2.1 with the direct county
average yields (ȳiw) to produce a county-level NER model (equation 2.3)2.

ȳiw = x̄T
iwβ + ui + ēiw, i = 1, ...,m (2.3)

2.1. Hierarchical Bayes model

To develop an HB estimator based on equation 2.1, we consider that (i) yij|β, ui, σ
2
e ∼

N(xT
ijβ + ui, σ

2
e), j = 1, ..., ni, j = 1, ...,m;(ii)ui|σ2

u ∼ N(0,σ2
u), and (iii) β ∼ N(0,H) where

H is the variance covariance matrix of β. The precision parameter of each of the variance
components is assumed to follow an inverse gamma distribution with different parameters;
σ2
e ∼ IG(λ1, τ1) and σ2

u ∼ IG(λ2, τ2). The joint posterior distribution function is then given
by equation 2.4.

f(β, σ2
u, σ

2
e |yij, 1 ≤ j ≤ n, 1 ≤ i ≤ m) =

m∏
i=1

[

ni∏
j=1

(
1

σ2
e

)
1
2 e

− 1

2σ2
e
(yij−xT

ijβ−ui)
2

(
1

σ2
u

)
1
2 e

− 1

2σ2
u
u2
i ]

X [

p∏
l=1

(
1

h2
l

)
1
2 e

− 1

2h2
l

β2
l
](

1

σ2
e

)λ1+1e
− τ1

σ2
e (

1

σ2
u

)λ2+1e
− τ2

σ2
u (2.4)

Solving for the marginal posterior distributions from equation 2.4 gives the following full
conditionals.

β|yij, ui, σ
2
e , σ

2
u ∼ N(Λσ2

eΣ
m
i=1Σ

ni
j=1(yij − ui)xij,Λ) (2.5)

Where Λ = (σ−2
e Σm

i=1Σ
ni
j=1xijx

T
ij +H−1)−1.

ui|yij, β, σ2
e , σ

2
u ∼ N((ni +

σ2
e

σ2
u

)−1Σni
j=1(yij − xT

ijβ), (
ni

σ2
e

+
1

σ2
u

)−1) (2.6)

σ2
e |yij, β, ui, σ

2
u ∼ IG(λ1 +

1

2
Σm

i=1ni, τ1 +
1

2
Σm

i=1Σ
ni
j=1(yij − xT

ijβ − ui)
2) (2.7)

σ2
u|yij, β, ui, σ

2
e ∼ IG(λ2 +

m

2
, τ2 +

1

2
Σm

i=1u
2
i ) (2.8)

Following the same HB framework using the area level model in equation 2.3 gives a
similar conditional marginal posterior of ui|ȳij, β, σ2

e , σ
2
u ∼ N(qiw(ȳiw − x̄T

iwβ), qiwϱ
2
i ) where

qiw = σ2
u

σ2
u+ϱ2i

Combining the mean and variance of the conditional marginal posterior of ui

with equation 2.2 gives the conditional posterior mean of θi (equation 2.9) and variance
qiwϱ

2
i .

E(θi|ȳiw, β, σ2
e , σ

2
u) = qiwȳiw + (X̄i − qiwx̄iw)

Tβ (2.9)

where β, σ2
e and σ2

u are drawn from the joint posterior distributions derived from the unit
level model (equation 2.1).

2Where ȳiw =
Σ

ni
j=1w̆ijyij

Σ
ni
j=1w̆ij

= Σni
j=1wijyij ;wij =

w̆ij

Σ
ni
j=1w̆ij

=
w̆ij

w̆i
and Σni

j=1wij = 1. Similarly x̄iw =

Σni
j=1wijxij ēiw = Σni

j=1wijeij with E(ēiw) = 0 and Var(ēiw) = σ2
eΣ

ni
j=1w

2
ij ≡ ϱ2i
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2.2. Estimation

In the first stage of our estimation, equation 2.5 to 2.8 is used in Gibbs sampling (Gelfand
and Smith, 1990) to simulate the marginal posterior distributions of β, ui, σ

2
e and σ2

u. We
assume non-informative priors on β, vi, σ2

e , σ2
v given as βp ∼ N(0, 104), p = 1, ..., 13., vi ∼

, σ2
e ∼ IG(10−3, 10−3), i = 1, ...,m., σ2

v ∼ IG(10−3, 10−3). With initial values for vi, σ
2
e , σ

2
v ,

we draw β from 2.5. Using the drawn β and initial values for σ2
e , σ

2
v , we draw and update vi

with 2.6. Similarly, we draw and update σ2
e conditional on initial σ2

u and updated values of
β, ui. Finally, we also draw and update σ2

u given new values of β, ui and σ2
e to complete single

phase of simulation. The process is repeated 10000 times to produce 10000 draws for each
conditional marginal posterior and the first 5000 draws were burnt. Three separate chains
were simultaneously simulated each with 10000 draws and a burn-in of 5000. Diagnostic
plots of the three chains are done to ensure convergence in the posterior distributions.

To estimate expected county yields we draw s samples of the parameters with replace-
ment, s=1,...,k (β(s);σ

2(s)
e ; σ

2(s)
v ) from the simulated joint posterior distribution and use them

in equation 2.9. Expected county yield is then obtained by averaging over the θ
′
is:

θ̂HB
i =

1

s
Σk

s=1[qiwȳiw + (X̄i + qiwx̄iw)
Tβ] (2.10)

Likewise, posterior variance of the expected county yield is obtained by drawing s samples
from the joint posterior distribution and using them in the variance formula (qiwϱ

2
i ) and then

taking the average. The same results can be obtained by simply finding the variance of the
s simulated county mean draws for each county.

To derive expected loss (actuarially fair premium) in each county under the GRP plan,
we use the direct county average yield from the sample together with s (1000) draws of θi to
estimate losses for all coverage-scale combinations using equation 2.11. The expected yield
loss (bu/acre) for each coverage-scale combination (LGRP

izp ) is taken as the average over the
s simulations.

LGRP
izp =

1

s
Σk

s=1[max([
(θ̂HB

i )Cz − ȳiw

θ̂HB
i Cz

]θ̂HB
i Sp, 0)], i = 1, ...,m z = 1, ..., 6 p = 1, ..., 7 (2.11)

Where ȳiw is the direct county estimate. Note that in the case where the data is obtained
by a simple random sampling ȳiw = ȳi. The coverage level (Cz) and scale (Sp) are chosen
by the farmer. In this study we take Cz=(70%, 75%, 80%, 85%, 90%, 95%) and following
Wang et al. (2012), we included a scale with values ranging from 0.9 to 1.0 in increment
of 0.1 (i.e. Sp=(0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5)) to investigate its effect on expected loss
under GRP and its potential to reduce basis risk. The reason for introducing the scale is
to allow farmers to adjust county level expected loss to better correlate with the farm level
expected loss. A scale of 0.9 will reduce the yield loss by about 10% while a scale of 1.2
will increase the yield loss by about 20%. A scale of 1 has no effect on the expected yield
loss. We evaluate expected losses under the GRP for all(42) coverage-scale combinations in
each county. Indemnity payments are normally derived by multiplying the percentage yield
shortfall by a chosen proportion (0.6 - 1.0) of the maximum liability per acre.

The expected yield loss for APH is also simulated for each farm in the sample. In each
case, farm level climate covariates are combined with 1000 draws of parameters from the
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joint posterior to produce 1000 farm level mean (ŷij). The simulated means are then used
with the direct farm yield (yijw) in equation 2.12 to produce estimated losses under the
APH. The expected loss (actuarially fair premium) under APH in bu/acre is then obtained
by taking the average of the simulated losses as follows.

LAPH
ijq =

1

s
Σk

s=1[max([ŷijCq − yoij], 0)], i = 1, ...,m, j = 1, ..., ni, q = 1, ..., 6 (2.12)

Where yoij is the observed farm level yield and Cq=(70%, 75%, 80%, 85%, 90%, 95%).
Similarly, we estimate expected loss at the farm level not covered by the GRP policy

(IBR
ijpqz) on each farm for all coverage-scale combinations of the GRP and coverage levels of

APH as follows.

LBR
ijpqz =

1

s
Σk

s=1[max([IAPH
ijq − IGRP

izp ], 0)], i = 1, ...,m, j = 1, ..., ni (2.13)

Where p=1,...,7,q, z=1,...,6 and q and z can be the same or different. These estimates
represent actuarially fair or net premiums for a potential insurance policy which can be
introduced to cater for uninsured yield loss at farm level for GRP policy holders.

We estimated two models at all levels of our analysis. The first model is based on data
generated from a weighted random sampling with unequal weights allocated to the farms
sampled within each county while the second model is based on data generated from a simple
random sampling with equal weights allocated to the farms sampled within each county.

3. Data

Following Awondo et al. (2012), we simulated corn farm yields using geospatial climate
data specific to each corn farm and ’true’ parameter estimates.

First, we used the 2011 crop classification map from USDA-NASS for the State of Illinois
obtained with LANDSAT to identify and extract corn pixels in 18 counties which make up
Agricultural district 40 and 50 3. The road data from the Illinois Department of Transporta-
tion was used to overlay these results and increase plot separability. The area of each plot
was calculated and plots with area below two Landsat pixels (1800m2) were dropped from the
data set. Fields were added to the data, including a unique identifier for each plot. Climate
data (images representing precipitation, maximum temperature and minimum temperature)
from PRISM were imported, reprojected and resampled to match the projection, resolution
and extent of the crop data. Monthly climate attributes for each plot were then extracted.
These include minimum temperature, maximum temperature and cumulative precipitation.
The average monthly temperature in each plot was calculated as the average of the minimum
and maximum temperatures for the month.

All plots less than 10 acres (40470 m2) were dropped. After creating weights for each plot
by dividing each plot’s area by the total area within the county it is located, we carried out
a weighted random sample of ni corn farm plots by county where ni is drawn from a uniform

3The satellite uses a 250 meter resolution 16-day composite Normalized Difference Vegetation Index
(NDVI) to classify crops with a statistical classification accuracy of up to 97% for heavily monocultivated
areas like Illinois
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distribution between 1 and 5. We simulated yields for corn plots using the regression model
below.

yij = 320− .346Pij5 + 10.463Pij6 + 6.849Pij7 − 0.523Pij8 − 0.087P 2
ij5 − 0.903P 2

ij6 − 0.304P 2
ij7

+0.035P 2
ij8 + 1.232Tij5 + 1.854Tij6 − 2.013Tij7 − 3.036Tij8 + ui + eij (3.1)

Where yij is in bu/acre, Pij5 to Pij8 are cumulative monthly precipitation (inches) for farm
j in county i from May to August and P 2

ij5 to P 2
ij5 are their corresponding squares, Tij5

to Tij8 are average monthly temperatures (F ) from May to August; ui is county random
effect assumed to be normally distributed with mean 0 and variance 15 while eij is the error
assumed to be normally distributed with mean 0 and variance 25. Our range of variance
components is consistent with the range estimated by Ramirez et al. (2010) using farm level
yields from endowment farms of the University of Illinois Urbana-Champaign. Also, our
coefficient estimates are based on estimating the same model using detrended county level
data. A similar regression model was used by Thompson (1988), Schlenker and Roberts
(2006) and Tannura et al. (2008) and has been found to explain over 75% of the variability
in corn yield.

3.1. Data summary

Table 1 shows a summary of the sample of corn farms in Illinois counties used in the
estimation. The results show that Iroquois has the most number of corn farm population
(2041) while Stark has the least amount (507). The number of farms sampled in each county

Table 1: Summary of weighted sample of corn farms in Illinois Counties

County Ni ni ȳij min yij max yij Āij min Aij max Aij

De Witt 706 3 164.08 130.75 183.12 314.76 96.52 628.49
Logan 1023 5 164.88 125.66 201.21 558.90 424.90 860.45
Macon 917 1 167.10 167.10 167.10 1049.26 1049.26 1049.26
Marshall 708 4 200.52 189.60 208.48 487.82 281.33 682.75
Mason 871 4 178.41 146.35 203.95 509.69 245.52 1005.97
Mclean 1937 5 178.83 132.92 195.30 517.67 339.15 757.92
Menard 581 5 164.05 112.84 232.60 338.26 85.18 804.62
Peoria 1098 4 193.94 162.20 241.59 275.27 121.87 485.93
Stark 507 4 174.50 92.32 218.32 459.97 323.81 568.89
Tazewell 1245 5 175.43 147.75 193.62 518.62 197.49 889.58
Woodford 999 2 172.78 162.78 182.78 202.27 186.37 218.17
Champaign 1921 4 188.95 163.95 240.28 395.75 31.36 644.50
Ford 873 3 184.99 169.59 200.07 131.14 64.05 205.05
Iroquois 2041 2 164.95 136.55 193.36 540.53 493.27 587.79
Kankakee 1112 2 208.07 206.14 209.99 197.49 141.22 253.75
Livingstone 2022 1 142.08 142.08 142.08 163.68 163.68 163.68
Piatt 733 5 186.90 158.82 209.73 467.92 82.73 950.07
Vermillion 1608 4 171.93 128.81 206.32 382.91 235.74 702.99
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range between 1 (as in Macon and Livingstone) and 5 (as in Logan, Mclean, Menard, Tazewell
and Piatt). In each case the number of farms sampled is far less than the population in each
county. Thus direct county averages are likely to be unreliable giving rise to a small area
estimation problem. The sample corn yield ranges between 92 bu/acre and 242 bu/acre with
county sample average ranging between 142 bu/acre and 209 bu/acre. The high sample mean
yield in Kankakee and Marshall can be attributed to their relatively high rainfall during May
to August (see table 8). The size of the farms sampled range from 31 acre to 1050 acre while
the county average farm size ranges from 131 acre to 1050 acre 5.

4. Results and discussions

For illustrative and comparison purposes, table 6 reports expected residual losses (basis
risk) on two representative farms in Champaign and Vermillion for all combinations of APH
coverage (Cq), GRP coverage (Cz) and scale (Sp) based on the model with equal (Beq) and
unequal (Bueq) weights.

The results show that for the farm in Champaign, almost no basis risk is triggered for
APH coverages up to 80% for all GRP coverage-scale combinations. However, for an APH
coverage of 85%, GRP coverage-scale combinations up to 85% trigger expected residual loss
of 0.05 bu/acre. This loss is reduced to 0.02 bu/acre by purchasing a GRP with 90% coverage
and scale 0.9. Increasing the scale further reduces the loss proportionately. Notice that a
GRP with 95% coverage completely tracks the loss at farm level. Thus a GRP with 95%
coverage and scale 0.9 is the equivalent of an APH with 85% for an optimizing farmer.
Similarly, an APH with 90% coverage triggers a higher expected residual loss compared to a
85% coverage with the same GRP coverage-scale combinations. These losses are gradually
reduced with higher GRP coverage and scale but are not eliminated under the maximum
GRP coverage and scale as is the case with an APH of 85%. A similar trend is observed with
an APH coverage of 95% with different GRP policies. Basis risk increases at a decreasing
rate for proportional increase in APH and GRP coverage for a given scale. For example,
basis risk under an APH coverage of 90% and GRP coverage of 90% with a 1.5 scale is 380%
higher than that under an APH and GRP with 85% coverage with the same scale. However,
under an APH and GRP with 95% coverage and similar scale, basis risk is 120% higher than
that observed under an 85% coverage for both plans with the same scale.

Unlike the farm in Champaign where there are some GRP coverage-scale combinations
for which basis risk is zero, the farm in Vermillion appears to have no GRP policy which
completely tracks the expected farm level loss the same as the APH policy. At the minimum
coverage (70%) level, this farm has an expected residual loss of about 1 bu/acre while at the
maximum coverage (95%), the loss rises to 43 bu/acre. The expected residual losses tend to
increase with an increase in APH coverage level for similar GRP coverage-scale policies. For a
given APH and GRP coverage levels, the effect of scale on reducing basis risk is insignificant,
ranging from about 0.2%-1% reduction in residual loss for 66.7% increase in scale from 0.9 to
1.5. For example, under a 75%-90%,80%-90%,85%-90% APH-GRP coverage combinations,

5The total number of corn plots within counties is different from the total number of corn farms from the
same counties as given by 2007/2002 agricultural census. This is partly due to that a farm could be made
up of 2 or more corn plots
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increasing the scale by 66.7% from 0.9 to 1.5 only leads to about 0.2% decrease in the
expected residual loss. Whereas under a 75%-95%,80%-95%,85%-95% APH-GRP coverage
combinations, increasing the scale by 66.7% from 0.9 to 1.5 leads to 0.8%, 0.9% and 1%
decrease in the expected residual loss respectively. On the other hand, an increase in GRP
coverage for the same APH coverage and scale (i.e., no scale effect) reduces the residual loss.
However, this effect decreases with increase in APH coverage. For example, given a scale of
1.5, increasing the GRP coverage by 5% from 90% to 95% for APH policies each with 75%,
80%, 85%, 90% and 95% coverage reduces the expected residual loss by 3%, 2.6%, 2.2%,
1.8% and 1.3% respectively. The same effect under a scale of 0.9 results to slightly lower
reductions (2.4%, 1.9%, 1.5%, 1% and 0.8%).

The results show that the efficiency of the expected residual loss estimates significantly
increases with increase in APH coverage level. For example, at an APH coverage of 70% the
t-statistics is about 0.76 while at an APH with with 95% coverage level the t-statistics is
about 3.5 indicating that it becomes significant at a 5% level.

Except for De Witt county, there appears to be little or no differences in the estimates
derived using data with equal and unequal weights even though estimates of expected county
yield (as shown in table 2) from both models differ in some counties.

These results show potential wide variation in basis risk within farms in the same county
as well as those across counties. Based on the results, a GRP policy with 95% coverage and
scale 0.9 can replace an APH policy with 85% coverage for the farm in Champaign while the
same GRP policy can only replace an APH policy with less than 70% coverage on the farm
in Vermillion.

Table 7 presents results of expected residual loss by county for each APH coverage level
averaged across all GRP coverage-scale combinations and farms under the two models. Sim-
ilar to the results at farm level,we find a monotonic increase in expected residual loss with
increase in APH coverage. Thus, the residual losses tend to be minimal at lower coverage
levels. Note that the lowest coverage level is not necessarily the best in terms of minimizing
residual losses since zero residual loss can be triggered at any coverage (although more likely
at lower coverage) level which varies from one farm to another.

The results equally show wide variation in residual loss across counties for the same
level of coverage. For example, Stark, Menard, De Witt, Logan, Woodford and Vermillion
counties all exhibit high expected residual losses compared to Marshall, Mclean, Livingstone,
Piatt, Macon, Champaign, Ford and Iroquois. This implies that expected farm level corn
yield losses better correlate with expected county level loss in the later counties making
area coverage crop insurance policies such as the GRP potentially more attractive in these
counties. More specifically, in Marshall County a given GRP policy tracks all (0 expected
residual loss) corn yield loss (bu/acre) the same as an APH with 80% coverage whereas, in
Woodford County, a similar GRP policy tracks 12.23 bu/acre less loss than an APH with
80% coverage. This means that GRP policies are likely to be more attractive to farmers in
Marshall County than those in Woodford County. In addition and similar to results reported
at farm level, the efficiency of the estimates increases with increase in the APH coverage.

Results from both models are similar at low coverage levels but slightly differ at high
coverage levels. The magnitude of the estimated standard errors indicate that the estimates
are more efficient with increase in the coverage level.
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Table 2: Expected residual Corn Yield loss (basis risk) (bu/acre) on two farms

Champaign Vermillion

Cq Cz Sp Beq(s.e) Bueq(s.e) Beq(s.e) Bueq(s.e)

0.70 0.70 0.9 0.00( 0.00) 0.91( 2.77) 0.00( 0.00) 0.91( 2.77)
” ” ” ” ” ” ”
0.70 0.85 1.5 0.00( 0.00) 0.91( 2.77) 0.00( 0.00) 0.91( 2.77)
0.70 0.90 0.9 0.00( 0.00) 0.91( 2.76) 0.00( 0.00) 0.91( 2.76)
0.70 0.90 1.5 0.00( 0.00) 0.90( 2.76) 0.00( 0.00) 0.90( 2.76)
0.70 0.95 0.9 0.00( 0.00) 0.87( 2.70) 0.00( 0.00) 0.87( 2.70)
0.70 0.95 1.5 0.00( 0.00) 0.85( 2.68) 0.00( 0.00) 0.85( 2.68)
0.75 0.70 0.9 0.00( 0.00) 4.96( 6.51) 0.00( 0.00) 4.96( 6.51)
” ” ” ” ” ” ”
0.75 0.80 1.5 0.00( 0.00) 4.96( 6.51) 0.00( 0.00) 4.96( 6.51)
0.75 0.85 0.9 0.00( 0.00) 4.96( 6.52) 0.00( 0.00) 4.96( 6.52)
0.75 0.85 1.5 0.00( 0.00) 4.96( 6.52) 0.00( 0.00) 4.96( 6.52)
0.75 0.90 0.9 0.00( 0.00) 4.93( 6.50) 0.00( 0.00) 4.93( 6.50)
0.75 0.90 1.5 0.00( 0.00) 4.92( 6.50) 0.00( 0.00) 4.92( 6.50)
0.75 0.95 0.9 0.00( 0.00) 4.81( 6.44) 0.00( 0.00) 4.81( 6.44)
0.75 0.95 1.5 0.00( 0.00) 4.77( 6.41) 0.00( 0.00) 4.77( 6.41)
0.80 0.70 0.9 0.00( 0.06) 12.79( 9.52) 0.00( 0.06) 12.79( 9.52)
” ” ” ” ” ” ”
0.80 0.85 1.5 0.00( 0.06) 12.79( 9.52) 0.00( 0.06) 12.79( 9.52)
0.80 0.90 0.9 0.00( 0.00) 12.72( 9.54) 0.00( 0.00) 12.72( 9.54)
0.80 0.90 1.5 0.00( 0.00) 12.69( 9.55) 0.00( 0.00) 12.69( 9.55)
0.80 0.95 0.9 0.00( 0.00) 12.48( 9.56) 0.00( 0.00) 12.48( 9.56)
0.80 0.95 1.5 0.00( 0.00) 12.36( 9.57) 0.00( 0.00) 12.36( 9.57)
0.85 0.70 0.9 0.05( 0.72) 22.68( 10.83) 0.05( 0.72) 22.68( 10.83)
” ” ” ” ” ” ”
0.85 0.85 1.5 0.05( 0.71) 22.68( 10.83) 0.05( 0.71) 22.68( 10.83)
0.85 0.90 0.9 0.02( 0.31) 22.60( 10.85) 0.02( 0.31) 22.60( 10.85)
0.85 0.90 1.5 0.00( 0.06) 22.55( 10.89) 0.00( 0.06) 22.55( 10.89)
0.85 0.95 0.9 0.00( 0.00) 22.26( 10.99) 0.00( 0.00) 22.26( 10.99)
0.85 0.95 1.5 0.00( 0.00) 22.05( 11.15) 0.00( 0.00) 22.05( 11.15)
0.90 0.70 0.9 0.36( 2.01) 32.96( 11.53) 0.36( 2.01) 32.96( 11.53)
” ” ” ” ” ” ”
0.90 0.85 1.5 0.32( 1.89) 32.96( 11.53) 0.32( 1.89) 32.96( 11.53)
0.90 0.90 0.9 0.24( 1.43) 32.88( 11.55) 0.24( 1.43) 32.88( 11.55)
0.90 0.90 1.5 0.21( 1.23) 32.83( 11.59) 0.21( 1.23) 32.83( 11.59)
0.90 0.95 0.9 0.09( 0.76) 32.53( 11.70) 0.09( 0.76) 32.53( 11.70)
0.90 0.95 1.5 0.06( 0.64) 32.25( 12.00) 0.06( 0.64) 32.25( 12.00)
0.95 0.70 0.9 1.51( 4.42) 43.27( 12.17) 1.51( 4.42) 43.27( 12.17)
” ” ” ” ” ” ”
0.95 0.85 1.5 1.47( 4.28) 43.26( 12.17) 1.47( 4.28) 43.26( 12.17)
0.95 0.90 0.9 1.27( 3.77) 43.19( 12.19) 1.27( 3.77) 43.19( 12.19)
0.95 0.90 1.5 1.16( 3.55) 43.13( 12.22) 1.16( 3.55) 43.13( 12.22)
0.95 0.95 0.9 0.72( 2.69) 42.84( 12.33) 0.72( 2.69) 42.84( 12.33)
0.95 0.95 1.5 0.53( 2.26) 42.55( 12.62) 0.53( 2.26) 42.55( 12.62)
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5. Conclusion

This study attempted to quantify the magnitude of basis risk involved across corn farms
in Illinois counties using pseudo-simulated yields with farm specific geospatial climate data.

Following Awondo et al. (2012) we used a two hierarchical Bayes small area estimation
to address problems related to lack of representative sample, aggregation bias, properly
accounting for spatial and temporal heterogeneity and uncertainty in parameter estimates.

We found wide variation in expected basis risk across farms within and between counties.
Expected basis risk was found to sharply increase when comparing similar GRP policy with
an APH policy with higher coverage level. However, changes in scale was found to have
little effect on reducing basis risk between APH and GRP policy. The expected basis risk by
county averaged over all scale for each coverage indicated relatively low basis risk in some
counties, implying that farm level losses better correlate with losses at county level making
these counties suitable for the introduction and expansion of area level policies such as GRP.

There is more room for research on developing small area estimates of expected yield and
premiums such as dealing with outliers in the sample. Such is the case with Kankakee in
the simulated sample (used in this study) which has very high observed yield and variance
than all the other counties in the sample. Also, there is more room in prior development and
sensitivity analysis. This include investigating the performance of this method with other
crops and distributional forms. Extending the model to a time series framework will also be
valuable.
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Table 3: Expected residual corn yield loss(basis risk)(bu/acre)by counties in Illinois based on data with unequal & equal
weights

County 70% 75% 80% 85% 90% 95%
Unequal
DeWitt 3.27( 5.99) 6.44( 10.23) 9.76( 14.72) 13.14( 19.32) 16.66( 23.91) 21.04( 28.07)
Logan 2.07( 4.50) 5.42( 8.44) 10.27( 12.51) 16.10( 16.60) 22.12( 20.96) 28.19( 25.51)
Macon 0.00( 0.00) 0.01( 0.26) 0.24( 1.45) 1.15( 3.71) 3.71( 6.95) 8.07( 10.61)
Marshall 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.04( 0.50) 0.55( 2.27) 2.64( 5.50)
Mason 0.01( 0.17) 0.20( 1.19) 1.14( 3.43) 3.05( 6.57) 6.09( 10.04) 11.15( 13.29)
Mclean 0.09( 0.95) 0.35( 2.20) 0.87( 3.93) 1.68( 6.06) 2.81( 8.49) 4.54( 11.15)
Menard 4.16( 8.42) 7.16( 12.12) 11.03( 15.95) 15.88( 19.69) 21.76( 23.17) 28.53( 26.30)
Peoria 0.88( 3.96) 2.16( 7.00) 4.05( 10.59) 6.63( 14.54) 10.08( 18.66) 14.44( 22.87)
Stark 5.06( 10.97) 7.05( 14.27) 9.26( 17.70) 11.73( 21.21) 14.65( 24.77) 18.09( 28.37)
Tazewell 0.03( 0.44) 0.34( 1.78) 1.49( 4.27) 3.77( 7.59) 7.33( 11.33) 11.87( 15.23)
Woodford 3.08( 7.06) 7.08( 11.63) 12.23( 16.57) 17.94( 21.71) 23.90( 26.99) 30.08( 32.31)
Champaign 0.00( 0.00) 0.00( 0.05) 0.03( 0.45) 0.31( 1.69) 1.46( 4.10) 4.09( 7.42)
Ford 0.00( 0.00) 0.02( 0.37) 0.23( 1.54) 1.07( 3.83) 3.05( 7.20) 6.16( 11.17)
Iroquois 0.07( 1.00) 0.24( 1.99) 0.68( 3.49) 1.39( 5.48) 2.47( 7.81) 4.14( 10.45)
Kankakee 0.01( 0.25) 0.14( 1.26) 0.74( 3.48) 2.35( 6.82) 5.71( 11.08) 11.05( 15.69)
Livingstone 0.03( 0.44) 0.22( 1.54) 0.76( 3.29) 1.82( 5.66) 3.47( 8.50) 5.56( 11.64)
Piatt 0.00( 0.14) 0.03( 0.60) 0.14( 1.39) 0.54( 2.87) 1.38( 5.04) 2.90( 7.79)
Vermillion 2.31( 6.59) 4.98( 9.99) 8.95( 13.77) 13.56( 17.86) 18.35( 22.24) 23.24( 26.78)
Equal
DeWitt 3.63( 6.23) 6.97( 10.60) 10.34( 15.20) 13.72( 19.88) 17.25( 24.51) 21.72( 28.64)
Logan 2.07( 4.50) 5.42( 8.44) 10.27( 12.51) 16.10( 16.60) 22.12( 20.96) 28.19( 25.51)
Macon 0.00( 0.00) 0.01( 0.26) 0.24( 1.45) 1.15( 3.71) 3.71( 6.95) 8.07( 10.61)
Marshall 0.00( 0.00) 0.00( 0.00) 0.00( 0.00) 0.04( 0.50) 0.55( 2.27) 2.64( 5.50)
Mason 0.01( 0.17) 0.20( 1.19) 1.14( 3.43) 3.05( 6.57) 6.09( 10.04) 11.15( 13.29)
Mclean 0.09( 0.95) 0.35( 2.19) 0.86( 3.92) 1.68( 6.05) 2.80( 8.47) 4.52( 11.13)
Menard 4.13( 8.36) 7.14( 12.06) 11.01( 15.90) 15.85( 19.64) 21.72( 23.13) 28.48( 26.27)
Peoria 0.89( 3.96) 2.16( 7.00) 4.05( 10.60) 6.62( 14.54) 10.07( 18.66) 14.43( 22.87)
Stark 5.16( 11.09) 7.17( 14.41) 9.38( 17.85) 11.86( 21.37) 14.79( 24.93) 18.24( 28.52)
Tazewell 0.03( 0.44) 0.35( 1.78) 1.50( 4.28) 3.79( 7.61) 7.35( 11.35) 11.90( 15.25)
Woodford 3.07( 7.04) 7.07( 11.62) 12.22( 16.55) 17.93( 21.69) 23.89( 26.98) 30.07( 32.30)
Champaign 0.00( 0.00) 0.00( 0.05) 0.03( 0.45) 0.31( 1.70) 1.49( 4.14) 4.21( 7.48)
Ford 0.00( 0.00) 0.02( 0.37) 0.23( 1.54) 1.08( 3.83) 3.06( 7.21) 6.20( 11.18)
Iroquois 0.07( 1.00) 0.24( 1.99) 0.68( 3.49) 1.40( 5.48) 2.48( 7.81) 4.15( 10.45)
Kankakee 0.00( 0.19) 0.12( 1.13) 0.67( 3.28) 2.20( 6.54) 5.43( 10.75) 10.61( 15.36)
Livingstone 0.03( 0.44) 0.22( 1.54) 0.76( 3.29) 1.82( 5.66) 3.47( 8.50) 5.56( 11.64)
Piatt 0.00( 0.14) 0.03( 0.60) 0.15( 1.40) 0.56( 2.92) 1.46( 5.15) 3.07( 7.95)
Vermillion 2.31( 6.59) 4.98( 9.99) 8.94( 13.77) 13.55( 17.86) 18.34( 22.24) 23.22( 26.78)
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Table 4: Summary of monthly cumulative precipitation (inches) and average temperature (F ),May-August
for Illinois counties

County P5 P6 P7 P8 T5 T6 T7 T8

De Witt 4.64 5.13 1.79 1.23 61.98 72.50 79.66 74.06
Logan 4.56 5.46 1.83 1.09 62.11 72.57 79.81 74.32
Macon 4.51 6.12 1.96 0.82 62.55 73.07 80.25 74.98
Marshall 5.39 4.85 2.55 2.60 61.37 71.64 79.09 73.17
Mason 4.57 5.45 1.87 1.12 61.97 72.38 79.72 74.18
Mclean 4.89 4.87 2.09 1.64 61.62 72.06 79.45 73.74
Menard 4.49 5.80 1.84 0.94 62.33 72.79 80.02 74.70
Peoria 5.28 4.91 2.31 2.03 61.43 71.72 79.08 73.32
Stark 5.56 4.99 2.70 2.68 61.35 71.44 79.12 73.28
Tazewell 4.85 4.91 2.04 1.57 61.64 72.07 79.49 73.78
Woodford 5.44 5.11 2.47 2.03 61.37 71.58 79.16 73.37
Champaign 4.62 5.41 1.85 1.16 62.04 72.47 79.74 74.24
Ford 5.09 4.86 2.28 1.89 61.51 71.84 79.29 73.53
Iroquois 5.37 4.84 2.46 2.21 61.41 71.65 79.11 73.30
Kankakee 5.63 5.15 2.51 3.26 60.84 71.09 78.66 72.84
Livingstone 5.50 4.94 2.51 2.39 61.27 71.49 79.03 73.15
Piatt 4.56 5.77 1.85 0.99 62.26 72.72 79.97 74.59
Vermillion 4.64 5.37 1.94 1.22 61.92 72.31 79.69 74.15
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Table 5: Summary posterior distribution

Parameter mean sd MC error 2.5% median 97.5%

b0 -36.39 322.5 10.02 -654.5 -39.01 587.3
P5 71.44 132.7 3.89 -190.4 72.02 333.8
P6 176.0 69.94 2.216 41.13 175.3 317.8
P7 67.17 169.5 5.177 -255.6 67.07 391.3
P8 -9.287 156.8 4.774 -320.2 -6.706 289.5
P 2
5 -5.457 11.14 0.3265 -27.44 -5.176 16.13

P 2
6 -14.05 7.255 0.238 -28.18 -13.81 -0.2592

P 2
7 -33.51 41.37 1.305 -115.2 -32.73 45.86

P 2
8 9.827 37.14 1.142 -59.71 8.814 83.33

T5 27.08 29.47 0.8278 -30.82 28.23 85.57
T6 -10.19 39.71 1.176 -89.13 -9.627 69.68
T7 -2.153 34.09 1.148 -69.08 -1.801 65.92
T8 -17.59 43.56 1.411 -103.2 -16.99 66.3
σ2
v 15.09 3.939 0.1199 8.685 14.76 22.97

σ2
e 0.002161 3.031E-4 7.372E-6 0.001587 0.002162 0.002797

deviance 616.5 7.287 0.2125 604.8 615.8 632.7
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