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Introduction 

Cotton is a tropical plant with an intermediate growth habit and extreme sensitivity to adverse 

environmental conditions. It is one of the major row crops produced in the US, and historically 

has been an important component of the Mississippi agricultural economy. However, Mississippi 

cotton production has seen a decline over recent years as a result of economic forces and 

changing climate conditions.  

 

Current research on the effects of climate change on cotton production typically focuses on the 

effect of some aggregated measure of precipitation. Gwimbi and Mundoga (2010) measured 

impact of climate change for the entire growing season of cotton and found that cotton 

production levels declined as precipitation decreased and temperature increased. They further 

noted that although other factors such as soil fertility and farm management practices had an 

important influence on agriculture, climate remained the dominant factor influencing cotton 

production. AbdelGadir et al. (2012) investigated irrigation effect on cotton yield and found that 

irrigation significantly increased seed cotton yield in seasons with inadequate rainfall. However, 

the effect of climate change on cotton yields may not only depend on precipitation, but the 

precipitation occurring during specific growth stages (germination, fruiting, and maturation). 

Only a few studies (Parvin et al., 2005; Williford et al., 1995) have focused on the relationship 

between the effects of early- and late-season precipitation on cotton yields. 

 

Cotton requires between 550 mm and 950 mm (22 to 37 in.) of precipitation during the season in 

a consistent and regular pattern (Doorenbos et al., 1984). However, untimely rainfall and/or 

irrigation as well as humid weather during the latter stages of cotton growth, primarily once the 
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bolls begin to open, may complicate defoliation, reduce yield and quality, lower the crop’s 

ginning properties, or promote the attack of insect pests and disease organisms such as boll rot 

(Freeland et al., 2004; Williford, 1992; Boyd et al., 2004). Once the boll has opened, exposure of 

cotton lint to the environment causes withering and the fibers can become stained, spotted, dark, 

and dull (Freeland et al., 2006).  

 

Of particular interest is the effect of rainfall during harvest. According to Riley (1961), excessive 

rain generates poor harvest conditions as mechanical equipment becomes inoperative when soils 

are water-logged. If rain persists, maturity may be delayed until the plants are caught by frost. In 

addition, excessive rain may generate periods of high humidity, which can in turn greatly reduce 

the quality of the cotton if it is picked while wet. Parvin et al. (2005) found that an additional 

centimeter of accumulated rainfall during harvest reduced yields by 0.10 kg, and Williford et al. 

(1995) found that each successive rain event during harvest also generated a reduction in yield.  

 

Studies linking weather to yield outcomes may either be done through agronomy-based-

simulation models, reduced-form regression analysis and/or reduced-form natural experiments 

(Schlenker and Roberts 2006; 2009a). The reduced-form natural experiment is the preferred 

approach as it combines the strengths of the reduced-form approach with those of crop-

simulation models (Schlenker and Roberts 2006; 2009a). Modeling approaches for yield 

distributions may either be parametric, semi parametric and or nonparametric. Tack et al. (2012) 

asserts that in modeling yield variability in response to climate change, two main lines of 

research have been employed. The first combines stochastic weather generators as in with 

agricultural crop models to simulate effects on the mean and variability of crop yields (e.g. Wang 
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et al., 2011; Wilks, 1992), while the second relies on historical data to identify the effects of 

weather variables within a regression-based framework (e.g. Adams et al., 2001; Boubacar, 

2010; Schlenker and Roberts, 2009a). 

 

As noted earlier, research focusing on the effects of changing climate on cotton production has 

typically focused on the effect of aggregate intra-annual precipitation and temperature variables. 

Even if the underlying raw data contains observations at a more disaggregate level (ie 

daily/weekly/monthly), in practice they are aggregated up to an annual measure to match the 

observation-level of yields. This approach is potentially limiting as it artificially smooth over 

intra-season weather events and patterns that could have large production effects. While there are 

other likely intra-season events that have appreciable production effects, this research focuses on 

the effects of early- versus late-season precipitation. This distinction is important as heavy rains 

occurring near anticipated harvest dates might cause substantial reductions in realized yields. 

 

The objective of this research is to use regression analysis to estimate the effect of late season 

precipitation on Mississippi cotton yields. While most studies investigating relationships 

between yield and climate focus on mean effects, we exploit the Moment Based Maximum 

Entropy (MBME) framework of Tack et al. (2012) to identify the effect of late season 

precipitation on the entire yield distribution.  They report high temperatures and lack of irrigation 

concentrate yield outcomes toward the lower tail of the distribution, thus having significant 

implications for price variability, risk management, crop insurance, and other commodity support 

programs.  
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This research is relevant because our empirical findings will provide producers and policy 

makers with a better understanding of the relationship between production and climate. In 

addition, the proposed regression approach will provide a scientific framework for developing 

climate change forecasts that take into account the timing of precipitation events under different 

climatic scenarios. The remainder of this paper is as follows: Section 2 discusses the empirical 

model, while Section 3 describes the yield and climate data. Section 4 presents the empirical 

results and Section 5 concludes.  

 

2. Empirical Framework 

The MBME framework consists of two parts, the first of which is a moment model along the 

lines of Antle (1983, 2010). The moments of the yield distribution are expressed as 

parameterized functions of weather variables, and the parameters are empirically identified using 

historical data. The estimated parameters are then used to predict the moments under alternative 

climate scenarios. The second component uses these predicted moments to estimate the yield 

density using the principle of maximum entropy. A more detailed description of this approach 

and its advantages is available in Tack et al. (2012). 

 

The MBME approach requires a distributional specification for yields, and we first considered 

using a normality assumption. The normality of crop yields has been a long standing issue in the 

literature (e.g. Day, 1965; Taylor, 1990; Ramirez, 1997; Harri et al, 2008). Whilst some 

researchers have reported negative skewness for certain crops others also reported positive 

skewness for these same crops. Using a single omnibus test for farm-level data, Just and 

Weninger (1999) reassessed the evidence for non-normality using the same data as previous 
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studies. They argue that these studies falsely rejected normality and reported that previous 

empirical literature did not provide enough evidence to conclude non-normality as previous 

research was plagued with misspecification errors and misreporting of statistical significance.  

For this study, the normality assumption generated densities with a large amount of probability 

massed over the negative real line. As crop yields are non-negative by definition, we took this as 

a major concern and utilized a lognormal assumption instead. 

 

2.1 Modeling Lognormal Moments 

It is well known that the lognormal is a member of the exponential family of distributions, and is 

characterized by the first and second logarithmic moments [ ]lnE Y  and ( )2lnE Y 
  . To generate 

predicted values for these moments under alternative climate scenarios, we utilize the regression 

model 

0 1 2 3 4 5

6 7

ln( )

,  1,..., , 1,..., , 1, 2

j
it ij j it j it j it j it j it

j it j it ijt

y low med high eprecip lprecip
irr trend i N t T j

β β β β β β

β β ε

= + + + + +

+ + + = = =
 (1) 

where the dependent variable ln( ) j
ity  is the thj  power of the log-yield variable for county i  in 

period t , and ijα  is a county-by-equation fixed effect. We include the same low, medium and 

high temperature variables as in Schlenker and Roberts (2009a) and Tack el al. (2012), which 

capture the intensity of exposure to particular temperature intervals during the growing season. 

We include a dummy variable for irrigation to control for the most important source of intra-

county production heterogeneity, and a trend to account for technological change over time. 

Departing from Schlenker and Roberts (2009a) and Tack et al. (2012), we split precipitation into 

iteprecip  and itlprecip  to differentiate the effect of early- versus late-season precipitation.  
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Under the assumption ( ) 0ijtE ε = , equation 1 above can be thought of as directly formulating how 

weather, irrigation, and technological change affect moments of the crop yield distribution. 

Using the data discussed in the following section, we consistently estimated these moments using 

ordinary least squares with standard errors clustered at the county level.  

 

2.2 Conditional Lognormal Densities 

The density for the lognormal is given by 

2

2

1 (ln )( ; , ) exp , (2)
22
yf y

y
µµ δ

δδ π
 −

= − 
 

 

where µ  is the location parameter and δ is the scale parameter. In general, if Y  is distributed 

lognormal, then it can be defined by the transformation lnY Zµ δ= +  where Z  is a standard normal 

variable with [ ] 0E Z =  and 2( ) 1E Z  =  . This transformation implies that the first and second 

logarithmic moments are [ ]lnE Y µ=  and 2 2 2(ln )E Y µ δ  = +  , which can be inverted to obtain a 

mapping of the moments to the parameters. Solving these two equations for µ  and δ  yields 

[ ] [ ] ( )2 2ln  and ln ln . (3)E Y E Y E Yµ δ  = = −  
 

Thus, one can use the regression model given by equation (1) to obtain predicted moments, which 

can in turn be used to estimate the lognormal parameters according to equation (3).  

 

3. Data  

As in Tack et al. (2012), we use a panel of county level cotton yield data from 1972 to 2005; 

however, we restrict our attention to the 11 counties located in Mississippi. The yield data was 

obtained from the National Agricultural Statistics Service, and we defined yield as production 
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divided by planted acreage. The relatively short span of yield data is because NASS began 

distinguishing between irrigated and dryland yields in 1972. This distinction is crucial for the 

identification of precipitation effects, as the impact of an additional unit of naturally occurring 

rain likely differs across these production practices. 

 

We use the same temperature data as in Schlenker and Roberts (2009a), which is constructed as 

degree days and distinguishes between low, medium, and high temperature intervals. Low 

temperature is constructed as the number of degree days between 0°C and 15°C, medium 

temperature is constructed in the same way but with bounds 15°C and 31°C, and high 

temperature measures degree days above 32°C. More detail on how these measures are constructed is 

available in Schlenker and Roberts (2009a).  

 

The total amount of water applied to an acre of cotton consists of naturally occurring 

precipitation when considering non-irrigated dryland production systems and both farmer-

controlled irrigation plus precipitation when considering irrigated systems. However, the actual 

amount of water applied via irrigation is typically unobservable, so we focus here on the effect of 

precipitation and allow this effect to vary across dryland and irrigated acreage as in Tack et al. 

(2012).  

 

To allow for different effects across early- versus late-season precipitation during the May-

October growing season, we utilize the underlying daily precipitation data to construct two 

measures of precipitation. Specifically, the early measure aggregates the daily records through 

the first five months of the growing season, while the late measure sums the daily records over 
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the final month of October. We are in the process of considering several alternative thresholds as 

the one used here is fairly arbitrary, thus we interpret our findings as preliminary results.  

 

Descriptive statistics for the data are presented in Table 1. The data contains 612 total 

observations spanning 11 counties and 33 years. Four of these counties (Coahoma Holmes, 

Humphreys and Yazoo) only utilize dryland acreage, while the remaining seven counties 

(Bolivar, Leflore, Quitman, Sunflower, Tallahatchie, Tunica and Washington) utilize both 

dryland and irrigated. Overall, observations for irrigated acreage account for 38.9 percent of all 

observations and the remaining 61.1 percent account for dryland acreage of all observations.  

4. Results 

We first use the historical data to estimate the parameters of equation (1). Given these estimates

β̂ , we predict the logarithmic moments for each county i  according to 

ˆˆ[ln( ) ] ,                                                                                                                          (4)j
i ij iE y ′= β X

 

where the regressors are held at their average sample values within each county, iX . We do this 

separately for both dryland ( irr  set to 0) and irrigated ( irr  set to 1) produced, thus there are a 

total of 44 predicted moments corresponding to “average climate”, four for each county. Denote 

these as ˆ a
ijkE  where a  denotes average climate and 0,1k =  denotes dryland and irrigated acreage 

respectively. For each county, we then solve for the associated lognormal parameters using 

equation (3), denoted ˆ a
ikµ  and ˆa

ikδ . These in turn generate the associated densities

ˆˆ( ; , )a a a
ik ik ikf f y µ δ≡ .  
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To evaluate the effect of late season precipitation on yields, we construct densities for both 

“drought” and “wet” climates. These alternative climates are defined in exactly the same way as 

in the average climate scenario, except that the late precipitation variable is held at a different 

value. Within each county, we use the historical late precipitation data to identify the 5th and 95th 

percentiles of the empirical distribution. To generate predicted moments for drought (wet) 

climate, we hold the late precipitation variable at the 5th (95th) percentile, and then generate the 

corresponding densities d
ikf  and w

ikf  as above. These densities are reported in Figures 1-6. 

 

For each density, we calculate the mean, variance, downside risk, and upside risk according to 

0

2

0

0

0

( ; , ) ,  { , , }, (5)

( ) ( ; , ) ,  { , , }, (6)

( ; , ) ,  { , , }, (7)

1 ( ; , ) ,  { , , }. (8)

d

u

c c c
ik ik ik

c c c c
ik ik ik ik

z
c c c
ik ik ik

z
c c c
ik ik ik

mean yf y dy c a d w

var y mean f y dy c a d w

dside f y dy c a d w

uside f y dy c a d w

µ δ

µ δ

µ δ

µ δ

∞

∞

= ∈

= − ∈

= ∈

= − ∈

∫

∫

∫

∫

 

Note that we are using a fairly simplistic measure of down and upside risk here, the probability 

of an outcome below dz  for the former and the probability of an outcome above uz  for the latter. 

For the results presented here, we set dz  to 10 percent below the mean under average climate 

and uz  to 10 percent above. We measure the impact of the drought and wet climates on the 

percentage change in the mean, variance, upside and downside risk by measuring the percentage 

change relative to average climate. These results are reported for dryland acreage in Table 2, and 

irrigated acreage in Table 3.  
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In general we find that late season drought reduces mean yields fairly homogenously across 

counties for both dryland and irrigated acreage, with the effect on dryland roughly 20 percent 

higher than the effect on irrigated. Interestingly, drought is associated with an overall reduction 

in variance, which implies that there is a shrinking of the uncertainty surrounding the negative 

mean impacts. This effect is significantly dampened by the use of irrigation, as the dryland 

variance impacts are roughly 70 percent larger on average. For both production types, the shift in 

variance is coupled with an exchange of upside risk for downside risk, thus implying that the 

variance reduction alone masks an important effect of the absence of late season precipitation. 

Surprisingly, this shift is much more pronounced for irrigated acreage. 

 

In contrast to the drought findings, late season excessive rain has the exact opposite effect on the 

yield distribution. Our results for the wet climate scenario suggest increased mean yields across 

counties for both production types, with the effect being higher on dryland acreage compared to 

irrigated acreage. This is at odds with previous research that found that excessive late season 

precipitation reduced yields due to induced harvesting inefficiencies. It is possible that we are 

inappropriately measuring the late season, ie one full month might be too big of a window, or 

that the MBME model is inappropriately specified.  Future work will address this issue by 

considering (i) alternative measurements of precipitation and (ii) alternative distributional 

assumptions.  

5. Conclusions 

Extending regression models of previous studies (Tack et al., 2012) and utilizing cotton yield 

data from 11 counties in Mississippi we estimate the impact of  late season drought and 

excessive rain on the yield distribution. Specifically, we calculate the percentage changes in the 
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mean, variance, upside, and downside risk associated with both climate scenarios. Our results 

suggest that mean effects are rather small, but there is a considerable reallocation of risk across 

the tails of the distribution. Importantly, our results are highly preliminary at this point, as a 

multitude of robustness checks need to be analyzed.   
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TABLES 

 
Table 1. Summary Statistics of Dataset 

Variable Name  Sample Mean (s.d)  Min Max # of obs 
Yield (10lb.units per acre) 73.983(18.5965) 23.1936  122.400 612 
Low Temperature (degree days)  2694.2(21.6355) 2611.7760 2742.174 612 
Medium Temperature(degree days) 1676.6(115.327) 1343.843   2041.647 612 
High Temperature  (degree days) 29.576(18.8168) 4.1771   94.0123 612 
Early Precipitation (centimeters) 50.554(13.7197) 25.0599  106.8535 612 
Late Precipitation (centimeters) 9.33440(6.2174) 0 .0463   32.5355 612 
Irrigation (Yes =1) 0.38880(0.4878) 0  1 612 
Notes: Values reported for temperature and precipitation variables correspond to the May through October growing 
season. Low temperature measures degree days between 0C and 14C; medium temperature measures degree days 
between 15C and 31C; and high temperature measures degree days above 32C 

 

Table 2. Regression Results for Dry land 

County 
Names   Drought            Wet   

 %Mean %Var %Up %Down %Mean %Var %Up %Down 
Bolivar -1.568 -8.566 -15.082 9.739 1.944 11.335 17.932 -11.687 
Coahoma -1.693 -8.006 -10.117 6.693 3.162 16.127 17.917 -11.880 
Holmes -1.546 -7.778 -13.668 9.220 1.963 10.499 16.713 -11.337 
Humphreys -1.632 -15.975 -37.515 13.795 2.560 27.603 57.025 -25.144 
Leflore -1.520 -10.124 -21.504 12.424 1.723 12.282 23.493 -13.992 
Quitman -1.689 -7.620 -8.458 5.541 2.614 12.517 12.517 -8.204 
Sunflower -1.531 -10.997 -26.730 14.571 1.806 13.916 30.661 -17.523 
Tallahatchie -1.612 -7.723 -9.199 5.991 1.918 9.747 10.496 -6.835 
Tunica -1.687 -7.461 -8.712 5.820 2.116 9.747 10.513 -7.022 
Washington -1.580 -12.081 -31.951 16.348 2.067 17.095 41.044 -22.551 
Yazoo -1.491 -9.872 -35.585 20.973 2.220 15.774 53.761 -33.457 
Note: %Mean for Dryland denotes percentage change in mean yield considering drought and wet impact 
respectively.  %Variance(Var) for Dryland denotes percentage change in variance yield considering drought and wet 
impact respectively, %Upside(Up) and %Downside (Down) for Dryland denotes percentage change in the 
probability of upside and downside yield risk considering drought and wet impact respectively.   
     



16 
 

Table 3. Regression Results for Irrigated land 

County 
Names  Drought    Wet   

 %Mean %Var %Up %Down %Mean %Var %Up %Down 
Bolivar -1.935 -15.231 -9.858 4.022 2.402 20.655 10.744 -4.514 
Coahoma -2.078 -15.692 -9.742 4.058 3.874 32.766 15.452 -6.651 
Holmes -1.907 -14.488 -9.368 3.946 2.42 20.035 10.523 -4.544 
Humphreys -2.022 -17.622 -11.877 4.313 3.188 31.09 15.676 -6.026 
Leflore -1.882 -15.369 -10.168 3.987 2.139 19.028 10.177 -4.123 
Quitman -2.083 -15.442 -9.287 3.895 3.226 26.449 12.47 -5.373 
Sunflower -1.897 -15.403 -10.289 4.089 2.245 19.882 10.691 -4.387 
Tallahatchie -1.981 -15.245 -9.323 3.806 2.358 19.794 9.777 -4.094 
Tunica -2.075 -15.026 -9.186 3.932 2.601 20.573 10.185 -4.451 
Washington -1.959 -15.875 -10.703 4.243 2.571 22.895 12.201 -5.015 
Yazoo -1.849 -14.153 -9.596 4.063 2.758 23.141 12.584 -5.015 
Note: %Mean for Wetland denotes percentage change in mean yield considering drought and wet impact 
respectively.  %Variance (Var) for Wetland denotes percentage change in variance yield considering drought and 
wet impact respectively and  %Upside (Up) and %Downside (Down) Wetland denotes percentage change in the 
probability of  upside and downside yield  risk considering drought and wet impact respectively.  
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2.  FIGURES 

 

 
Figure 1. Irrigated and Dry land Cotton Yield distribution for Bolivar and Coahoma, MS 
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Figure 2.Irrigated and Dry land Cotton Yield distribution for Holmes and Humphreys, MS 
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 Figure 3. Irrigated and Dry land Cotton Yield distribution for Leflore and Quitman, MS 
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            Figure 4. Irrigated and Dry land Cotton Yield distribution for Sunflower and   

            Tallahatchie, MS            
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             Figure 5. Irrigated and Dry land Cotton Yield distribution for Tunica and Washington,    

             MS       
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Figure 6. Irrigated and Dry land Cotton Yield distribution for Yazoo, MS 

           
 

 

 

0
.0

2
.0

4
.0

6
Lo

g-
N

or
m

al
 D

en
si

ty

0 50 100 150 200
Cotton Yield,480/10Bales

Avgprecip Wetprecip
Droughtprecip

Yazoo, Irrigated

0
.0

05
.0

1
.0

15
.0

2
.0

25
Lo

g-
N

or
m

al
 D

en
si

ty

0 50 100 150 200
Cotton Yield,10lbunits

Avgprecip Wetprecip
Droughtprecip

Yazoo, Dryland


	2. Empirical Framework

