

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2009)
9, Number 4, pp. 640–642

Stata tip 80: Constructing a group variable with specified
group sizes
Martin Weiss
Department of Economics
Tübingen University
Tübingen, Germany
martin.weiss@uni-tuebingen.de

Quite often, Stata users wish to construct a variable denoting group membership
with different group sizes. This could be part of a simulation study in which a discrete
variable with a certain distribution is required. Two cases can be distinguished: one in
which the desired group sizes should be hit exactly and one in which group size should
vary randomly around the desired proportion. In either case, group membership is to
be determined randomly. This problem differs from grouping on the basis of one or
more existing categories, which usually is best accomplished through egen, group()
(see [D] egen and Cox [2007]).

The first goal can be achieved by obtaining uniformly distributed random numbers
with Stata’s runiform() function (see Buis [2007] for an expanded discussion of the
usefulness of uniform random numbers) and sorting on these numbers. Because this
uniform random variable is of no interest as such, we construct it as a temporary vari-
able. The groups are subsequently determined in one fell swoop by conditioning on the
position of an observation after the random sorting. The way to achieve this is to use an
expression, as described in [U] 13 Functions and expressions, featuring the system
variable n (see [U] 13.4 System variables (variables)), which denotes the running
number of the observation. Say that you want groups with proportions 50%, 40%, and
10% in a sample of 10,000: whenever n is smaller than or equal to 5,000, the expression
inrange(n,1,5000) evaluates to 1 and the other two evaluate to zero. Thus the entire
sum evaluates to 1.

. clear

. set obs 10000
obs was 0, now 10000

. set seed 12345

. tempvar aux

. generate byte �aux�=runiform()

. sort �aux�

. generate byte group = inrange(_n,1,5000)*1+
> inrange(_n,5001,9000)*2+
> inrange(_n,9001,10000)*3

. tabulate group

group Freq. Percent Cum.

1 5,000 50.00 50.00
2 4,000 40.00 90.00
3 1,000 10.00 100.00

Total 10,000 100.00

c© 2009 StataCorp LP st0181

M. Weiss 641

The set seed command is used to make the draws from runiform(), and thus
the division into groups, reproducible (for further information, see [R] set seed). This
practice is also maintained in the examples below.

A feasible way to achieve the second goal is the use of nested cond() functions, as
introduced in Kantor and Cox (2005):

. clear

. set obs 10000
obs was 0, now 10000

. set seed 12345

. generate byte group = cond(runiform()<0.5, 1, cond(runiform()<0.8, 2, 3))

. tabulate group

group Freq. Percent Cum.

1 4,947 49.47 49.47
2 4,048 40.48 89.95
3 1,005 10.05 100.00

Total 10,000 100.00

The outer cond() function takes care of the 50% group, and the inner cond() function
splits the remaining 50% in the ratio 4 to 1 so that the end result coincides with the
user’s intention. The two—separate—draws from runiform() are not related in any
way.

This process can be shortened further with the help of the lesser-known irecode()
function (see [D] functions for the full array of functions).

. clear

. set obs 10000
obs was 0, now 10000

. set seed 12345

. generate byte group = irecode(runiform(), 0, 0.5, 0.9, 1)

. tabulate group

group Freq. Percent Cum.

1 4,957 49.57 49.57
2 4,049 40.49 90.06
3 994 9.94 100.00

Total 10,000 100.00

The irecode() function takes n + 1 arguments. The first argument is evaluated
against the remaining n arguments. If it is smaller than the second, “0” is returned;
if it is larger than the second but smaller than the third, “1” is returned; and so on.
Because the draws from runiform() must lie between 0 and 1, any draw will be larger
than the second argument, and thus “0” will never be returned. Approximately 50%
of the time, the draw will lie between the second and third argument, and the results
will be “1”, and so on. The desired proportions for the groups must be translated into
differences between the arguments of the irecode() function: to get the 40% group,
for instance, the third and fourth argument must be 0.9 − 0.5 = 0.4 units apart.

642 Stata tip 80

As a final thought, consider the slight difference between the group sizes in the
second and third example—although we did set seed to “12345” in both cases. As
mentioned above, in the second example, two draws from the uniform distribution are
conducted, one for each cond() function. The irecode() function in the third example,
however, is fed one draw from runiform(). The function compares this one draw with
the cutpoints provided by the user and assigns group membership accordingly.

References
Buis, M. L. 2007. Stata tip 48: Discrete uses for uniform(). Stata Journal 7: 434–435.

Cox, N. J. 2007. Stata tip 52: Generating composite categorical variables. Stata Journal
7: 582–583.

Kantor, D., and N. J. Cox. 2005. Depending on conditions: A tutorial on the cond()
function. Stata Journal 5: 413–420.

