
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.

https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2009)
9, Number 4, pp. 599–620

Mata Matters: File processing

William Gould
StataCorp

College Station, TX

wgould@stata.com

Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. The subject of this column is using Mata
to read into Stata datasets that are formatted difficultly, which involves Mata’s
file processing and string processing capabilities.

Keywords: pr0049, Mata, I/O, string processing, file processing, structures

1 Introduction

We wish to read the information contained in the following file into Stata:

begin wd47839.txt

AutoWeatherScan Report page 1

Report for College Station generated 10/19/2009

10/19/2009 09:00:00
Humidity: 69%
Dew Point: 49F
Temperature: 60.2F
Wind: 2.3 mph from the WSW
Wind Gust: 7.8 mph

17:00:00
Humidity: 66%
Dew Point: 49F
Temperature: 62.2F
Wind: 2.5 mph from the WSW
Wind Gust: 5.0 mph

10/18/2009 09:00:00
Humidity: 69%
Dew Point: 49F
Temperature: 60.3F

^L
AutoWeatherScan Report page 2

Wind: 2.3 mph from the WSW
Wind Gust: 7.8 mph

^L

end wd47839.txt

File wd47839.txt contains fictional weather reports on measurements from College Sta-
tion, Texas at three different times, 9:00 and 17:00 on 10/19 and 9:00 on 10/18. I ask
you to imagine that the above file is an extract of a much larger file. Regardless of size,
the file was intended to be printed rather than infiled into other software. If the file

c© 2009 StataCorp LP pr0049

600 Mata Matters: File processing

were printed, each ^L (control L) would turn into a page break. Control characters are
just one of the problems we will face in getting these data into Stata.

Assume that we wish to extract temperature and wind but not wind gust or the
other information. We wish file wd47839.txt contained

"College Station" "10/19/2009 09:00:00" 60.2 "WSW" 2.3
"College Station" "10/19/2009 17:00:00" 62.2 "WSW" 2.5
"College Station" "10/18/2009 09:00:00" 60.3 "WSW" 2.3

because then all we would have to do is type

. infile str20 location str20 dtime temp str10 wind_dir wind_speed
> using desired.raw
(3 observations read)

. gen double datetime = clock(dtime, "MDYhms")

. format datetime %tc

. drop dtime

. list

location temp wind_dir wind_s~d datetime

1. College Station 60.2 WSW 2.3 19oct2009 09:00:00
2. College Station 62.2 WSW 2.5 19oct2009 17:00:00
3. College Station 60.3 WSW 2.3 18oct2009 09:00:00

To make the problem even more difficult, assume that we have many files (imagine
hundreds) all formatted just like wd47839.txt. For the purposes of the example, we
have two additional files, file wd47840.txt and file wd82332.txt:

begin wd47840.txt

AutoWeatherScan Report page 1

Report for College Station generated 10/18/2009

10/18/2009 12:00:00
Humidity: 80%
Dew Point: 63F
Temperature: 69.3F
Wind: 3.4 mph from the West
Wind Gust: 9.8 mph

end wd47840.txt

begin wd82332.txt

AutoWeatherScan Report page 1

Report for Boston generated 10/19/2009

10/19/2009 14:00:00
Humidity: 50%
Dew Point: 36F
Temperature: 60.2F
Wind: 7 mph from the NE
Wind Gust: 0.0 mph

^L

end wd82332.txt

W. Gould 601

Our problem is to write code to read these files and produce a new file—let’s call it
desired.raw—containing

begin desired.raw

"College Station" "10/19/2009 09:00:00" 60.2 "WSW" 2.3
"College Station" "10/19/2009 17:00:00" 62.2 "WSW" 2.5
"College Station" "10/18/2009 09:00:00" 60.3 "WSW" 2.3
"College Station" "10/18/2009 12:00:00" 69.3 "West" 3.4
"Boston" "10/19/2009 14:00:00" 60.2 "NE" 7

end desired.raw

As a preview, once we have written the code, we will produce the desired result by
typing

. mata: driver("wd*.txt", "desired.raw")

2 Outline of solution

Mata is excellent at processing files and processing strings, and I will show you how to
do that. Before getting into the programming details, however, let’s outline the solution.

1. The top-level routine—we will call it driver()—will open output file desired.raw.
driver() will then find all the wd*.txt files and, one at a time, feed each to our
second-level routine, process file().

2. Second-level routine process file() will open the input file and read the lines
in it. Each line will be sent to the third-level routine, process line().

3. Third-level routine process line() will look at the line to determine if it is of
interest. If the line is of interest, process line() will interpret (parse) it and
collect the desired information. Once process line() has collected sufficient
information to form an output line, process line() will output it.

Routines 1 and 2 will be easy to write. Here is the driver() routine:

void driver(string scalar filespec, string scalar output_filename)
{

string colvector filenames
real scalar i
real scalar output_fh

filenames = dir(".", "files", filespec)

output_fh = fopen(output_filename, "w")
for (i=1; i<=length(filenames); i++) {

process_file(filenames[i], output_fh)
}
fclose(output_fh)

}

Throughout this column, I am going to use strict Mata syntax, although the above
routine could just as well be coded

602 Mata Matters: File processing

void driver(filespec, output_filename)
{

filenames = dir(".", "files", filespec)

output_fh = fopen(output_filename, "w")
for (i=1; i<=length(filenames); i++) {

process_file(filenames[i], output_fh)
}
fclose(output_fh)

}

The routine may look less forbidding using Mata’s looser syntax, but including the
declarations makes the routine easier to understand, makes it so that Mata can compile
more efficient code, and makes it less likely that I will make an error.

We have already seen driver() in action; as mentioned, we will invoke our system
by typing

. mata: driver("wd*.txt", "desired.raw")

Thus input argument filespec will be "wd*.txt" and input argument output filename
will be "desired.raw".

driver() begins by placing in string vector filenames the names of the wd*.txt
files; see help mata dir(). Next driver() opens new file desired.raw for output and
records its file handle in output fh; see help mata fopen(). Then driver() loops
across the filenames and calls process file() with each when it executes the code

for (i=1; i<=length(filenames); i++) {
process_file(filenames[i], output_fh)

}

The line

for (i=1; i<=length(filenames); i++) {

specifies the looping. It says to begin by setting i equal to 1. The last part, i++, says
that i is to be incremented by 1 at the end of each loop. The for statement could just
as well have been written

for (i=1; i<=length(filenames); i=i+1) {

except that Mata executes i++ faster than i=i+1.

The middle part, i <= length(filenames), says that the loop is to be executed so
long as i <= length(filenames) is true. In our example, filenames will be the string
vector ("wd47839.txt", "wd47840.txt", "wd82332.txt"), and thus its length() is
3. Thus process file(filenames[i], output fh) will be executed three times, first
with i=1, then with i=2, and finally with i=3, meaning that process file() will be
called with "wd47839.txt", then with "wd47840.txt", and finally with "wd82332.txt".

After the loop, process file() ends with

fclose(output_fh)

W. Gould 603

fclose() is a standard Mata function; see help mata fclose(). To read and write files
in Mata, first you fopen() them, then you use fget() or fread() to read from them—or
use fput() or fwrite() to write into them—and finally you fclose() them. fopen()
returns a file handle, really just an integer, and you use that file handle (integer) as
an argument in the other I/O commands so that they know which file they should read
from, write into, or close.

3 Construction

I will create file code.do containing the Mata code. At this point in the development,
code.do looks like this:

begin code.do

cscript

set matastrict on
mata:

void driver(string scalar filespec, string scalar output_filename)
{

string colvector filenames
real scalar i
real scalar output_fh

filenames = dir(".", "files", filespec)

output_fh = fopen(output_filename, "w")
for (i=1; i<=length(filenames); i++) {

process_file(filenames[i], output_fh)
}
fclose(output_fh)

}

end

end code.do

Note the top line, cscript. cscript (Gould 2001) is a hidden jewel in Stata that I
often use instead of clear all. cscript is one of Stata’s undocumented commands. Un-
documented is not a wholly precise term because undocumented commands are not re-
ally undocumented; you can even type help cscript to see its documentation! cscript
is one of the commands we at StataCorp use in certifying Stata, and I find it useful when
I am developing code, too. You can learn about the other undocumented commands
by typing help undocumented. Anyway, think of cscript as clear all on steroids. If
cscript resets too much for your tastes, substitute clear all.

I said that I would use Mata’s strict syntax, and that is not just intent on my part;
I will ask Stata to enforce my intent. set matastrict on puts Mata in strict mode. In
the default nonstrict mode, Mata would not complain if I entered

(Continued on next page)

604 Mata Matters: File processing

void driver(filespec, output_filename)
{

filenames = dir(".", "files", filespec)

output_fh = fopen(output_filename, "w")
for (i=1; i<=length(filenames); i++) {

process_file(filenames[i], output_fh)
}
fclose(output_fh)

}

With matastrict on, Mata would respond with three error messages:

variable filenames undeclared
variable output_fh undeclared
variable i undeclared
(0 lines skipped)
r(3000);

I find those messages useful because when I am explicitly declaring my variables, any
such complaint usually indicates an error in my thinking or my typing; either way, it is
a bug and would be difficult to track down later.

4 Solution

Next we are going to write process file(). The verbal description from our outline of
the solution is “Second-level routine process file() will open the input file and read
the lines in it. Each line will be sent to the third-level routine, process line().” I
am about to show you process file() in its final form; it is a straightforward routine
except that you will see one line in it that may make you scream, “What is that?
struct!?? I was hoping never to learn about that!” If that is your response, then ignore
the line for the time being. It was not even in the first draft of the routine, but that
struct is going to simplify our solution. Here is the final version of process file():

void process_file(string scalar filename, real scalar output_fh)
{

struct myproblem scalar pr
real scalar input_fh

initialize_record(pr.wr)
pr.output_fh = output_fh

input_fh = fopen(filename, "r")
while ((pr.line=fget(input_fh)) != J(0,0,"")) {

process_line(pr)
}
output_record(pr)
fclose(input_fh)

}

W. Gould 605

The original draft of process file(), however, looked like this:

void process_file(string scalar filename, real scalar output_fh)
{

real scalar input_fh
string scalar line

input_fh = fopen(filename, "r")
while ((line=fget(input_fh)) != J(0,0,"")) {

process_line(line, output_fh, ...)
}
fclose(input_fh)

}

Note the ellipsis (. . .) in the call to process line(). That ellipsis actually appeared
in the draft, so the above code will not compile. My drafts often look like this.

The part that is written, however, deals with opening the input file, reading the
lines, and passing them one at a time to process line(). We have opened files before.
This time, the line to open the file reads

input_fh = fopen(filename, "r")

whereas when we wrote driver(), the line read

output_fh = fopen(output_filename, "w")

This time, we are opening a file for input rather than output, so the second argument
changes from "w" to "r", which stand for write and read, respectively. See help mata
fopen().

The loop in our code to read all the lines and call process line() with each reads

while ((line=fget(input_fh)) != J(0,0,"")) {
process_line(line, output_fh, ...)

}

The while statement specifies that the loop is to continue as long as

(line=fget(input_fh)) != J(0,0,"")

(line=fget(input fh)) != J(0,0,"") is called a compound expression, and it can be
confusing the first time you see it, so let me take an aside and explain.

5 An aside on compound expressions

Did you know that you could code

a = b = c

For instance, you can code

a = b = 0

606 Mata Matters: File processing

to set both a and b to zero. In the same way, the compound expression a = b = c means
to set both a and b to c. If you code a = b = c, Mata interprets it as

a = (b = c)

Mata is willing to see an assignment anywhere in an expression. We usually think of
assignments being of the form, for instance,

a = b + 1

If we also needed to set b = c + d, we can code

b = c + d
a = b + 1

or we can code

a = (b = c + d) + 1

In the same way, assignments can appear inside any expression, such as

(a = b) != c

The above expression assigns the value in b to a and then compares that with c. The
expression returns 1 if the result is not equal to c.

6 Development continues

We were discussing the expression

(line=fget(input_fh)) != J(0,0,"")

which appeared in

while ((line=fget(input_fh)) != J(0,0,"")) {

That expression is identical in form to (a = b) != c. (line=fget(input fh)) !=
J(0,0,"") assigns the result from fget(input fh) to line, and then it compares that
with J(0,0,""). The result from the expression is either true (1) or false (0).

Thus the loop in process file(),

while ((line=fget(input_fh)) != J(0,0,"")) {
process_line(line, output_fh, ...)

}

obtains input by using fget(input fh), stores it in line, and continues to do that as
long as fget(input fh) does not return J(0,0,""). It is a property of fget() that it
returns J(0,0,"") (a 0 × 0 string matrix) when there are no more lines in the file; see
help mata fget().

With the draft of process file() in hand, I drafted process line(), and it looked
something like this:

W. Gould 607

void process_line(...)
{

if (process_line_reportfor(...)) return
if (process_line_datetime(...)) return
if (process_line_time(...)) return
if (process_line_temperature(...)) return
if (process_line_wind(...)) return
/* otherwise, we ignore the line */

}

The underlying idea of this routine is that it would call separate subroutines that
would look at the line and determine if they could act on it. The first one that could act
on it would cause process line() to return. If none of the subroutines could process
the line, the line would be ignored. For instance, process line reportfor() would
look to see if the line looked like

Report for College Station generated 10/19/2009

If the line looks like that, somehow I would hold on to the “College Station” part and
process line reportfor() would return a 1, meaning “I have processed this line.”
Routine process line() would see the 1 and would return, because the calling code is

if (process_line_reportfor(...)) return

If the line did not match “Report for”, process line reportfor() would do nothing
and return 0, and thus process line() would execute its next line of code,

if (process_line_datetime(...)) return

process line datetime() would ask whether the line looked like

10/19/2009 09:00:00

If it did, process line datetime() would hold on to the date and time so that they
could be output later, and process line datetime() would return 1. If the line
did not match, process line datetime() would return 0, and that would cause
process line() to call the next routine.

The next routine would be process line time(), and so the process would continue
until process line() ran out of routines, at which point the input line would be ignored.

Having convinced myself that my approach would work and that I more-or-less
knew how to code it, it was time to think about the arguments and data flow. The
process line *() routines would need to hold on to information if they matched the
line. That information would be output later once the information was complete. So
where to store the information? The answer was obvious to me, and from now on, it
will be obvious to you: store the information in a structure. Structures are single-name
objects that can hold many different things within them. Here is the definition of the
structure that I would need for holding on to the weather information:

608 Mata Matters: File processing

struct weather_record {
real scalar has_data /* Boolean */
string scalar station_name
string scalar date
string scalar time
real scalar temperature
string scalar wind_direction
real scalar wind_speed

}

Remember that an output record is supposed to look like this:

"College Station" "10/19/2009 09:00:00" 60.2 "WSW" 2.3

Thus I would need to hold on to the station name (College Station), the date (10/19/
2009), the time (09:00:00), the temperature (60.2), the wind direction (WSW), and
the wind speed (2.3). Also, I added one more variable, has data, because I knew
I would need it later when I got to coding the actual output of the records. I was
thinking ahead, but ignore has data if you wish. Even delete it. A wonderful feature
of structures is that you can go back and add more variables to them and leave the rest
of your code unchanged!

Having defined what a weather record is, I can create weather record variables.
In a program, I could create a weather record variable called george by declaring

struct weather record scalar george

Because george is a variable, and because variables can be passed to subroutines, I will
be able to call subroutines with george and thus pass all the information recorded in
george to them. Any routine that has access to george has access to all of its elements,
which are referred to as george.has data, george.station name, george.date, and
so on.

So I modified my code to include the new structure, although the result was still
more in the form of notes than code that would compile:

begin code.do

cscript

set matastrict on
mata:

void driver(string scalar filespec, string scalar output_filename)
{

string colvector filenames
real scalar i
real scalar output_fh

filenames = dir(".", "files", filespec)

output_fh = fopen(output_filename, "w")
for (i=1; i<=length(filenames); i++) {

process_file(filenames[i], output_fh)
}
fclose(output_fh)

}

W. Gould 609

struct weather_record {
real scalar has_data /* Boolean */
string scalar station_name
string scalar date
string scalar time
real scalar temperature
string scalar wind_direction
real scalar wind_speed

}

void process_file(string scalar filename, real scalar output_fh)
{

real scalar input_fh
string scalar line
struct weather_record scalar wr

input_fh = fopen(filename, "r")
while ((line=fget(input_fh)) != J(0,0,"")) {

process_line(line, output_fh, wr)
}
fclose(input_fh)

}

void process_line(..., struct weather_record scalar wr)
{

if (process_line_reportfor(..., wr)) return
if (process_line_datetime(..., wr)) return
if (process_line_time(..., wr)) return
if (process_line_temperature(..., wr)) return
if (process_line_wind(..., wr)) return
/* otherwise, we ignore the line */

}

real scalar process_line_reportfor(..., struct weather_record scalar wr)
{

...
}

real scalar process_line_datetime(..., struct weather_record scalar wr)
{

...
}

...
end

end code.do

The ellipses in the above are real; they appeared in the draft. I knew I would
have to pass more information to routines such as process line reportfor() and
process line datetime() than just wr. Variable wr was just where the weather record
was being stored. At a minimum, the routines would need to see the line read from the
file.

What other variables, I wondered, would I need to pass to them? Rather than figure
that out, I decided to create another structure containing all the information that would
be necessary. I mentioned how wonderful structures are because you can go back and
add another variable to them without having to modify your code, except to make use
of the additional information. By adding a structure, if I found I omitted something, I
could add it later. This new structure I defined as

610 Mata Matters: File processing

struct myproblem {
struct weather_record scalar wr
string scalar line
real scalar output_fh

}

Note that this structure contains my weather record structure! Structure myproblem
would contain everything in one variable that I would need to pass from process line()
to the process line *() subroutines. My code now looked like this:

begin code.do

cscript

set matastrict on
mata:

void driver(string scalar filespec, string scalar output_filename)
{

string colvector filenames
real scalar i
real scalar output_fh

filenames = dir(".", "files", filespec)

output_fh = fopen(output_filename, "w")
for (i=1; i<=length(filenames); i++) {

process_file(filenames[i], output_fh)
}
fclose(output_fh)

}

struct weather_record {
real scalar has_data /* Boolean */
string scalar station_name
string scalar date
string scalar time
real scalar temperature
string scalar wind_direction
real scalar wind_speed

}

struct myproblem {
struct weather_record scalar wr
string scalar line
real scalar output_fh

}

void process_file(string scalar filename, real scalar output_fh)
{

struct myproblem scalar pr
real scalar input_fh

initialize_record(pr.wr)
pr.output_fh = output_fh

input_fh = fopen(filename, "r")
while ((pr.line=fget(input_fh)) != J(0,0,"")) {

process_line(pr)
}
output_record(pr)
fclose(input_fh)

}

W. Gould 611

void process_line(struct myproblem scalar pr)
{

if (process_line_reportfor(pr)) return
if (process_line_datetime(pr)) return
if (process_line_time(pr)) return
if (process_line_temperature(pr)) return
if (process_line_wind(pr)) return
/* otherwise, we ignore the line */

}

real scalar process_line_reportfor(struct myproblem scalar pr)
{

...
}

real scalar process_line_datetime(struct myproblem scalar pr)
{

...
}

...

end code.do

There is one thing in the above I want to call to your attention. Below I have marked
the line I want to emphasize:

void process_file(string scalar filename, real scalar output_fh)
{

struct myproblem scalar pr
real scalar input_fh

initialize_record(pr.wr)
pr.output_fh = output_fh // <-- NEW

input_fh = fopen(filename, "r")
while ((pr.line=fget(input_fh)) != J(0,0,"")) {

process_line(pr)
}
output_record(pr)
fclose(input_fh)

}

In the new code, all the information passed by process file() to process line() is
contained in struct myproblem scalar pr. Among that information is pr.output fh.
Routine process file(), however, received output fh as an argument, outside the
structure. We must copy the value output fh to pr.output fh, and that is the line I
added and nearly forgot. This would be easier to understand had I called pr.output fh
something different, such as george. Then the new line would read

pr.george = output_fh // <-- NEW

Different names would make it clear to you that input argument output fh and struc-
ture member pr.george are different things, and if I want to have the value recorded
in output fh also recorded in pr.george, then I obviously must copy it there. The
same applies whether the member is named pr.george or pr.output fh. Naming the
member the same as the argument is actually better style because the identical names

612 Mata Matters: File processing

emphasizes the relationship, even though the identical names can be confusing the first
time you see them.

Let me show one of the process line *() routines in full detail. They are not
particularly interesting. Remember, a process line *() routine is supposed to iden-
tify whether the line is of interest and, if it is, record the relevant information in our
weather record structure and return 1, meaning that the line has been interpreted.
Otherwise, the routine does nothing and returns 0. Here is process line reportfor():

real scalar process_line_reportfor(struct myproblem scalar pr)
{

string scalar work
real scalar loc

/*
----+----1----+----
Report for ___________ generated ...

*/

if (substr(pr.line, 1, 11)!="Report for ") return(0)
work = substr(pr.line, 12, .)
if ((loc = strpos(work, "generated"))==0) return(0)

pr.wr.station_name = strtrim(substr(work, 1, loc-1))
return(1)

}

In the code, we are looking to see if the line is of the form “Report for
generated . . . ”. If the line is of that form, we extract the , store that in
pr.wr.station name, and return 1. Otherwise, we do nothing and return 0.

There are two process line *() routines that are of special interest, however. We
have yet to address how and when the record stored in pr.wr will be output to file
desired.raw (file handle pr.output fh). Determining when to output is particularly
difficult in this weather data example and is typically a problem when processing files
intended for human eyes rather than for programmer convenience. Looking at the
output, we do not know it is time to output a record until the next one starts. In the
weather data, we want to output a record for each date/time, and when we do that is
when we see another date/time. There are two such lines that prompt us that it is time
to output a record: when we see a new date-and-time record,

10/19/2009 09:00:00

and when we see a new time-only record,

09:00:00

Thus I included output logic in the code for process line datetime() and in the
code for process line time(). Here is the code for processing a date-and-time record:

W. Gould 613

real scalar process_line_datetime(struct myproblem scalar pr)
{

string rowvector piece

piece = tokens(pr.line)
if (length(piece)!=2) return(0)
if (!looks_like_date(piece[1])) return(0)
if (!looks_like_time(piece[2])) return(0)

output_record(pr)
reinitialize_record(pr.wr)
pr.wr.has_data = 1
pr.wr.date = piece[1]
pr.wr.time = piece[2]
return(1)

}

The above is the full code, but what I want you to see is

real scalar process_line_datetime(struct myproblem scalar pr)
{

Determine if not a date/time record
return 0 if it is not

output_record(pr)
reinitialize_record(pr.wr)

pr.wr.has_data = 1
pr.wr.date = piece[1]
pr.wr.time = piece[2]
return(1)

}

We output the existing record before filling it in with new values, and before filling it
in, we clear the record’s previous values.

The above code would be more readable if, rather than containing the single line

output_record(pr)

it contained

if (we have data in our record) {
output_record(pr)

}

Instead, I put the if-we-have-data logic in output record() itself. That way of coding
is safer. output record() reads

void output_record(struct myproblem scalar pr)
{

if (pr.wr.has_data == 0) return

fput(pr.output_fh, sprintf(�""%s" "%s %s" %g "%s" %g"�,
pr.wr.station_name,
pr.wr.date, pr.wr.time,
pr.wr.temperature,
pr.wr.wind_direction, pr.wr.wind_speed))

}

614 Mata Matters: File processing

We know when we have data to output if pr.wr.has data is not 0. In this design,
it is the responsibility of any routine that starts a record to set pr.wr.has data to 1.
I decided that I would not worry whether a record was complete; it would be sufficient
if the record was started. I argued that completeness of data is more the responsibility
of data analysis, more the responsibility of the researcher using Stata than it is of a
processing routine designed to deliver an accurate rendition of the underlying data.

The other process line *() routine that required modification for outputting of
records was process line time(), which reads

real scalar process_line_time(struct myproblem scalar pr)
{

string rowvector piece
string scalar hold

piece = tokens(pr.line)
if (length(piece)!=1) return(0)
if (!looks_like_time(piece)) return(0)

output_record(pr)

hold = pr.wr.date
reinitialize_record(pr.wr)
pr.wr.has_data = 1
pr.wr.date = hold
pr.wr.time = piece
return(1)

}

Just as with process line datetime(), the above is the full code, but what I want
you to see is

real scalar process_line_time(struct myproblem scalar pr)
{

Determine if not a date/time record
return 0 if it is not

hold = pr.wr.date <- hold on to date
reinitialize_record(pr.wr)
pr.wr.has_data = 1
pr.wr.date = hold <- put date back
pr.wr.time = piece
return(1)

}

The code here is nearly identical with that of process line datetime() except that we
must carry over the date from the prior record, which means that we must hold on to
the date before calling reinitialize record(), and then put the date back afterward.
By the way, the code for reinitialize record() reads

void reinitialize_record(struct weather_record scalar wr)
{

wr.has_data = 0
wr.date = wr.time = ""
wr.temperature = .
wr.wind_direction = ""
wr.wind_speed = .

}

W. Gould 615

And except for some minor details, that is all there is to it. The entire code reads

begin code.do

cscript

set matastrict on
mata:

void driver(string scalar filespec, string scalar output_filename)
{

string colvector filenames
real scalar i
real scalar output_fh

filenames = sort(dir(".", "files", filespec),1)

output_fh = fopen(output_filename, "w")
for (i=1; i<=length(filenames); i++) {

process_file(filenames[i], output_fh)
}
fclose(output_fh)

}

struct weather_record {
real scalar has_data /* Boolean */
string scalar station_name
string scalar date
string scalar time
real scalar temperature
string scalar wind_direction
real scalar wind_speed

}

struct myproblem {
struct weather_record scalar wr
string scalar line
real scalar output_fh

}

void initialize_record(struct weather_record scalar wr)
{

wr.station_name = ""
reinitialize_record(wr)

}

void reinitialize_record(struct weather_record scalar wr)
{

wr.has_data = 0
wr.date = wr.time = ""
wr.temperature = .
wr.wind_direction = ""
wr.wind_speed = .

}

void output_record(struct myproblem scalar pr)
{

if (pr.wr.has_data == 0) return

fput(pr.output_fh, sprintf(�""%s" "%s %s" %g "%s" %g"�,
pr.wr.station_name,
pr.wr.date, pr.wr.time,
pr.wr.temperature,
pr.wr.wind_direction, pr.wr.wind_speed))

}

616 Mata Matters: File processing

void process_file(string scalar filename, real scalar output_fh)
{

struct myproblem scalar pr
real scalar input_fh

initialize_record(pr.wr)
pr.output_fh = output_fh

input_fh = fopen(filename, "r")
while ((pr.line=fget(input_fh)) != J(0,0,"")) {

process_line(pr)
}
output_record(pr)
fclose(input_fh)

}

void process_line(struct myproblem scalar pr)
{

if (process_line_reportfor(pr)) return
if (process_line_datetime(pr)) return
if (process_line_time(pr)) return
if (process_line_temperature(pr)) return
if (process_line_wind(pr)) return
/* otherwise, we ignore the line */

}

real scalar process_line_reportfor(struct myproblem scalar pr)
{

string scalar work
real scalar loc

/*
----+----1----+----
Report for ___________ generated ...

*/

if (substr(pr.line, 1, 11)!="Report for ") return(0)
work = substr(pr.line, 12, .)
if ((loc = strpos(work, "generated"))==0) return(0)

pr.wr.station_name = strtrim(substr(work, 1, loc-1))
return(1)

}

real scalar process_line_datetime(struct myproblem scalar pr)
{

string rowvector piece

piece = tokens(pr.line)
if (length(piece)!=2) return(0)
if (!looks_like_date(piece[1])) return(0)
if (!looks_like_time(piece[2])) return(0)

output_record(pr)
reinitialize_record(pr.wr)
pr.wr.has_data = 1
pr.wr.date = piece[1]
pr.wr.time = piece[2]
return(1)

}

real scalar process_line_time(struct myproblem scalar pr)
{

string rowvector piece
string scalar hold

W. Gould 617

piece = tokens(pr.line)
if (length(piece)!=1) return(0)
if (!looks_like_time(piece)) return(0)

output_record(pr)

hold = pr.wr.date
reinitialize_record(pr.wr)
pr.wr.has_data = 1
pr.wr.date = hold
pr.wr.time = piece
return(1)

}

real scalar process_line_temperature(struct myproblem scalar pr)
{

string rowvector piece
string scalar s
real scalar temp

/*
Temperature: ##.#F

*/

piece = tokens(pr.line)
if (length(piece)!=2) return(0)
if (piece[1]!="Temperature:") return(0)

s = substr(piece[2], 1, strlen(piece[2])-1)
pr.wr.temperature = strtoreal(s)
return(1)

}

real scalar process_line_wind(struct myproblem scalar pr)
{

string rowvector piece

/*
Wind: [##]#.# mph from the DIR

*/

piece = tokens(pr.line)
if (length(piece)!=6) return(0)
if (piece[1]!="Wind:") return(0)
if (piece[3] != "mph") return(0)
if (piece[4] != "from") return(0)
if (piece[5] != "the") return(0)

pr.wr.wind_speed = strtoreal(piece[2])
pr.wr.wind_direction = piece[6]
return(1)

}

real scalar looks_like_date(string scalar original)
{

string scalar s
real scalar i

/* #[#]/#[#]/#### */

s = strtrim(original)

i = strpos(s, "/")
if (i<=1 | i>3) return(0)
if (!isnumeric(substr(s, 1, i-1))) return(0)

s = substr(s, i+1, .)
i = strpos(s, "/")

618 Mata Matters: File processing

if (i<=1 | i>3) return(0)
if (!isnumeric(substr(s, 1, i-1))) return(0)

s = substr(s, i+1, .)
if (strlen(s)!=4) return(0)
if (!isnumeric(s)) return(0)
return(1)

}

real scalar looks_like_time(string scalar original)
{

string scalar s
real scalar i

/* #[#]:##:## */

s = strtrim(original)

i = strpos(s, ":")
if (i<=1 | i>3) return(0)
if (!isnumeric(substr(s, 1, i-1))) return(0)

s = substr(s, i+1, .) /* ##:## */
if (substr(s, 3, 1)!=":") return(0)
if (!isnumeric(substr(s, 1, 2))) return(0)
if (!isnumeric(substr(s, 4, 2))) return(0)
return(1)

}

real scalar isnumeric(string scalar s)
{

real scalar i, len
string scalar c

len = strlen(s)
if (len==0) return(0)
for (i=1; i<=len; i++) {

c = substr(s, i, 1)
if (c<"0" | c>"9") return(0)

}
return(1)

}

end

end code.do

7 Using code.do

To run this code on the wd*.dta datasets, we type

. do code
(output omitted)

. mata: driver("wd*.txt", "desired.raw")

.

The result of running it with the three sample files is

. type desired.raw
"College Station" "10/19/2009 09:00:00" 60.2 "WSW" 2.3
"College Station" "10/19/2009 17:00:00" 62.2 "WSW" 2.5
"College Station" "10/18/2009 09:00:00" 60.3 "WSW" 2.3
"College Station" "10/18/2009 12:00:00" 69.3 "West" 3.4
"Boston" "10/19/2009 14:00:00" 60.2 "NE" 7

W. Gould 619

I also ran the code on one hundred wd*.txt datasets, each 367,032 bytes, amounting
to 734,000 printed pages, and it ran in 21 seconds, meaning the code processed 34,952
pages per second.

This solution required 219 lines of Mata code, counting blank lines, but not counting
blank lines between routines. Here is a breakdown

function driver() 14
struct myproblem 5
struct weather_record 9
function process_file() 15
function process_line() 9
function process_line_*() 89

function initialize_record() 5
function reinitialize_record() 8
function output_record() 10

function looks_like_date() 23
function looks_like_time() 19
function isnumeric() 13

219

I did not discuss the last three routines in the text. They were used as subroutines
by the process line *() routines and are included in the listing. These three routines
are general utilities that may be of interest to some readers.

The approach we used to process the files is general across most formats of output,
even output that looks very different from the weather data example. If you wanted to
modify these routines to process different file formats, you would need to modify

struct weather_record
function process_line()
function process_line_*()

function initialize_record()
function reinitialize_record()
function output_record()

It would not be difficult. The other routines would remain unchanged.

8 Conclusion

From a programming perspective, I hope this article emphasized the following:

1. Mata has significant file processing capabilities. Learn about dir(), fopen(),
fget(), fput(), and fclose(). Mata has many other file capabilities—see help
m4 io—but those five functions are sufficient to handle most problems.

2. Mata has significant string processing capabilities; see help m4 string.

3. Structures are a programming tool worth learning. They group together related
variables, reduce the number of arguments required by subroutines, make code
more readable, and make code more modifiable. See help m2 struct.

620 Mata Matters: File processing

It was not previously mentioned, but I hope you notice that the routines written
in solving this problem were short; there were merely a lot of them. That style is
recommended. Mata has virtually no overhead for subroutine calls. Short, well-defined
subroutines are easier to write, easier to debug, and easier to maintain.

9 Reference
Gould, W. 2001. Statistical software certification. Stata Journal 1: 29–50.

About the author

William Gould is president of StataCorp, head of development, and principal architect of Mata.

