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Abstract. In nonlinear regression models, such as probit or logit models, co-
efficients cannot be interpreted as partial effects. The partial effects are usually
nonlinear combinations of all regressors and regression coefficients of the model.
We derive the partial effects in such models with a triple dummy-variable inter-
action term. The formulas derived here are implemented in the Stata inteff3

command. The command also applies the delta method to compute the standard
errors of the partial effects. We illustrate the use of the command with an em-
pirical application, analyzing how the gender gap in labor-market participation
is affected by the presence of children and a university degree. We find that the
presence of children increases the gender gap in labor-market participation but
that this increase is smaller for more highly educated individuals.

Keywords: st0178, inteff3, probit model, dummy variables, interaction terms, par-
tial effects, Stata, labor-market participation

1 Introduction

Regression analysis usually aims at estimating the partial effect of a regressor on the
outcome variable, holding effects of the other regressors constant. The partial effect
of a continuous regressor is given by the partial derivative of the expected value of
the outcome variable with respect to that regressor. For discrete regressors, the effect
is usually computed by the difference in predicted values for a given change in the
regressor. In the linear regression model, the partial effect of a regressor is given by the
regression coefficient. In nonlinear regression models, such as probit and logit models,
the partial effects are more complicated: they are usually nonlinear combinations of all
regressors and regression coefficients of the model.

When an interaction term of two variables is included in the model, the interaction
effect of the two variables is given by the cross-partial derivative (or difference, for
discrete regressors) of the expectation of the dependent variable with respect to the two
interacted variables. In a linear model, this is simply the coefficient on the interaction
term. In a nonlinear model, the cross-derivative, or difference, is usually a nonlinear
combination of all regressors and all coefficients of the model. Ai and Norton (2003) and
Norton, Wang, and Ai (2004) derived the formula of interaction effects of two interacted
variables in a logit and probit model.

c© 2009 StataCorp LP st0178
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In this article, we look at the case of probit and logit models in which three dummy
variables are included alongside their pairwise interactions and their triple interaction.
This case occurs when the effect of a binary regressor on a binary dependent variable is
allowed to vary over combinations of two subgroups. For example, one may be interested
in the way a university degree and the presence of children affect the gender difference in
labor-market participation. To this effect, one may run a binary choice model of labor-
market participation including dummies for female, university degree, and presence of
children, as well as their pairwise and triple interaction terms.1

We present the partial effects in a way analagous to how Ai and Norton (2003)
and Norton, Wang, and Ai (2004) presented them. The standard errors of the partial
effects can be computed using the delta method (see, e.g., Davidson and MacKinnon
[2003, 202]). We implemented the computation of the partial effects and their standard
errors in a companion Stata inteff3 command. The command is available by typing
net search inteff3 in Stata and requires at least Stata 9. It covers partial effects
in probit and logit models but treats only interactions of dummy variables, not of
continuous variables.

This article proceeds as follows. In section 2, we derive the partial effects of the
three dummy variables and their interactions in probit and logit models. In section 3,
we describe the Stata ado-file inteff3 and present a short empirical application. In
section 4, we conclude the article.

2 The partial interaction effects in probit and logit mod-
els with a triple dummy-variable interaction term

The model with a triple dummy-variable interaction term is

P (y = 1 |x1, x2, x3, x̃) = F (β1x1 + β2x2 + β3x3 + β12x1x2

+ β13x1x3 + β23x2x3 + β123x1x2x3 + x̃β̃)
= F (xβ)

where subscripts for observations are dropped for simplicity; y is the binary dependent
variable; x1, x2, and x3 are dummy variables to be interacted; βj are the associated co-
efficients; and x̃β̃ denotes the linear combination of all remaining explanatory variables
and coefficients. For a probit model, F is the standard normal cumulative density func-
tion. For a logit model, it is the cumulative density function of the logistic distribution.

For continuous variables, partial effects are usually computed as the derivative of
the dependent variable with respect to the regressor of interest. Because the dummies

1. A similar application of a probit or logit model with a triple dummy-variable interaction term is
the difference-in-difference-in-differences estimator with a binary dependent variable (Gruber 1994;
Gruber and Poterba 1994). However, Puhani (2008) shows that the treatment effect in nonlinear
difference-in-differences models is not given by the interaction effect of Ai and Norton (2003). In
fact, computing the interaction effect of Ai and Norton (2003) would not ensure that the difference-
in-differences treatment effect is bound between 0 and 1.
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x1, x2, and x3 and their interactions are discrete variables, their partial effects are more
appropriately derived by partial differences rather than partial derivatives. The partial
effect of the dummy variable x1 is then the change in the predicted probability of y = 1
when x1 changes from 0 to 1 and all other variables are held constant at specific values:

ΔF (xβ)
Δx1

= F (β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)

− F (β2x2 + β3x3 + β23x2x3 + x̃β̃) (1)

The effects of the dummies x2 and x3 can be derived analogously.

The interaction effect of x1 and x2 captures how x2 affects the effect of x1 on y. This
is a second difference, or cross-difference; i.e., it is the change of the (first) difference
given in (1), for a change of x2 from 0 to 1:

Δ2F (xβ)
Δx1Δx2

= F (β1 + β2 + β3x3 + β12 + β13x3 + β23x3 + β123x3 + x̃β̃)

− F (β1 + β3x3 + β13x3 + x̃β̃) − F (β2 + β3x3 + β23x3 + x̃β̃)

+ F (β3x3 + x̃β̃) (2)

The interaction effects of x1 and x3 and of x2 and x3 can be derived in the same way.

The triple interaction effect is a third difference. It is the change of the second
difference in (2) when x3 changes from 0 to 1 and all other variables are held constant
at specific values:

Δ3F (xβ)
Δx1Δx2Δx3

= F (β1 + β2 + β3 + β12 + β13 + β23 + β123 + x̃β̃)

− F (β1 + β2 + β12 + x̃β̃) − F (β1 + β3 + β13 + x̃β̃)

− F (β2 + β3 + β23 + x̃β̃) + F (β3 + x̃β̃)

+ F (β2 + x̃β̃) + F (β1 + x̃β̃) − F (x̃β̃) (3)

With given estimates of the coefficients of the nonlinear model, β̂, equations similar to
(1)–(3) can be used to derive estimates of the partial effects. Because the partial effects
are nonlinear functions of the underlying parameter estimates β̂, their standard errors
can be computed using the delta method (see, e.g., Davidson and MacKinnon [2003,
202]). Let g(β̂) be a column vector of k partial effects, gi, i = 1, . . . , k. Then, for the
given estimated covariance matrix of the regression coefficients, V̂(β̂), the covariance
matrix of g can be estimated according to the delta method with

V̂ (g) = ĜV̂(β̂)Ĝ′

where Ĝ ≡ G(β̂) is the matrix ∂g(β)/∂β′. The ith row of G(β̂) is the vector of partial
derivatives of the ith function with respect to β̂′, or the typical element in row i and
column j of G(β̂) is ∂gi(β)/∂βj (Davidson and MacKinnon 2003, 208).
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Hence, the method requires the derivatives of the partial effects [of the type shown
in (1)–(3)] with respect to the underlying regression coefficients β. As an example, the
derivatives of the effect (1) with respect to β1, β12, β123, and a coefficient βj (part of
xβ̃) are represented in the appendix.

We have implemented the computation of the partial effects and their standard errors
in the Stata inteff3 command. The command computes partial effects at means, at
values specified by the user, or computes the average partial effects, which are computed
by averaging over the partial effects for each observation in the sample.

3 The Stata ado-file inteff3 and an empirical application

We illustrate the use of inteff3 by means of a probit regression of labor-market partici-
pation.2 Ideally, we would present an empirical application using data from the German
Socio-Economic Panel (GSOEP), a representative household panel dataset. Because the
GSOEP data are subject to data protection rules that do not allow users to disseminate
the data to third parties, using it would not allow us to submit the data we used to
generate the output in this article. We therefore present an empirical example with
simulated data. The simulation, however, is based on the real GSOEP data.

We start by extracting the following data from the GSOEP waves 2000 to 2006: a
dummy for labor-market participation (particip) as the dependent variable; dummies
for female gender (female), university degree (uni), and the presence of children (child)
as the main explanatory variables. From this, we generate the following interaction
terms:

generate fem child=female*child
generate fem uni=female*uni
generate child uni=child*uni
generate fem chi uni=female*child*uni

As control variables, we also extract variables for age and its square (age, age sq),
a dummy for German nationality (german), 6 year dummies (year*), and 15 state
dummies (state*).

We then include all explanatory variables into a probit regression of labor-force
participation, which we run on the GSOEP data covering roughly 87,000 observations.
After that, we reduce the sample size to 2,000 and replace all explanatory variables
with random variables that have the same mean as the variables observed in the data.
Based on these simulated random variables, we predict the linear combination x′β̂ of the
estimated probit model and add an error term, e, to it, drawn from a normal distribution
with mean zero and standard deviation 0.8. We create a simulated dependent variable
for labor-market participation that is 1 if x′β̂ + e > 0 and 0 otherwise. All output
produced in the following is based on this simulated data, but we will also mention the
results obtained with the real data to show that the simulated data reproduces those
results reasonably well.

2. The inteff3 command covers partial effects in probit and logit models but only treats interactions
of dummy variables, not of continuous variables.
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The probit model followed by inteff3 gives the following results:

. probit particip female child uni fem_child fem_uni child_uni fem_chi_uni age
> age_sq german year2 year3 year4 year5 year6 year7 state1 state2 state3 state4
> state6 state7 state8 state9 state10 state11 state12 state13 state14 state15
> state16

Iteration 0: log likelihood = -829.64661
Iteration 1: log likelihood = -586.44907
Iteration 2: log likelihood = -572.24046
Iteration 3: log likelihood = -572.03824
Iteration 4: log likelihood = -572.03799
Iteration 5: log likelihood = -572.03799

Probit regression Number of obs = 2000
LR chi2(31) = 515.22
Prob > chi2 = 0.0000

Log likelihood = -572.03799 Pseudo R2 = 0.3105

particip Coef. Std. Err. z P>|z| [95% Conf. Interval]

female -.0596092 .265928 -0.22 0.823 -.5808184 .4616
child .7013859 .2811934 2.49 0.013 .1502569 1.252515

uni 1.035991 .2525665 4.10 0.000 .5409695 1.531012
fem_child -1.554207 .3508084 -4.43 0.000 -2.241779 -.8666351

fem_uni -.3498625 .3218242 -1.09 0.277 -.9806264 .2809015
child_uni -.5425721 .3414728 -1.59 0.112 -1.211847 .1267023

fem_chi_uni .5205862 .4196237 1.24 0.215 -.3018611 1.343033
age .4486498 .0347122 12.92 0.000 .3806152 .5166844

age_sq -.0053626 .0004532 -11.83 0.000 -.0062509 -.0044744
german .3952258 .1720125 2.30 0.022 .0580875 .732364
year2 .0879536 .1183411 0.74 0.457 -.1439907 .3198979
year3 -.1167532 .1228444 -0.95 0.342 -.3575238 .1240173
year4 .0254419 .1222224 0.21 0.835 -.2141096 .2649934
year5 -.0571422 .13155 -0.43 0.664 -.3149754 .200691
year6 -.1810155 .1152651 -1.57 0.116 -.4069309 .0448998
year7 -.0859129 .1224446 -0.70 0.483 -.3259 .1540742

state1 -.0718204 .2473074 -0.29 0.772 -.5565339 .4128931
state2 .3606021 .1856515 1.94 0.052 -.0032681 .7244723
state3 .103183 .3880872 0.27 0.790 -.657454 .86382
state4 -.0520698 .1537476 -0.34 0.735 -.3534096 .2492699
state6 .2754981 .0993348 2.77 0.006 .0808054 .4701908
state7 -.263168 .2176327 -1.21 0.227 -.6897202 .1633843
state8 .0741054 .16948 0.44 0.662 -.2580694 .4062802
state9 .0641097 .1297169 0.49 0.621 -.1901307 .31835
state10 .2997607 .1095528 2.74 0.006 .0850412 .5144802
state11 -.1825238 .1996686 -0.91 0.361 -.5738671 .2088194
state12 -.1826433 .2803153 -0.65 0.515 -.7320513 .3667646
state13 .3395475 .1951523 1.74 0.082 -.0429439 .7220389
state14 .2726648 .2267348 1.20 0.229 -.1717273 .717057
state15 -.0041417 .249022 -0.02 0.987 -.4922159 .4839324
state16 -.0416705 .1900511 -0.22 0.826 -.4141638 .3308228

_cons -8.49694 1.087946 -7.81 0.000 -10.62928 -6.364605

(Continued on next page)
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. inteff3

Dummies and Interactions: female, child, uni, fem_child, fem_uni, child_uni,
> fem_chi_uni.
Control variable: age age_sq german year2 year3 year4 year5 year6 year7 state1
> state2 state3 state4 state6 state7 state8 state9 state10 state11 state12
> state13 state14 state15 state16, constant term.

Marginal effect at means of probit estimation sample:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

female -.1462466 .0140528 -10.41 0.000 -.1737896 -.1187035
child -.0442597 .0129668 -3.41 0.001 -.0696741 -.0188452

uni .1301115 .0236999 5.49 0.000 .0836605 .1765624
fem_child -.217242 .0257771 -8.43 0.000 -.2677641 -.1667198

fem_uni .1391947 .0445354 3.13 0.002 .051907 .2264824
child_uni -.0120989 .0471321 -0.26 0.797 -.1044761 .0802782

fem_chi_uni .2260262 .0878555 2.57 0.010 .0538327 .3982198

The effect of the variable female shows that the probability of women to participate
in the labor market is about 15 percentage points lower than that of men. The default
of inteff3 is to compute partial effects at means. Hence, the gender difference of 15
percentage points applies to a hypothetical average individual with mean values for all
regressors. Having a child is associated with a 4 percentage points lower participation
rate, and having a university degree is associated with a 13 percentage points higher
participation rate for average individuals.

For the two-fold interaction terms, there are two possible interpretations. The in-
teraction effect −0.22 of female and children (fem child) means that 1) the gender
difference is 22 percentage points larger for average individuals with children compared
with similar individuals without children, or that 2) the negative effect of having a child
on participation is 22 percentage points stronger for females than it is for males.3

The effect for fem uni shows that 1) for university graduates, the gender difference
is 14 percentage points smaller than for nongraduates, or 2) for women, the positive
effect of a university degree on participation is 14 percentage points stronger than it is
for men.

The insignificant effect of child uni implies that 1) the effect of children on partic-
ipation does not seem to depend on the university degree of the parents, or 2) the effect
of the university degree on participation does not seem to depend on the presence of
children.

3. When using the term effect, which conveys the notion of causality, we implicitly assume that
there is no reversed causality (e.g., labor-market participation having an effect on fertility) and no
unobserved heterogeneity that would bias our effects from being causal.
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One possible interpretation of the triple interaction term is as follows. The effect of
children on the gender difference in participation is about 23 percentage points weaker
for women with a university degree compared with women without such a degree. While
the presence of children does increase the gender gap in participation (fem child), it
does so less for more highly educated women (fem chi uni). This empirical result
makes sense economically, because more highly educated women usually have higher
opportunity costs (higher wages, more interesting jobs) from not participating in the
labor market.4

When instead using the real dataset, the partial effects are qualitatively similar but
different in size. They are −0.21 for female, −0.11 for child, 0.16 for uni, −0.38 for
fem child, 0.03 for fem uni, 0.006 for child uni, and 0.07 for fem chi uni. Next we
compare the output of inteff3 after probit with that of a linear probability model.

4. Here we have chosen to interpret the triple interaction term by asking how a university degree
changes our first interpretation of the coefficient fem child. But there are all together six possibili-
ties of interpreting the triple interaction term, because for each possible interpretation of a pairwise
interaction term, we can ask how it changes with the remaining dummy variable. For example, we
could have asked how the presence of children affects the second interpretation of fem uni. The
second interpretation of fem uni was that the positive effect of a university degree on participation
is about 14 percentage points stronger for women than it is for men. The triple interaction term
then means that this male–female difference in the effect of a university degree is stronger by 23
percentage points if children are present than if they are not present.



578 Partial effects in probit and logit models

. regress particip female child uni fem_child fem_uni child_uni fem_chi_uni age
> age_sq german year2 year3 year4 year5 year6 year7 state1 state2 state3 state4
> state6 state7 state8 state9 state10 state11 state12 state13 state14 state15
> state16

Source SS df MS Number of obs = 2000
F( 31, 1968) = 22.06

Model 64.1308182 31 2.06873607 Prob > F = 0.0000
Residual 184.528682 1968 .093764574 R-squared = 0.2579

Adj R-squared = 0.2462
Total 248.6595 1999 .124391946 Root MSE = .30621

particip Coef. Std. Err. t P>|t| [95% Conf. Interval]

female -.0110096 .0513559 -0.21 0.830 -.1117274 .0897081
child .1211511 .0487532 2.48 0.013 .0255379 .2167644

uni .1457012 .0427593 3.41 0.001 .0618428 .2295595
fem_child -.363491 .0652491 -5.57 0.000 -.4914556 -.2355263

fem_uni -.0312669 .056697 -0.55 0.581 -.1424594 .0799257
child_uni -.1126186 .0537618 -2.09 0.036 -.2180547 -.0071826

fem_chi_uni .1911874 .0724121 2.64 0.008 .049175 .3331998
age .0944234 .0058371 16.18 0.000 .0829759 .105871

age_sq -.0011218 .0000759 -14.78 0.000 -.0012706 -.000973
german .0533853 .0247257 2.16 0.031 .004894 .1018766
year2 .0126909 .0191028 0.66 0.507 -.0247729 .0501547
year3 -.0222891 .0195318 -1.14 0.254 -.0605943 .016016
year4 .0137031 .019895 0.69 0.491 -.0253144 .0527206
year5 -.0065777 .0203906 -0.32 0.747 -.046567 .0334117
year6 -.0329195 .0183662 -1.79 0.073 -.0689388 .0030998
year7 -.0119072 .0196214 -0.61 0.544 -.0503881 .0265736

state1 .0006947 .0404722 0.02 0.986 -.0786782 .0800676
state2 .0571352 .0346434 1.65 0.099 -.0108064 .1250768
state3 .0205673 .0661412 0.31 0.756 -.1091468 .1502815
state4 -.009332 .0243071 -0.38 0.701 -.0570023 .0383383
state6 .0508116 .0169564 3.00 0.003 .0175572 .084066
state7 -.0348525 .0292841 -1.19 0.234 -.0922835 .0225786
state8 .0241543 .0289179 0.84 0.404 -.0325585 .0808672
state9 .0090815 .0214628 0.42 0.672 -.0330108 .0511737
state10 .0530236 .0190447 2.78 0.005 .0156737 .0903734
state11 -.0464125 .0310093 -1.50 0.135 -.107227 .0144021
state12 -.0347191 .0425799 -0.82 0.415 -.1182254 .0487873
state13 .0665878 .0358917 1.86 0.064 -.0038019 .1369774
state14 .0573612 .0410576 1.40 0.163 -.0231596 .1378821
state15 -.0053813 .0421607 -0.13 0.898 -.0880656 .0773029
state16 -.0006873 .0294542 -0.02 0.981 -.0584521 .0570775

_cons -1.222554 .1779831 -6.87 0.000 -1.571609 -.8734984

In the linear regression, the coefficient on female is the partial effect for those
individuals for whom all variables interacted with female take on a value of zero. Hence,
−0.01 is the partial gender effect for individuals without a university degree and without
children. The gender effect for individuals with children but without a university degree
is obtained by summing up coefficients on female and fem child. It is −0.01− 0.36 =
−0.37. The gender effect for individuals with children and with a university degree is
−0.01−0.36−0.03+0.19 = −0.21. The effect of −0.15 of the previous inteff3 output
lies somewhere in between these values. This is normal, because we expect the effect
for an average individual computed by inteff3 to be some weighted average of −0.01,
−0.37, and −0.21.
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If we wanted to use inteff3 to compute the gender effect for individuals without
children and without a university degree, and with mean values on all other regressors,
then we have to set the regressor values in inteff3 manually:

. inteff3, at(0.5225 0 0 39.2785 1636.299 0.085 0.846 0.8545 0.8595 0.867
> 0.8305 0.855 0.97 0.9585 0.989 0.9115 0.7915 0.9405 0.9395 0.8825 0.8445
> 0.9475 0.973 0.9615 0.971 0.9725 0.942 1)

Dummies and Interactions: female, child, uni, fem_child, fem_uni, child_uni,
> fem_chi_uni.
Control variable: age age_sq german year2 year3 year4 year5 year6 year7 state1
> state2 state3 state4 state6 state7 state8 state9 state10 state11 state12
> state13 state14 state15 state16, constant term.

Marginal effect at following values:

__000009[1,3]
female child uni

Values .5225 0 0

__000008[1,25]
age age_sq german year2 year3 year4 year5

Values 39.2785 1636.299 .085 .846 .8545 .8595 .867

year6 year7 state1 state2 state3 state4 state6
Values .8305 .855 .97 .9585 .989 .9115 .7915

state7 state8 state9 state10 state11 state12 state13
Values .9405 .9395 .8825 .8445 .9475 .973 .9615

state14 state15 state16 _cons
Values .971 .9725 .942 1

Coef. Std. Err. z P>|z| [95% Conf. Interval]

female -.0150696 .0669203 -0.23 0.822 -.1462311 .1160918
child -.0294894 .0455244 -0.65 0.517 -.1187156 .0597367

uni .134705 .033966 3.97 0.000 .0681328 .2012772
fem_child -.410151 .0840221 -4.88 0.000 -.5748312 -.2454708

fem_uni -.0168247 .0682101 -0.25 0.805 -.150514 .1168646
child_uni -.0120989 .0471321 -0.26 0.797 -.1044761 .0802782

fem_chi_uni .2260262 .0878555 2.57 0.010 .0538327 .3982198

Here we get −0.015 for the effect of female, which is close to the ordinary least-
squares coefficient in the earlier linear regression.

A näıve approach to computing the interaction effects might be using mfx after
probit or dprobit. However, these commands do not deliver the desired interaction
effects:

(Continued on next page)



580 Partial effects in probit and logit models

. dprobit particip female child uni fem_child fem_uni child_uni fem_chi_uni age
> age_sq german year2 year3 year4 year5 year6 year7 state1 state2 state3
> state4 state6 state7 state8 state9 state10 state11 state12 state13 state14
> state15 state16

Iteration 0: log likelihood = -829.64661
Iteration 1: log likelihood = -591.93241
Iteration 2: log likelihood = -573.11604
Iteration 3: log likelihood = -572.0443
Iteration 4: log likelihood = -572.03799
Iteration 5: log likelihood = -572.03799

Probit regression, reporting marginal effects Number of obs = 2000
LR chi2(31) = 515.22
Prob > chi2 = 0.0000

Log likelihood = -572.03799 Pseudo R2 = 0.3105

particip dF/dx Std. Err. z P>|z| x-bar [ 95% C.I. ]

female* -.0082118 .0365744 -0.22 0.823 .5225 -.079896 .063473
child* .1093669 .0496024 2.49 0.013 .6045 .012148 .206586

uni* .2190083 .0708413 4.10 0.000 .809 .080162 .357855
fem_ch~d* -.3261532 .0967815 -4.43 0.000 .3055 -.515842 -.136465
fem_uni* -.0506015 .0487959 -1.09 0.277 .4175 -.14624 .045037

child_~i* -.0766267 .0501354 -1.59 0.112 .4875 -.17489 .021637
fem_ch~i* .0595931 .0400244 1.24 0.215 .243 -.018853 .13804

age .061917 .0054205 12.92 0.000 39.2785 .051293 .072541
age_sq -.0007401 .0000695 -11.83 0.000 1636.3 -.000876 -.000604
german* .0428215 .0142196 2.30 0.022 .085 .014952 .070691
year2* .0126869 .0178172 0.74 0.457 .846 -.022234 .047608
year3* -.0151676 .0150066 -0.95 0.342 .8545 -.04458 .014245
year4* .0035582 .0173291 0.21 0.835 .8595 -.030406 .037523
year5* -.0076483 .0170656 -0.43 0.664 .867 -.041096 .0258
year6* -.0228957 .0133482 -1.57 0.116 .8305 -.049058 .003266
year7* -.0113402 .0154457 -0.70 0.483 .855 -.041613 .018933

state1* -.0094331 .0308558 -0.29 0.772 .97 -.069909 .051043
state2* .0626863 .0392473 1.94 0.052 .9585 -.014237 .13961
state3* .0153135 .0617368 0.27 0.790 .989 -.105688 .136315
state4* -.0069645 .0199152 -0.34 0.735 .9115 -.045998 .032069
state6* .0427229 .0171951 2.77 0.006 .7915 .009021 .076425
state7* -.0305984 .0209289 -1.21 0.227 .9405 -.071618 .010422
state8* .010721 .0256829 0.44 0.662 .9395 -.039617 .061059
state9* .0091683 .0192088 0.49 0.621 .8825 -.02848 .046817
state10* .0479791 .0200612 2.74 0.006 .8445 .00866 .087298
state11* -.0223311 .0215186 -0.91 0.361 .9475 -.064507 .019845
state12* -.0221846 .0296781 -0.65 0.515 .973 -.080353 .035984
state13* .0583521 .040506 1.74 0.082 .9615 -.021038 .137742
state14* .0451065 .0440765 1.20 0.229 .971 -.041282 .131495
state15* -.00057 .0341713 -0.02 0.987 .9725 -.067545 .066405
state16* -.0055981 .0248373 -0.22 0.826 .942 -.054278 .043082

obs. P .8545
pred. P .9274498 (at x-bar)

(*) dF/dx is for discrete change of dummy variable from 0 to 1
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For example, here the effect associated with the triple interaction is 0.06, and it is
not statistically significant. Such a result would have suggested the conclusion that the
increase of the gender difference in participation due to the presence of children does
not depend on education. The dprobit command computes

Δ3F (xβ)
Δ(x1x2x3)

= F (β1 + β2 + β3 + β12 + β13 + β23 + β123 + x̃β̃)

− F (β1 + β2 + β3 + β12 + β13 + β23 + x̃β̃) (4)

In the empirical example, we were interested in the interaction effect given in (3).
The effect in (4) is very different. In general, there is no guarantee that (3) and (4) are
of equal sign.5

Above we demonstrated the use of inteff3 to compute effects at means or at certain
regressor values. The command also allows computation of the partial effects for each
individual in the sample and averaging of these effects. According to Greene (2008,
775), this is more advisable than just computing the effect at means. This is possible
with inteff3 by specifying

. inteff3, average pex1(pe1) pex1x2x3(pe123) sx1(se1) sx1x2x3(se123)

Dummies and Interactions: female, child, uni, fem_child, fem_uni, child_uni,
> fem_chi_uni.
Control variable: age age_sq german year2 year3 year4 year5 year6 year7 state1
> state2 state3 state4 state6 state7 state8 state9 state10 state11 state12
> state13 state14 state15 state16, constant term.

Average marginal effect:

Coef. Std. Err. z P>|z| [95% Conf. Interval]

female -.1639777 .0132023 -12.42 0.000 -.1898537 -.1381017
child -.079771 .0130652 -6.11 0.000 -.1053784 -.0541637

uni .1274121 .0194422 6.55 0.000 .0893061 .1655182
fem_child -.212257 .0255793 -8.30 0.000 -.2623915 -.1621226

fem_uni .0843261 .0387943 2.17 0.030 .0082906 .1603616
child_uni -.0075491 .0397794 -0.19 0.849 -.0855153 .0704171

fem_chi_uni .1850893 .5207804 0.36 0.722 -.8356215 1.2058

The estimates now differ to some extent from those computed at means.6

A more complete description of the sample distribution of the estimated effects (ver-
sus just reporting the average) would be to report quantiles or to graph the distribution
of the effects. The pex1() and pex1x2x3() options used here save the individual effects
of (1) and (3) as variables and allow us to describe or graph their distribution. The
histograms for the effects saved as pe1 (partial effect of female) and pe123 (partial
effect of fem chi uni) uncover a large amount of heterogeneity:

5. Equation (4) is useful, however, because in a difference-in-difference-in-differences model, it repre-
sents the treatment effect (see Puhani [2008]).

6. When instead using the real dataset, the results are −0.19 for female, −0.11 for child, 0.14 for uni,
−0.34 for fem child, 0.02 for fem uni, −0.01 for child uni, and 0.06 for fem chi uni, all except
fem uni and child uni being significant at the 1% level.
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4 Conclusion

In this article, we have derived the partial effects in probit and logit models with three
interacted dummy variables. The computation of the partial effects and their standard
errors has been implemented in the Stata inteff3 command, which applies the delta
method to compute the standard errors of the partial effects. We have demonstrated
the use of inteff3 by means of a probit regression of labor-market participation. We
have included dummies for female gender, university degree, and presence of children,
as well as their pairwise and triple interaction terms. This allows us to analyze the way
a university degree and the presence of children affect the gender difference in labor-
market participation. We find evidence consistent with the idea that the presence of
children increases the gender gap in labor-market participation but that this increase is
smaller for more highly educated individuals.

In an analogous way to that presented here and that presented in Ai and Norton
(2003) and Norton, Wang, and Ai (2004), the effects can be computed for the case of
an interaction of three continuous variables or for a mixture of continuous and dummy
variables.
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6 Appendix

Let g1 denote the difference ΔF (xβ)/Δx1 given in (1). The derivatives of g1 with
respect to β1, β12, β123, and a coefficient βj (part of xβ̃) are given by

∂g1

∂β1
= f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)

∂g1

∂β12
= f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)x2

∂g1

∂β123
= f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)x2x3

∂g1

∂βj
=

{
f(β1 + β2x2 + β3x3 + β12x2 + β13x3 + β23x2x3 + β123x2x3 + x̃β̃)

− f(β2x2 + β3x3 + β23x2x3 + x̃β̃)
}

xj


