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Abstract. Assessing the instability of a multivariable model is important but is
rarely done in practice. Model instability occurs when selected predictors—and
for multivariable fractional polynomial modeling, selected functions of continuous
predictors—are sensitive to small changes in the data. Bootstrap analysis is a use-
ful technique for investigating variations among selected models in samples drawn
at random with replacement. Such samples mimic datasets that are structurally
similar to that under study and that could plausibly have arisen instead. The
bootstrap inclusion fraction of a candidate variable usefully indicates the impor-
tance of the variable. We describe Stata tools for stability analysis in the context
of the mfp command for multivariable model building. We offer practical guidance
and illustrate the application of the tools to a study in prostate cancer.
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1 Introduction

As pointed out in chapter 8 of Royston and Sauerbrei (2008), an assessment of the
(in)stability of a multivariable model is important but is rarely done in practice. Model
instability occurs when selected predictors—and for multivariable fractional polynomial
(MFP) modeling, functions of continuous predictors—are sensitive to a small change
in the data. This article provides Stata tools for stability analysis accompanied by
practical guidance.

For many years, bootstrap resampling has been suggested as a tool to study the
stability of multivariable models (e.g., see Chen and George [1985] and Sauerbrei and
Schumacher [1992]). Including a search for suitable functional forms for continuous
variables substantially increases the number of potential models and the accompanying
instability. The stability of MFP models was investigated by Royston and Sauerbrei
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548 Bootstrap assessment of the stability of multivariable models

(2003). Typically, many hundreds or even thousands of bootstrap replications are re-
quired for a thorough analysis, although much useful information may be gleaned by
using a smaller number, such as 100. With a typical dataset, many different mod-
els are selected by MFP (using Stata’s mfp command) across bootstrap samples. The
resulting bootstrap inclusion fractions (BIFs) provide information on the relative im-
portance of each predictor. The BIF is defined as the proportion (or percentage) of
bootstrap replications in which a given variable or type of function is selected by MFP.
Because dependencies (correlations) among variables are commonplace, to give insight
into the structure of selected models, BIFs for pairs of variables should also be consid-
ered (Sauerbrei and Schumacher 1992). Second- and higher-order dependencies among
BIFs may be studied in detail by log-linear modeling (Royston and Sauerbrei 2003), but
we do not consider that topic further here.

The BIFs for simplified classes of functions of continuous variables (for example, a
variable excluded, or requiring a linear or nonlinear function) and plots of fractional
polynomial (FP) functions estimated in bootstrap samples may help one to assess the
functional form required for a continuous predictor. If the sample size is “too small”,
mfp’s default linear function is often selected even if the underlying function is nonlinear.
One useful technique for summarizing functional form is “bagging” or bootstrap aggrega-
tion of functions (Breiman 1996a). Selected FP functions are averaged across bootstrap
samples to give a more stable estimate of the underlying function and a more realistic
impression of the uncertainty associated with that function. Bagging may be regarded
as a type of model uncertainty analysis (e.g., see Buckland, Burnham, and Augustin
[1997] and Augustin, Sauerbrei, and Schumacher [2005]). Some postestimation tools
for bagging FP functions are included here.

Finally, quantitative measures to assess stability of functions are described and ex-
emplified.

2 Using the bootstrap to explore model stability

It is not our intention to repeat all the details of the methods already published in
Royston and Sauerbrei (2003) and Royston and Sauerbrei (2008) (chapter 8 and sec-
tion 10.6). We recommend reading either Royston and Sauerbrei (2003) or chapters
6 and 8 of Royston and Sauerbrei (2008) beforehand. Here we give a taste of how the
bootstrap is used with model selection, but we mainly concentrate on the Stata software
and on examples.

2.1 Selecting variables within bootstrap samples

An appropriate method for studying model stability is nonparametric bootstrap sam-
pling. A random sample with replacement is taken from the numbers 1, . . . , n, which
index the observations. The complete observations (i.e., the response, covariates, and
in time-to-event data, the censoring indicator) associated with the selected indices com-
prise the bootstrap sample.
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A collection of B bootstrap samples may be used to explore variations among possible
models for the original dataset. Suppose multivariable model building with k covariates
is to be done. In the simplest case of the linear model, for which the inclusion or
exclusion of variables is the only model selection issue, the algorithm is as follows:

1. Draw a bootstrap sample of size n.

2. Apply the model selection procedure.

3. For each covariate xj (j = 1, . . . , k), record whether xj is selected in the model.

4. Repeat steps 1–3 a large number, B, of times.

5. Summarize the results.

The results comprise a matrix with B rows and k columns. The ith row and jth
column element is an indicator variable, Iij , taking the value 1 if xj was selected in the
ith bootstrap sample and 0 if not. The BIF for xj equals (1/B)

∑B
i=1 Iij . A reasonable

range for B is 100 to 1,000 or more.

2.2 Assessing the importance of a variable

It is assumed that each replication, being a random sample from the observations in
the study, reflects the underlying structure of the data. Important variables should
therefore be included in most of the bootstrap replications. The BIF may be used as a
criterion for the importance of a variable. A variable that is approximately uncorrelated
with others and that is just significant at level α in the full model is selected in about
half of bootstrap samples. If its p-value in the full model is less than α, then the BIF is
larger than 0.5, and if the p-value is very small, then the BIF tends toward 1.

A difficulty with the BIF as a criterion of the importance of a variable is how to
cope with correlated variables. Often, only one variable of a correlated set is selected
in a particular bootstrap replication. Sauerbrei and Schumacher (1992) considered the
inclusion frequencies of all possible pairs of variables. In an extreme example, one of
two highly correlated variables may always be selected, but the BIF of each variable
may only be about 50%. Failure to recognize the correlation between the inclusion
frequencies of two variables, together with the aim of building simpler models, may
result in inappropriately eliminating both variables from the model. For a detailed dis-
cussion of strategies for model building based on BIFs, see Sauerbrei and Schumacher
(1992). Furthermore, higher-dimensional dependencies among the inclusion frequen-
cies often occur. Sauerbrei and Schumacher (1992) considered only two-dimensional
inclusion frequencies in up to 1,000 bootstrap replications, whereas for a detailed in-
vestigation of higher-dimensional relationships, more replications are required; see, for
example, Royston and Sauerbrei (2003).

The distribution of inclusion frequencies critically depends on the sample size (or
in time-to-event data, the number of events) and the significance level used in the
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selection procedure. Nevertheless, some understanding of the distribution of inclusion
frequencies of variables and their relationships is a useful complement to the model-
building process. It can be an important criterion when selecting a model (Sauerbrei
1999; Sauerbrei, Holländer, and Buchholz 2008).

2.3 Assessing model stability for functions

Selecting or not selecting a predictor in a multivariable model is a simpler consideration
than selecting a functional form for a continuous covariate. Allowing FP functions
of continuous predictors in bootstrap replications greatly increases the number and
types of candidate models available. Furthermore, one may consider how to define
similarities or differences between the functions and how to summarize them across
bootstrap replications. BIFs alone are inadequate for assessing the effect of a continuous
covariate. For example, in some replications a variable may be excluded, and in others
it may be included as linear, and in still others it may be included as a nonlinear,
monotonic, or nonmonotonic FP function.

Methods for summarizing variation between curves and a measure of curve instability
were suggested by Royston and Sauerbrei (2003). The methods are briefly described and
exemplified later in this article.

3 Using the mfpboot program

The main program described here, mfpboot, is designed to carry out stability analysis
of variable selection and FP function selection with Stata’s mfp program. The reader is
assumed to have some familiarity with mfp and the concepts of model building it embod-
ies. A recent introduction to the topic may be found in Sauerbrei, Royston, and Binder
(2007).

The output from mfpboot looks slightly different for Stata 11 than for earlier versions
of Stata and is illustrated here for Stata 11. The program works with Stata 8 and all
later versions.

We defer presenting the formal syntax diagram of mfpboot at this stage, preferring
to give two motivating examples of using mfpboot with a real dataset. The first example
concentrates on variable selection and the BIF (no FP modeling is done), whereas the
second example is more general in that FP modeling of continuous covariates is included.

3.1 Prostate cancer data

Stamey et al. (1989) studied potential predictors of prostate-specific antigen (PSA) in
97 patients with prostate cancer. The aim was to see which factors or combinations of
factors were associated with a raised PSA level. Clinical observations were made around
the time of a surgical operation in which the entire prostate gland is removed. Please
see table A.6 of Royston and Sauerbrei (2008) for further details.
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The response variable, log PSA level, is continuous. There are seven candidate vari-
ables for multivariable modeling, six of which are continuous; see table 1.

Table 1. Description of the prostate cancer data; the sample size is 97

Name Type Description

age Continuous Age
svi Binary Seminal vessel invasion (Y/N)
pgg45 Continuous Percent Gleason score 4 or 5
cavol Continuous Cancer volume, ml
weight Continuous Prostate weight, g
bph Continuous Amount of benign prostatic hyperplasia, g
cp Continuous Amount of capsular penetration, g
lpsa Continuous Log PSA concentration [response]

The Spearman correlation matrix among the variables is given in table 2.

Table 2. Spearman correlation coefficients between the variables in the prostate cancer
data

Name age svi pgg45 cavol weight bph cp lpsa

age 1
svi 0.13 1
pgg45 0.27 0.48 1
cavol 0.19 0.56 0.50 1
weight 0.40 0.17 0.17 0.29 1
bph 0.34 −0.09 0.10 0.01 0.49 1
cp 0.15 0.62 0.66 0.66 0.18 0.02 1
lpsa 0.22 0.57 0.52 0.70 0.45 0.17 0.52 1

We recommend always examining the Spearman correlation matrix before embarking
on multivariable model building. It provides valuable information on the likelihood of
predictive information being shared among variables and could even result in a priori
omission of some variables among clusters of highly correlated sets.

Note the positive correlation between the response, lpsa, and every covariate, and
some quite strong correlations among the covariates themselves. We would therefore
expect that a parsimonious multivariable model would not need to include all seven
predictors. The strongest predictor (univariately) is cavol.

(Continued on next page)
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3.2 First analysis: All effects assumed linear

Analysis with mfp

We apply mfp to select a model at a conventional significance level of 0.05 for each
predictor, assuming all effects are linear (signified by the df(1) option):

. use prostate_ca
(Prostate cancer data)

. mfp, select(0.05) df(1): regress lpsa age svi pgg45 cavol weight bph cp

Deviance for model with all terms untransformed = 214.267, 97 observations
(output omitted )

Fractional polynomial fitting algorithm converged after 2 cycles.

Transformations of covariates:

-> gen double Ipgg4__1 = pgg45-24.3814433 if e(sample)
-> gen double Icavo__1 = cavol-7.000824803 if e(sample)
-> gen double Iweig__1 = weight-41.30953479 if e(sample)

Final multivariable fractional polynomial model for lpsa

Variable Initial Final
df Select Alpha Status df Powers

age 1 0.0500 0.0500 out 0
svi 1 0.0500 0.0500 in 1 1

pgg45 1 0.0500 0.0500 in 1 1
cavol 1 0.0500 0.0500 in 1 1

weight 1 0.0500 0.0500 in 1 1
bph 1 0.0500 0.0500 out 0
cp 1 0.0500 0.0500 out 0

Source SS df MS Number of obs = 97
F( 4, 92) = 31.34

Model 73.7759955 4 18.4439989 Prob > F = 0.0000
Residual 54.1416631 92 .588496339 R-squared = 0.5767

Adj R-squared = 0.5583
Total 127.917659 96 1.33247561 Root MSE = .76714

lpsa Coef. Std. Err. t P>|t| [95% Conf. Interval]

svi .5842647 .2477803 2.36 0.020 .0921517 1.076378
Ipgg4__1 .006692 .0031353 2.13 0.035 .0004651 .012919
Icavo__1 .0634745 .0123785 5.13 0.000 .0388897 .0880592
Iweig__1 .0164586 .0041656 3.95 0.000 .0081854 .0247318

_cons 2.351897 .0945757 24.87 0.000 2.164061 2.539732

Deviance: 218.713.

Four variables are selected: svi, pgg45, cavol, and weight. The explained variation
for this model is 0.58. Standard backward elimination, using the command

. stepwise, pr(0.05): regress lpsa age svi pgg45 cavol weight bph cp

finds the same model.
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A word of explanation of the columns labeled Select and Alpha in the above output
may be helpful. They correspond to the mfp options select() and alpha(). The first
controls the significance level that is applied to selecting variables by backward elimi-
nation. Here select(0.05) was used, resulting in the selection of variables nominally
significant at the 5% level. The second determines the significance level for selecting FP

functions of continuous variables, the default being alpha(0.05). We applied the mfp
option df(1), meaning that unless otherwise specified, all predictors are to be treated
as linearly related to the outcome. No FP functions are required, and the alpha() op-
tion is inactive. Nevertheless, the value(s) of alpha() is still displayed in the summary
table.

Analysis with mfpboot

We now perform a stability analysis of the same model-selection procedure with the
mfpboot command with B = 100 replicates:

. mfpboot, select(0.05) df(1) clear outfile(mfpboot1) replicates(100) seed(101):
> regress lpsa age svi pgg45 cavol weight bph cp

Dry run of mfp ...

mfp, noscaling df(1) select(0.05) center(age:63.86598,pgg45:24.38144,
> cavol:7.000825,weight:41.30953,bph:2.644845,cp:2.362371):
> regress lpsa age svi pgg45 cavol weight bph cp

Bootstrapping ...
0 10 20 30 40 50 60 70 80 90 100

Results from original data and 100 bootstrap replicates saved to mfpboot1.

In this example, mfpboot has two options to control model selection with mfp, namely,
select(0.05) and df(1), and four options of its own, i.e., clear, outfile(mfpboot1),
replicates(100), and seed(101). We included seed(101) for reproducibility of the
results. The display (“dry run”) of the mfp command that mfpboot executes in each
bootstrap sample is to assist debugging and to show exactly what mfp is doing. Here
the df(1) option overrides the default setting of 4 degrees of freedom for each predictor
implicitly given by dfdefault(4). The values shown in the center() option have been
calculated by mfp and are the means of the continuous predictors. Note that “bootstrap
replicate 0” denotes the original data; mfp is applied to the original data and the results
are stored in the first observation of the output file (mfpboot1.dta).

Analyzing the output file

mfpboot creates an output file—here mfpboot1.dta with 101 records—with one record
(the first) for the analysis of the original data, and the rest for the analysis of each
bootstrap sample. It contains 2k + 2 variables, where k is the number of predictors.
Included are two generic variables: i, which denotes the original data when i equals 0
and the bootstrap replication number when i is greater than 0, and b0, the regression
intercept. A summary of mfpboot1.dta, excluding the first observation, is as follows:
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. use mfpboot1, clear

. summarize if i > 0

Variable Obs Mean Std. Dev. Min Max

i 100 50.5 29.01149 1 100
agep1 8 1 0 1 1
ageb1 8 -.0348865 .0081541 -.0458779 -.0235269
svip1 79 1 0 1 1
svib1 79 .7812214 .2016457 .4089902 1.292439

pgg45p1 66 1 0 1 1
pgg45b1 66 .0094244 .0024546 .005666 .0162177
cavolp1 100 1 0 1 1
cavolb1 100 .0772394 .0180375 .0444745 .142585

weightp1 79 1 0 1 1

weightb1 79 .017017 .0047068 .0082254 .0276669
bphp1 36 1 0 1 1
bphb1 36 .0986751 .021038 .0599876 .1398226
cpp1 22 1 0 1 1
cpb1 22 -.0917698 .0456209 -.1538938 .0838325

b0 100 2.335615 .1029856 2.117865 2.554383

In this example, in which only inclusion or exclusion of a variable is entertained, each
predictor in the MFP model generates two variables, varnamep1 and varnameb1. For
example, age has generated agep1 and ageb1. agep1 contains the first FP transfor-
mation applied to age. Because we have specified df(1) (i.e., linear) for all variables,
agep1 is always 1 and there is no agep2. ageb1 is the estimated regression coefficient
for the FP1 transformation of age (here just of age minus its mean) in bootstrap repli-
cations in which age is selected. Similar considerations apply to the other predictors.
Because svi is binary, it will always be treated as linear in any model.

The summary of the *p1 or the *b1 variables immediately reveals the BIFs. For
example, agep1 has eight nonmissing values; therefore, the BIF for age is 8/100 or 8%.
Clearly, age is not an important variable. As expected, the selected variables (svi,
pgg45, cavol, weight) all have BIFs greater than 50%, and cavol has a BIF of 100%.
The only unselected variable that might be considered for inclusion in a final model is
bph with a BIF of 36%, but 36% is not convincing evidence that bph is important (see
further evidence below).

The BIFs may be economically displayed using the supplied mfpboot bif command:

. use mfpboot1

. mfpboot_bif
age: 8 8.00
svi: 79 79.00

pgg45: 66 66.00
cavol: 100 100.00

weight: 79 79.00
bph: 36 36.00
cp: 22 22.00
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Tabulation of inclusion indicators for each pair of predictors (using the tab2 com-
mand, results not shown) reveals quite a strong negative association between inclusion
of weight and bph—the Spearman correlation between the inclusion indicators is −0.69:

. generate byte weighti = !missing(weightp1) if i > 0
(1 missing value generated)

. generate byte bphi = !missing(bphp1) if i > 0
(1 missing value generated)

. tabulate weighti bphi

bphi
weighti 0 1 Total

0 0 21 21
1 64 15 79

Total 64 36 100

In all 21 replications in which weight is omitted, bph seems to substitute for it. In only
15% of replications are both variables selected. When weight is included, bph is added
to the model in only 15/79 (19%) of replications. The table lends support for including
only one of the two variables, and weight, being the stronger predictor, is the obvious
choice.

3.3 Second analysis: FP modeling of continuous predictors

Analysis with mfp

The mfp command is identical to before, except that the df(1) option is removed to
activate the default of 4 degrees of freedom for each continuous predictor, equivalent to
allowing maximum complexity FP2.

The result (details not shown) is that three predictors were selected: svi, cavol(0),
and weight(1). The notation cavol(0) means that an FP1 transformation with power
0 (i.e., a log transformation) was selected by mfp for this variable. A linear function of
weight was selected. The explained variation for the model is 63%, some 5 percentage
points higher than for the four-variable linear model.

Analysis with mfpboot

The mfpboot command is identical to before, except that, as with the mfp command
above, the df(1) option is removed to allow FP2 or FP1 functions to be selected if
sufficiently supported by the data:

(Continued on next page)
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. use prostate_ca, clear
(Prostate cancer data)

. mfpboot, select(0.05) clear outfile(mfpboot2) replicates(100) seed(101):
> regress lpsa age svi pgg45 cavol weight bph cp

Dry run of mfp ...

mfp, noscaling select(0.05) center(age:6.386598,pgg45:.2538144,cavol:.7000825,
> weight:.4130953,bph:2.644845,cp:.2362371): regress lpsa age svi pgg45 cavol
> weight bph cp

Bootstrapping ...
0 10 20 30 40 50 60 70 80 90 100

Results from original data and 100 bootstrap replicates saved to mfpboot2.

The output file (mfpboot2.dta) has additional variables to allow for possible FP2 trans-
formations. The predictor age, for example, is represented by agep1 and ageb1 (as
before), and agep2 and ageb2. If, in a given bootstrap replication, an FP1 function was
selected, then agep1 holds the corresponding power (1 if a linear function was selected)
and agep2 has a missing value. If an FP2 function was selected, then agep1 and agep2
store the respective FP2 powers. If age was dropped, then agep1, agep2, ageb1, and
ageb2 all have missing values. ageb1 and ageb2 store the relevant regression coefficients.

Analyzing the output file

The BIFs from the mfpboot analysis may be obtained using the mfpboot bif program,
as before:

. use mfpboot2, clear

. mfpboot_bif
age: 19 19.00
svi: 86 86.00

pgg45: 38 38.00
cavol: 100 100.00

weight: 85 85.00
bph: 31 31.00
cp: 31 31.00

Interestingly, the distinction between included and excluded variables is sharper than
before. The selected variables (svi, cavol, and weight) have BIFs of 85% or more. The
excluded variables have BIFs of 31% or less.

By using mfpboot bif with the term(2) option to pick up the *p2 variables, we can
also obtain the BIFs for FP2 functions:

. use mfpboot2

. mfpboot_bif, term(2)
age: 3 3.00

variable svip2 not found
pgg45: 10 10.00
cavol: 35 35.00

weight: 10 10.00
bph: 13 13.00
cp: 17 17.00
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Because svi is binary, it has only a linear term (svip1, which is 1 when svi is selected
and missing otherwise)—no svip2 variable is found. No continuous predictor has an
FP2 BIF of greater than 35%, suggesting no clear need for an FP2 function for any of
them.

The strongest predictor is cavol (its BIF is 100%). A tabulation of the selected FP1

and FP2 powers for this variable in a multivariable context is as follows:

. tabulate cavolp1 cavolp2 if i > 0, missing

cavolp2
cavolp1 -1 .5 1 2 3 . Total

-2 1 3 3 0 0 0 7
-1 0 0 9 5 3 4 21
-.5 0 0 1 1 7 11 20

0 0 0 0 0 2 37 39
.5 0 0 0 0 0 9 9
1 0 0 0 0 0 4 4

Total 1 3 13 6 12 65 100

The most commonly selected model, with a BIF of 37%, is FP1(0), and that is the
obvious choice if one FP model is required. However, several other FP1 and FP2 models
are selected in different bootstrap replications. We explore the implications of the
variability among selected functions for the shape of the function of cavol in the next
section.

3.4 Examining the functions

Following use of mfpboot, it is of interest to investigate variation among the (partial)
predicted functions for a particular variable. A program called pmbeval that works with
the curve summary data saved by mfpboot is designed to make this easier.

Consider cavol, which is selected in 100% of bootstrap replications. However, the
FP1(0) model (log transformation) is chosen in only 37%, so there appears to be some
uncertainty about the functional form for cavol within the bootstrap samples.

The following code uses pmbeval to extract the fitted functions of cavol in the
original data (variable v0) and in all 100 bootstrap samples (variables v1–v100) and
plots the first 50 of them against cavol:

. use mfpboot2

. pmbeval, clear xvar(cavol) rawdata(prostate_ca)

. line v1-v50 cavol, ytitle("Fitted values of lpsa") legend(off)

The resulting plot is shown in figure 1.

(Continued on next page)
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Figure 1. Estimated functions of cavol in the first 50 bootstrap replications

Let us represent the model fit in a given bootstrap replication as β̂0 + f̂(cavol)+ β̂z,
where f̂(cavol) denotes the fitted FP function of cavol that is selected and β̂z refers
to other covariates or FP functions of them that enter the model. The curves in figure 1
are plots of β̂0 + f̂(cavol) against cavol. It appears that the functional form is rather
stable (well defined) for cavol less than about 25 ml but much less certain beyond that.

We can examine the function and its uncertainty further by using pmbeval to com-
pute the mean and a pointwise 90% data interval, i.e., the estimated 5th and 95th
centiles of cavol, for the fitted values across bootstrap samples. (For acceptable preci-
sion, a 95% interval would require B > 100):

. use mfpboot2, clear

. pmbeval if i > 0, clear xvar(cavol) rawdata(prostate_ca) centiles(5 95) mean

We specify i > 0 to exclude the results from the original data from the calculations.
pmbeval places three new variables into the dataset: mean containing the mean fitted
values, and c1 and c2 containing the 5th and 95th pointwise centiles. We may compare
these results graphically with those from the selected model. We refit the latter using
fracpoly and compute the required pointwise confidence interval for the fitted function:
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. use prostate_ca, clear
(Prostate cancer data)

. fracpoly, center(cavol weight: mean): regress lpsa cavol 0 weight svi
-> gen double Iweig__1 = weight-41.30953479 if e(sample)
-> gen double Icavo__1 = ln(X)+.3565571219 if e(sample)

(where: X = cavol/10)

Source SS df MS Number of obs = 97
F( 3, 93) = 53.36

Model 80.9134282 3 26.9711427 Prob > F = 0.0000
Residual 47.0042304 93 .505421833 R-squared = 0.6325

Adj R-squared = 0.6207
Total 127.917659 96 1.33247561 Root MSE = .71093

lpsa Coef. Std. Err. t P>|t| [95% Conf. Interval]

Icavo__1 .540209 .0744859 7.25 0.000 .3922947 .6881233
Iweig__1 .014159 .0038967 3.63 0.000 .0064209 .021897

svi .6794446 .2080709 3.27 0.002 .2662572 1.092632
_cons 2.653265 .1064653 24.92 0.000 2.441846 2.864684

Deviance: 205.00.

. fracpred f, for(cavol)

. fracpred s, for(cavol) stdp

. gen lb = f - 1.645 * s

. gen ub = f + 1.645 * s

For compatibility with what mfp does by default, in the above code, it is necessary
to add the option center(cavol weight: mean) to fracpoly to adjust weight and
cavol to their means, but not to adjust the binary variable svi.

Figure 2 compares the bootstrap mean (bagged) function for cavol with the curve
from the original MFP analysis.

(Continued on next page)
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Figure 2. Left panel: Bagged function of cavol with 90% data interval. Right panel:
Estimated FP1 function of cavol in the original data, with 90% pointwise confidence
interval (conditional on selected model).

The shape of the functions is similar for lower values of cavol but the bagged function
increases more for higher values. A striking difference is the amount of additional
uncertainty revealed by the bootstrap approach.

4 Syntax

mfpboot is a prefix command. Some of its options are native to itself and the others
are for mfp. The general syntax is

mfpboot, mfpboot options
[
mfp options

]
: regression cmd

[
yvar1

[
yvar2

] ]
xvarlist

[
if

] [
in

] [
weight

] [
, regression cmd options

]
See section 6.1 for available mfpboot options.

See [R] mfp for available mfp options.

regression cmd may be clogit, cnreg, glm, intreg, logistic, logit, mlogit, nbreg,
ologit, oprobit, poisson, probit, qreg, regress, rreg, stcox, stcrreg, streg, or
xtgee; see the corresponding manual entry in the Base Reference Manual.

All weight types supported by regression cmd are allowed; see [U] 11.1.6 weight.
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mfpboot bif
[
, term(#) generate

]

pmbeval is a postestimation command with the following syntaxes:

First syntax

pmbeval
[
if

] [
in

]
, clear rawdata(filename) xvar(xvarname)[

centiles(numlist) mean sd n standardize
]

Second syntax

pmbeval
[
if

] [
in

]
, saving(newfilename) rawdata(filename) xvar(xvarname)[

standardize
]

pmbevalfn
[
if

] [
in

]
, clear rawdata(filename)

[
standardize

]
pmbstabil

[
if

] [
in

] [
, by(varname) conditional trunc(#)

]

5 Description

The programs compute fitted FP functions and stability measures following the use of
mfpboot. A “replication” denotes a bootstrap sample.

mfpboot bif computes the BIF for each predictor in a dataset created by mfpboot.
The BIF for a given variable is the proportion of bootstrap replications in which the
variable entered the model selected by mfp.

pmbeval (first syntax) evaluates the FP function of the covariate xvarname for each
available replication and saves the results to the workspace, replacing the current data.
The values of xvarname are read from filename and are also saved to the workspace.
The resulting data are suitable for plotting the fitted functions.

pmbeval (second syntax) evaluates the FP function of the covariate xvarname for
each available replication and saves the results to newfilename. The values of xvarname
are read from filename. The data saved in newfilename are in a format suitable for
stability analysis using pmbstabil but are not intended for plotting.

pmbevalfn evaluates the linear predictor for the model from each replication and
saves the results to the workspace, replacing the current data. The current data are
the contents of the file created by mfpboot, which must be loaded first. The values of
the covariates are supplied in filename. Usually, filename is the file holding the data
on which mfpboot was originally run, although another file may be used instead if it
contains appropriate data.
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pmbstabil computes instability measures V , D2, T , and R2 for a continuous covari-
ate for which the fitted values were created by pmbeval (second syntax) and which have
been loaded into the workspace.

6 Options

6.1 Options for mfpboot

clear is required and signifies willingness for the data in the workspace to be replaced.

outfile(outfilename) is required and specifies the name of the new file to be created
holding the summaries of the MFP model from each bootstrap replicate. If outfile-
name.dta exists, an error is raised unless the replace option is used to allow the
file to be replaced.

keepalso(varlist) causes the variables in varlist to be stored in the file specified by
saving(), along with the standard variables stored there. See also the saving()
option.

nodryrun prevents mfpboot from doing a test run of the mfp command. By default, a
test run is done before the bootstrap procedure starts. The aim is to detect syntax
errors or other issues in the underlying mfp command. It is strongly recommended
that you do not skip this check. Once the mfp command is working on the original
data, the production run of mfpboot can be done with the nodryrun option.

replace allows outfilename.dta to be overwritten if it already exists.

replicates(#) sets the number of bootstrap replicates to #. If # = 0, then only re-
sults from the model for the original data are saved. The default is replicates(100).

saving(datafilename) saves the bootstrap samples to a new file called datafilename. By
default, only yvar1

[
yvar2

]
and xvarlist (and if Cox regression is used, deadvar) are

saved, but see the keepalso() option for how to extend the list of saved variables.

seed(#) sets the random-number seed to #. This option is intended to ensure repro-
ducibility of the bootstrap samples.

6.2 Options for mfpboot bif

term(#) refers to the FP term. The default is term(1), meaning to compute the BIF

for the first term of the FP function of a predictor (the only term, if the variable was
modeled as FP1 or linear). Specifying term(2) would compute the BIF for the FP2

term and would indicate the fraction of bootstrap replicates in which MFP selected
an FP2 function for each variable.
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generate generates new variables indicating whether each FP term in the dataset has
been selected (new variable taking on the value 1) or not (taking on the value 0).
The new variables are named by appending i# to the name of the original variable,
where # is 1 (for the FP1 or linear term) or 2 (for the FP2 term).

6.3 Options for pmbeval (both syntaxes)

rawdata(filename) is required and specifies the name of the file that holds the desired
values of xvarname. This file is typically the original data file used with mfpboot,
but it need not be.

xvar(xvarname) is required and specifies the name of the covariate whose function is
to be evaluated.

standardize standardizes the fitted values for each curve to have mean zero.

6.4 Options for pmbeval (first syntax only)

clear is required and signifies willingness for the data in the workspace to be replaced.

centiles(numlist) calculates and saves centiles of the fitted curves across replications
at the observed values of xvarname. The required centiles are listed in numlist.

mean calculates and saves the mean of the fitted curves across replications at the observed
values of xvarname.

sd calculates and saves the standard deviation of the fitted curves across replications
at the observed values of xvarname.

n calculates and saves the frequencies of the observed values of xvarname.

6.5 Options for pmbeval (second syntax only)

saving(newfilename) is required and specifies the name of a new file to hold values of
xvarname and its fitted functions suitable for stability analysis using pmbstabil. If
newfilename already exists, it is replaced without warning.

6.6 Options for pmbevalfn

clear is required and signifies willingness for the data in the workspace to be replaced.

rawdata(filename) is required and specifies the name of the file that holds the desired
values of xvarname. This file is typically the original data file used with mfpboot,
but it need not be.

standardize standardizes each linear predictor to have mean zero.
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6.7 Options for pmbstabil

by(varname) reports instability measures for two complementary subsets of the boot-
strap replications:

1. Replications in which varname has nonzero, nonmissing values;

2. Replications in which varname is either zero or missing.

conditional calculates instability measures conditional on xvarname entering the model.
The default is to compute unconditional measures assuming that f(xvarname) = 0
when xvarname does not enter.

trunc(#) specifies that 100 × #% of the most extreme observations be dropped. #
can be 0 or less than 1. The default is trunc(0).

7 Instability measures for functions

As discussed by Royston and Sauerbrei (2008), selecting an FP function of a continuous
covariate across bootstrap replications accesses a much wider range of candidate models
than just finding the best-fitting MFP model in the original data. How should similarities
or differences between such functions be defined and summarized? As already noted,
using BIFs alone is insufficient. To supplement BIFs, Royston and Sauerbrei (2003)
proposed some measures of variation between curves that we present in abbreviated
form below. The key components of the approach were used to assess the instability of
an additive spline model (Binder and Sauerbrei 2009). However, although the measures
have been in existence for some years, there is little accumulated experience of their use.
One motivation for making such tools available to the Stata community is to facilitate
further research into them.

We present additional analyses of the prostate cancer data as an example.

7.1 Measures of curve instability

Each bootstrap replication in which a continuous covariate x enters the model generates
a straight line or curve representing one estimate of the function. Variation in the
intercept term across replications, although relevant to the calculation of bootstrap-
based confidence intervals exemplified earlier in this paper, is of no interest in the
present context and may appropriately be removed by standardization, as follows. Let
f̂b (x) be the estimated function of x in the bth bootstrap replication. The standardized
function f̃b (x) is given by

f̃b (x) = f̂b (x) − 1
n

n∑
i=1

f̂b(xi) (1)

where xi is the value of x in the ith observation of the original dataset.
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To summarize graphically the variation among functions in different replications,
Royston and Sauerbrei (2003) calculated the cross-sectional mean (i.e., q−1fbag (x), see
below), together with an uncertainty band comprising, say, the 5th and 95th centiles
of f̃b (x) across the bootstrap replications. The mean and uncertainty band are plotted
against x at sample values xi.

Let us call the multivariable model of interest, i.e., that estimated on the original
data, the reference model. Royston and Sauerbrei (2003) assessed the instability of
the reference model according to the variability among the bootstrap-generated curves,
f̃b (x) (b = 1, . . . , B). Different sources of variability are present:

• Uncertainty associated with estimating the functional form—many different func-
tional forms are available in the FP class;

• Uncertainty reflecting the “confounding” influence of other predictors, which may
or may not happen to be selected, and for which the selected functional forms
differ;

• Random variation around the curve.

Royston and Sauerbrei (2003) defined the following univariate measures for a con-
tinuous x of interest.

Let fref (x) be the estimated function of x in the reference model, standardized as
in (1). Let fref (x) = 0 if x is not selected in the reference model, and let f̃b (x) = 0
if x is not included in the model selected in replication b. For a sample S of replica-
tions, a bootstrap summary of the function is obtained using Breiman’s (1996a) bagged
(bootstrap-aggregated) estimator

fbag (x) =
1
|S|

∑
b∈S

f̃b (x)

where |S| denotes the number of members of S. By considering the decomposition,

T (x) =
1
|S|

∑
b∈S

{
f̃b (x) − fref (x)

}2

=
1
|S|

∑
b∈S

{
f̃b (x) − fbag (x)

}2

+ {fbag (x) − fref (x)}2

which may be written as
T (x) = V (x) + D2 (x)

the total variation, T (x), of bootstrapped functions around the reference function is
seen to be the sum of the within-subset variance, V (x), and the squared deviation,
D2 (x), between the bagged and reference curves. Large values of D2 (x) may indicate
that the shapes of the reference curve and the bagged function differ. The function V (x)
quantifies the random variation and other contributions to variability of the individual
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curves f̃b (x) around the bagged function. A derived measure that may carry useful
information is the explained variation, R2 (x) ,

R2 (x) = 1 − D2 (x) /T (x) = V (x) /T (x) = V (x) /
{
V (x) + D2 (x)

}
A large value of R2 (x) (i.e., near 1) indicates that the variation between the reference
and bagged functions is small compared with the total amount of variation between the
reference function and the bootstrap estimates. The interpretation is that the reference
function is in good agreement with the bagged estimates, presumably the best estimate
that the bootstrap can provide.

We also consider the conditional variance, Vcond (x), of the bootstrap functions in
the subset Sx in which x enters the model,

Vcond (x) =
1

|Sx|
∑
b∈Sx

{
f̃b (x) − 1

q
fbag (x)

}2

where q = |Sx| / |S| is the BIF for x with respect to S. Division by q ≤ 1 scales fbag (x)
appropriately to allow for exclusion of the replicates in which f̃b (x) = 0. When x is
always selected (i.e., when q = 1), then V (x) and Vcond (x) are identical, whereas for
uninfluential variables (when q is low), V (x) and Vcond (x) may be very different.

V (x), D2 (x), Vcond (x), and T (x) are all functions of x. Summary measures may be
obtained by averaging them over the empirical distribution function of x in the original
sample,

V =
1
n

n∑
i=1

V (xi)

D2 =
1
n

n∑
i=1

D2(xi)

Vcond =
1
n

n∑
i=1

Vcond(xi)

T = V + D2

R2 = V/T

An advantage of averaging over the empirical distribution function of x, as opposed to,
say, integrating the measures smoothly over the range of x, is that the results are concen-
trated on the region of x with the highest density. Outlying, “wild” function estimates
at extremes of x tend to be downweighted, although they may still be influential.

7.2 Example

We reanalyze the prostate data to show how the stability functions V (x), D2 (x), and
R2 (x) may be calculated using pmbeval. Graphs of these against x are often informa-
tive. We then demonstrate how the summary measures V , D2, and R2 are computed
using pmbstabil.
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The following code shows the necessary calculations:

. // Compute and save f_ref, the reference function, standardized

. use mfpboot2, clear

. pmbeval if i == 0, clear xvar(cavol) rawdata(prostate_ca) standardize
(Prostate cancer data)

Data now comprise 93 observations for cavol.

. rename v0 f_ref

. save f_ref, replace
file f_ref.dta saved

. // Compute and save f_bag = _mean, V = _sd^2 and frequencies for each x,
> standardized
. use mfpboot2

. pmbeval if i > 0, clear xvar(cavol) rawdata(prostate_ca) standardize mean sd n
(Prostate cancer data)

Data now comprise 93 observations for cavol.

. rename _mean f_bag

. // Merge with f_ref

. merge 1:1 _n using f_ref

Result # of obs.

not matched 0
matched 93 (_merge==3)

. drop _merge

. // Calculate V(x), D^2(x) and R^2(x)

. gen V = _sd^2

. gen Dsq = (f_ref - f_bag)^2

. gen Rsq = V / (Dsq + V)

. gen sV = sqrt(V)

. gen sDsq = sqrt(Dsq)

. drop _sd

. // Expand dataset to n observations

. expand _freq
(4 observations created)

. summarize V Dsq Rsq

Variable Obs Mean Std. Dev. Min Max

V 97 .0747896 .3606356 .0113916 3.524102
Dsq 97 .0155182 .0939165 7.14e-08 .9215094
Rsq 97 .8587237 .1070781 .6547148 .9999946

The first call to pmbeval computes the standardized reference function fref(cavol),
whose coefficients and FP powers are stored in the first observation of mfpboot2.dta,
indexed by i==0. The second call to pmbeval computes the mean fbag(cavol), stored in
mean; the standard deviation, stored in sd; and the frequency of each observed value
of cavol, stored in freq. V (cavol) is simply the square of sd. Following some simple
data management, D2(cavol) is calculated via gen Dsq = (f ref - f bag)^2.

Figure 3 is a plot of V (x), D2 (x), and R2 (x) against cavol.
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Figure 3. Left panel: Instability functions V (x) and D2 (x). To increase legibility,
the square root of each measure has been plotted. Right panel: Explained-variation
function R2 (x). Functions are plotted against x = cavol.

The plot of V (x) is dominated by the largest observation at cavol = 45.65 ml. The
associated variability between bootstrap replications is clearly seen in figure 1. Similarly,
the difference between fbag and fref is maximal at cavol = 45.65 ml, reflected in the
largest value of D2 (x) (also see figure 2). By contrast, the relative measure R2 (x)
fluctuates around its mean of 0.859.

The mean values of V (x) and D2 (x), i.e., the summary measures V and D2, are
0.0748 and 0.01552, respectively. The values may be obtained more directly with
pmbstabil, as follows:

. use mfpboot2, clear

. pmbeval, saving(cavol2) xvar(cavol) rawdata(prostate_ca) standardize
(Prostate cancer data)
file cavol2.dta saved

93 variables and 101 observations based on cavol saved to file cavol2.

. use cavol2

. pmbstabil
|S| = 100, N = 97, T = .09030785, V = .07478962, D^2 = .01551823,
> R^2 = .82816302

Note that the second syntax of pmbeval is used here. Without the smallest and largest
values of cavol, restricted using the trunc() option, the values are as follows:

. pmbstabil, trunc(0.011)
|S| = 100, N = 95, T = .03996372, V = .03481303, D^2 = .00515069,
> R^2 = .87111594
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trunc(.011) deletes 1.1% of the observations of the sample of size 97, i.e., the most
extreme observation at each end of the distribution. As a result, the summary instability
measures are considerably reduced and R2 is increased.

8 Discussion

We have presented tools for applying the bootstrap to model selection with mfp and
evaluating the output analytically and graphically. The mfpboot program is flexible in
the sense that if the analyst wishes to impose an assumption of linearity on all continuous
variables, all that is required is to specify the df(1) option of mfpboot. Variables are
then selected by backward elimination only.

When calculating instability measures for continuous variables whose BIF is less
than 100%, there is a choice between ignoring replications in which a variable was
excluded and taking the estimated function as zero. The default in pmbstabil is to
compute unconditional measures, i.e., assuming that f (x) is zero when x does not
enter. The alternative, conditional, ignores such replications. The issue is discussed
in Royston and Sauerbrei (2003) and Royston and Sauerbrei (2008, 199). Furthermore,
additional work on suitable measures for assessing (dis)agreement between functions is
needed.

We have not compared the “full” MFP model with reduced MFP models in which
variables and functions are selected at some chosen significance level. In the prostate
data, it so happens (rather unusually) that the full MFP model gives more stable esti-
mates of the function for cavol than do the selected models. The FP2 reference function
for cavol in the full MFP model turns out to be similar to the bagged function, so the
D2 measure is small. Further investigation of the instability of a full MFP model is
described by Royston and Sauerbrei (2008, 195–196).

In conclusion, we strongly recommend bootstrap investigation of model (in)stability.
As has been pointed out more than once in the literature, particularly by Breiman
(1996b), selecting a model according to the statistical significance of its variables in an
adaptive algorithm is a fragile process that ignores many other possible models that
may fit as well as or even better than the single chosen one. Selecting functions as well
as variables increases the potential instability. The use of mfpboot should alert the
analyst to these issues and enable a better-informed choice of a “final” model.

9 References
Augustin, N., W. Sauerbrei, and M. Schumacher. 2005. The practical utility of incorpo-

rating model selection uncertainty into prognostic models for survival data. Statistical
Modelling 5: 95–118.

Binder, H., and W. Sauerbrei. 2009. Stability analysis of an additive spline model
for respiratory health data by using knot removal. Journal of the Royal Statistical
Society, Series C 58: 577–600.

Breiman, L. 1996a. Bagging predictors. Machine Learning 24: 123–140.



570 Bootstrap assessment of the stability of multivariable models

———. 1996b. Heuristics of instability and stabilization in model selection. Annals of
Statistics 24: 2350–2383.

Buckland, S. T., K. P. Burnham, and N. H. Augustin. 1997. Model selection: An
integral part of inference. Biometrics 53: 603–618.

Chen, C.-H., and S. L. George. 1985. The bootstrap and identification of prognostic
factors via Cox’s proportional hazards regression model. Statistics in Medicine 4:
39–46.

Royston, P., and W. Sauerbrei. 2003. Stability of multivariable fractional polynomial
models with selection of variables and transformations: A bootstrap investigation.
Statistics in Medicine 22: 639–659.

———. 2008. Multivariable Model-building: A Pragmatic Approach to Regression Anal-
ysis Based on Fractional Polynomials for Modelling Continuous Variables. Chichester,
UK: Wiley.

Sauerbrei, W. 1999. The use of resampling methods to simplify regression models in
medical statistics. Journal of the Royal Statistical Society, Series C 48: 313–329.

Sauerbrei, W., N. Holländer, and A. Buchholz. 2008. Investigation about a screening
step in model selection. Statistics and Computing 18: 195–208.

Sauerbrei, W., P. Royston, and H. Binder. 2007. Selection of important variables and
determination of functional form for continuous predictors in multivariable model
building. Statistics in Medicine 26: 5512–5528.

Sauerbrei, W., and M. Schumacher. 1992. A bootstrap resampling procedure for model
building: Application to the Cox regression model. Statistics in Medicine 11: 2093–
2109.

Stamey, T. A., J. N. Kabalin, J. E. McNeal, I. M. Johnstone, F. Freiha, E. A. Redwine,
and N. Yang. 1989. Prostate specific antigen in the diagnosis and treatment of ade-
nocarcinoma of the prostate. II. Radical prostatectomy treated patients. Journal of
Urology 141: 1076–1083.

About the authors

Patrick Royston is a medical statistician with more than 30 years of experience. He has a
strong interest in biostatistical methodology and in statistical computing and algorithms. At
present, he works in clinical trials and related research issues in cancer. Currently, he is focusing
on problems of model building and validation with survival data, including prognostic factors
studies, on parametric modeling of survival data, on multiple imputation of missing values,
and on novel trial designs.

Willi Sauerbrei has worked for more than two decades as an academic biostatistician. He
has extensive experience of randomized trials in cancer, with a particular concern for breast
cancer. Having a long-standing interest in modeling prognosis and a PhD thesis in issues
in model building, he has more recently concentrated on model uncertainty, meta-analysis,
treatment–covariate interactions, and time-varying effects in survival analysis.


