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Confirmatory factor analysis using confa

Stanislav Kolenikov
Department of Statistics
University of Missouri

Columbia, MO

kolenikovs@missouri.edu

Abstract. This article describes the confa command, which fits confirmatory
factor analysis models by maximum likelihood and provides diagnostics for the
fitted models. Descriptions of the command and its options are given, and some
illustrative examples are provided.

Keywords: st0169, confa, confa postestimation, bollenstine, Bollen–Stine boot-
strap, confirmatory factor analysis, factor scores, Satorra–Bentler corrections

1 Confirmatory factor analysis (CFA)

In a wide range of research problems, especially in the social sciences, the researcher
may not have access to direct measurements of the variables of interest; for example,
intellectual ability is not something that can be measured in centimeters or kilograms.
However, people who are more able can work on mental problems faster, make fewer
errors, or solve more difficult problems. These differences between individual abilities
underlie IQ tests. A more careful analysis might distinguish different dimensions of an
intellectual ability, including reasoning on verbal, spatial, logical, and other kinds of
problems. As another example, liberal democracy is a characteristic of a society that
will not have natural measurement units associated with it (unlike, say, gross domestic
product per capita as a measure of economic development). Political scientists would
have to rely on expert judgment comparing different societies in terms of how much
political freedom citizens may have or how efficient democratic rule is.

In the above problems, researchers will not have accurate measurements of the main
variable of interest. Instead, they operate with several proxy variables that share cor-
relation with that (latent) variable but also contain measurement error. A popular tool
to analyze problems of this kind is confirmatory factor analysis (CFA). This is a multi-
variate statistical technique used to assess the researcher’s theory, which suggests the
number of (latent, or unobserved) factors and their relation to the observed variables,
or indicators (Lawley and Maxwell 1971; Bartholomew and Knott 1999; Brown 2006).
CFA can be viewed as a subfield of structural equation modeling (SEM) with latent vari-
ables (Bollen 1989) when the latent variables are all assumed to be exogenous. The
terms “latent variables”, “factors”, and “latent factors” will be used interchangeably in
this article.

The method differs substantially from exploratory factor analysis (EFA). In EFA, the
number of factors and their relation to the observed variables is unknown in advance.

c© 2009 StataCorp LP st0169



330 Confirmatory factor analysis

The researcher fits several models and compares them using fit criteria, analysis of eigen-
values of certain (functions of) variance–covariance matrices, or substantive considera-
tions. Once the number of factors and the linear subspace of the factors are determined,
the researcher tries to find a rotation that would separate variables into groups so that
variables within the same group are highly correlated with one another and are said to
originate from the same factor. The factors are constructed to be uncorrelated.

In CFA, the model structure must be specified in advance: the number of factors
is postulated, as well as relations between those factors and observed variables. The
researcher must specify which variables are related to which factor(s). The complete
structure of the model is specified in advance. An advantage of this approach is that
it permits the usual statistical inference to be performed: the standard errors of the
estimated coefficients can be obtained and model tests can be performed.

In Stata, EFA is available via the factor estimation command and the associated
suite of postestimation commands. See [MV] factor.

1.1 The model and identification

Let us denote the unobserved latent factors with ξk, k = 1, . . . ,m, where m is the
number of factors that need to be specified a priori. Let the observed variables be yj ,
j = 1, . . . , p. Let index i = 1, . . . , n enumerate observations. In typical application of
CFA, there will be a handful of factors (sometimes just one factor) with several variables
per factor. Large psychometric scales may contain as many as several dozen or more
than a hundred questions, although most items will be binary rather than continuous.

Linear relations are postulated to hold between the factors and observed variables,

yij = µj +
m∑

k=1

λjkξik + δij , j = 1, . . . , p (1)

where µj is the intercept; λjk are regression coefficients, or factor loadings; and δj are
measurement errors, or unique errors. In matrix form, (1) can be written as

yi = µ + Λξi + δi (2)

where vectors µ, ξi, and δi denote regression intercepts, latent variables, and measure-
ment errors, respectively, and Λ is the matrix of factor loadings. The measurement
errors, δ, are assumed to be independent of the factors, ξ. Let us additionally introduce
the (matrices of) parameters

Φ = V (ξ) = E(ξξ′), Θ = V (δ) = E(δδ′)

using the usual convention that E(ξ) = 0, E(δ) = 0. Then the covariance matrix of the
observed variables is
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V (y) = E {(y − µ)(y − µ)′} = E {(Λξi + δi)(Λξi + δi)
′} = ΛΦΛ′ + Θ = Σ(θ) (3)

where all parameters are put together into vector θ.

Let us highlight the distinctions between EFA and CFA again using the matrix for-
mulation (3). EFA assumes that matrices Φ and Θ are diagonal, and matrix Λ is freely
estimated (and rotated if needed). CFA assumes that matrix Λ has a strong structure
with zeroes (or other constraints) in several places, as dictated by researcher’s substan-
tive theory. In fact, the most common structure of this matrix is known as the model
of factor complexity 1: each variable loads on only one factor. Then Λ has a block
structure:

Λ =




Λ1 0 . . . 0
0 Λ2 . . . 0
...

...
. . .

...
0 0 . . . Λm




Other restrictions and corresponding structure of the Λ matrix can be entertained de-
pending on the model.

Before the researcher proceeds to estimation, he or she needs to establish that the
model is identified (Bollen 1989). Identification means that no two different sets of
parameters can produce the same means and covariance matrix (3).

The minimal set of identification conditions in any latent variable modeling is to set
the location and the scale of the latent variables. The former is usually achieved by
setting the mean of the latent variable to zero, and that is the convention adopted by
confa.

There are two common ways to identify the scales of latent factors. One can set the
variance of the latent variable ξk to 1. Alternatively, one can set one of the loadings λjk

to a fixed number, most commonly 1. Then the latent variable will have the units of that
observed variable, which might be useful if the observed variable is meaningful (e.g.,
the latent variable is wealth, and the observed variable is annual income, in dollars).

A necessary identification condition is that the number of parameters, t, of the model
does not exceed the degrees of freedom in the model. In covariance structure modeling
(and in CFA, as a special case), this is the number of the nonredundant entries of the
covariance matrix (3):

dim θ = t ≤ p∗ = p(p + 1)/2

where t is the number of parameters describing the covariance structure. (As long as
zero values are assumed for the means of the factors and errors, the mean structure is
said to be saturated, and the estimates of µ are the corresponding means, µ̂j = yj .)
If t = p∗, the model is said to be exactly identified, and if t > p∗, it is said to be
overidentified. In the latter case, additional degrees of freedom can be used to test for
model fit; see below.
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There are additional conditions related to identification of the latent structure of
the model. Several sufficient identification rules have been developed for CFA. Bollen
(1989) lists the following rules:

1. Three indicator rule. If the model has factor complexity 1, the covariance matrix
of the error terms, V (δ) = Θ, is diagonal, and each factor has at least three
indicators (observed variables associated with that factor), then the CFA model is
identified.

2. Two indicator rule. If the model has factor complexity 1, the covariance matrix
of the error terms, V (δ) = Θ, is diagonal, there is more than one factor in the
model (m > 1), each row of Φ has at least one nonzero, off-diagonal element, and
each factor has at least two indicators, then the CFA model is identified.

1.2 Estimation, testing, and goodness of fit

One of the most popular methods to estimate the parameters in (1) or (2) is by maximum
likelihood (Jöreskog 1969). If assumptions of i.i.d. data and of the multivariate normality
of the observed data (equivalent to the assumption of multivariate normality of ξ and
δ) are made, then the log likelihood of the data is

ln L {Y,Σ(θ)} = −
n∑

i=1

{
p

2
ln 2π +

1

2
ln |Σ(θ) | +

1

2
(yi − µ)′Σ−1(θ)(yi − µ)

}

= −np

2
ln 2π − n

2
ln |Σ(θ) | − 1

2
tr Σ−1(θ)S (4)

where S is the maximum likelihood estimate (MLE) of the (unstructured) covariance
matrix of the data. The likelihood (4) can be maximized with respect to the parameters

to obtain the MLEs, θ̂, of the parameters of the model. The asymptotic variance–
covariance matrix of the estimates is obtained as the inverse of the observed information
matrix, or the negative Hessian matrix, as usual (Gould, Pitblado, and Sribney 2006).

The (quasi-)MLEs retain some desirable properties when the normality assumptions
are violated (Anderson and Amemiya 1988; Browne 1987; Satorra 1990). The estima-
tors are still asymptotically normal. Moreover if 1) the model structure is correctly
specified and 2) the error terms, δ, are independent of one another and of the factors,
ξ, then the inverse information matrix gives consistent estimates of the variances of
parameter estimates, except for the variance parameters of nonnormal factors or errors.
If those asymptotic robustness conditions are violated, the variance–covariance matrix
is inconsistently estimated by the observed or expected information matrix.

Alternative methods of variance–covariance matrix estimation have been proposed
that ensure inference is asymptotically robust to violations of normality. The most
popular estimate is known as Satorra–Bentler “robust” standard errors, after Satorra
and Bentler (1994); see section 5. Stata provides another estimator: Huber sandwich
standard errors (Huber 1967).
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Other point estimation methods in CFA include generalized least squares (Jöreskog
and Goldberger 1972) and asymptotically distribution free methods (Browne 1984).
They are not currently implemented in confa.

Once the MLEs, θ̂, are obtained, one can form the implied covariance matrix Σ(θ̂).
The goodness of fit of the model is then the discrepancy between this matrix and the
sample covariance matrix S. The substantive researchers can only convincingly claim
that their models are compatible with the data if the model fit is satisfactory, and the
null hypothesis

H0 : V (y) = Σ(θ)

cannot be rejected.

The discrepancy implied by the maximum likelihood method itself is the likelihood-
ratio test statistic

T = −2
[
ln L

{
Y,Σ(θ̂)

}
− lnL(Y, S)

]
d→ χ2

q (5)

which has asymptotic χ2 distribution with degrees of freedom equal to the number of
overidentifying model conditions q = p∗ − t.

There are other concepts of fit popular in SEM and CFA literature (Bentler 1990a;
Marsh, Balla, and Hau 1996). Absolute measures of fit are addressing the absolute

values of the residuals, defined as the entries of the difference matrix S − Σ(θ̂). An
example of such measure is the root of mean squared residual (RMSR), given in section 5.1
by (11). Parsimony indices correct the absolute fit by the number of degrees of freedom
used to attain that level of fit. An example of such measure is the root mean squared
error of approximation (RMSEA), given in section 5.1 by (12). Values of 0.05 or less,
or confidence intervals covering this range, are usually considered to indicate a good
fit. Comparative fit indices relate the attained fit of the model to the independence
model when Σ(·) = diag S with p degrees of freedom. They are intended to work as
pseudo-R2 for structural equation models. Comparative fit indices are close to 0 for
models that are believed to fit poorly and close to 1 for the models that are believed to
fit well. Some of the indices may take a value greater than 1, and that is usually taken
as indication of overfitting. Two such indices are reported by the confa postestimation
suite: the Tucker–Lewis nonnormed fit index (TLI) and Bentler’s comparative fit index
(CFI). Values greater than 0.9 are usually associated with good fit. See section 5 for
methods and formulas.

When the assumptions of multivariate normality and asymptotic robustness are vi-
olated, the (quasi-)likelihood-ratio statistic (5) has a nonstandard distribution based on
the sum of weighted χ2

1 variables. Satorra and Bentler (1994) proposed Satterthwaite-
type corrections: Tsc given by (18) corrects the scale of the distribution, and Tadj given
by (19) corrects both the scale and the number of degrees of freedom.

An alternative procedure to correct for the nonstandard distribution of the likeli-
hood-ratio test statistic is by using resampling methods to obtain approximation for
the distribution in question. Beran and Srivastava (1985) and Bollen and Stine (1992)
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demonstrated how the bootstrap should be performed under the null hypothesis of the
correct model structure. Specifically, they proposed to rotate the data according to

y∗ = Σ1/2(θ̂)S−1/2y

The new variables y∗ are guaranteed to be compatible with (2) and at the same time
retain the multivariate kurtosis properties of the original data. Then a sample of the
rotated data, y∗

b , can be taken; the model is fit to that sample; and the test statistic,
Tb, is computed; the whole process is repeated for b = 1, . . . , B sufficiently many times.
The bootstrap p-value associated with test statistic T is the fraction of exceedances:

pBS =
1

B
#(b : Tb > T )

Other aspects of fit that practitioners will usually check is that the parameter es-
timates have expected signs and the proportions of explained variance of the observed
variables (squared multiple correlations, also known as indicator reliability) are suffi-
ciently high (say, greater than 50%).

1.3 Factor scoring

In many psychological, psychometric, and educational applications, the applied re-
searcher uses the model like (1)–(2) to obtain estimates of the latent traits for indi-

vidual observations. They are usually referred to as factor scores, ξ̂. The model then
serves as an intermediate step in obtaining those scores, although goodness of fit is still
an important consideration. The procedure of obtaining the predicted values for ξ is
usually referred to as scoring.

Two common factor scoring methods are implemented through the predict postesti-
mation command of the confa command. The regression method obtains the estimates
(predictions) of the factor scores by minimizing the (generalized) sum of squared devi-
ations of the factors from their true values, which results in factor scores

ξ̂ri = Φ̂Λ̂′Σ−1(θ̂)(yi − µ̂) (6)

The hatted matrices are the matrices of the MLEs of the model parameters. Equation
(6) can also be justified as an empirical Bayes estimator of ξ̂i, with the model giving the

prior distribution ξ ∼ N(0, Φ̂), and the data from the ith observation used to update
that prior, assuming multivariate normality.

Another scoring method, known as the Bartlett method, imposes an additional as-
sumption of unbiasedness and results in factor scores

ξ̂Bi =
(
Λ̂′Θ̂Λ̂

)−1
Λ̂′Θ̂−1(yi − µ̂) (7)

It is also known as the maximum likelihood method because it provides the maximum
likelihood estimates of ξ conditional on the data yi, with a mild abuse of notation
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because the data are used twice, in estimating the parameters and as inputs to the
predictions.

The two methods typically give very similar answers with highly correlated results.
The factor scores obtained from the Bartlett method are unbiased but have greater
variance, while the factor scores obtained from the regression method are shrunk toward
zero.

2 Description of confa command

The confa command contains estimation and postestimation commands for confirma-
tory factor analysis. Single-level, single-group estimation is supported.1 A variety of
identification conditions can be imposed, and robust standard errors can be reported.
Goodness-of-fit tests can be corrected using the Satorra and Bentler (1994) scaling ap-
proach or using the Bollen and Stine (1992) bootstrap. Complex survey designs specified
through [SVY] svyset are supported.

2.1 Syntax

confa factorspec
[
factorspec ...

] [
if

] [
in

] [
weight

] [
,

correlated(corrspec
[
corrspec ...

]
) unitvar(factorlist | all) free

constraint(numlist) missing usenames vce(vcetype) level(#) svy

from(ones | 2sls | ivreg | smart |ml init args) loglevel(#) ml options
]

The factor specification, factorspec, is

(factorname: varlist)

The correlated-errors specification, corrspec, is
[
(

]
varname k:varname j

[
)

]

The list of factors, factorlist , comprises factornames.

The allowed types of weights are pweights, iweights, and aweights.

estat fitindices
[
, aic bic cfi rmsea rmsr tli all

]

estat aic

estat bic

1. Estimation of more advanced models in which the latent variables can be regressed on one another,
or in which multiple levels of latent or observed variables may be present, or in which mixed
responses (continuous, binary, ordinal, and count) may be present is available with the gllamm

command (Rabe-Hesketh, Skrondal, and Pickles 2002, 2004).
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estat correlate
[
, level(#) bound

]

predict
[
type

]
newvarlist

[
if

] [
in

] [
, regression empiricalbayes ebayes

mle bartlett
]

bollenstine
[
, reps(#) saving(filename) confaoptions(string)

bootstrap options
]

2.2 Options of confa

Model

correlated(corrspec
[
corrspec . . .

]
) specifies the correlated measurement errors δk

and δj corresponding to the variables yk and yj . Here corrspec is of the form
[
(

]
varname k:varname j

[
)

]

where varname k and varname j are some of the observed variables in the model;
that is, they must appear in at least one factorspec statement. If there is only one
correlation specified, the optional parentheses shown above may be omitted. There
should be no space between the colon and varname j.

unitvar(factorlist | all) specifies the factors (from those named in factorspec) that
will be identified by setting their variances to 1. The keyword all can be used to
specify that all the factors have their variances set to 1 (and hence the matrix Φ can
be interpreted as a correlation matrix).

free frees up all the parameters in the model (making it underidentified). It is then
the user’s responsibility to provide identification constraints and adjust the degrees
of freedom of the tests. This option is seldom used.

constraint(numlist) can be used to supply additional constraints. There are no checks
implemented for redundant or conflicting constraints, so in some rare cases, the
degrees of freedom may be incorrect. It might be wise to run the model with the
free and iterate(0) options and then look at the names in the output of matrix
list e(b) to find out the specific names of the parameters.

missing requests full-information maximum-likelihood estimation with missing data.
By default, estimation proceeds by listwise deletion.

usenames requests that the parameters be labeled with the names of the variables and
factors rather than with numeric values (indices of the corresponding matrices). It is
a technical detail that does not affect the estimation procedure in any way, but it is
helpful when working with several models simultaneously, tabulating the estimation
results, and transferring the starting values between models.
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Variance estimation

vce(vcetype) specifies different estimators of the variance–covariance matrix. Com-
mon estimators (vce(oim), observed information matrix, the default; vce(robust),
sandwich information matrix; vce(cluster clustvar), clustered sandwich estimator
with clustering on clustvar) are supported, along with their aliases (the robust and
cluster(clustvar) options). See [R] vce option.

An additional estimator specific to SEM is the Satorra–Bentler estimator (Satorra
and Bentler 1994). It is requested by vce(sbentler) or vce(satorrabentler).
When this option is specified, additional Satorra–Bentler scaled and adjusted good-
ness-of-fit statistics are computed and presented in the output. See section 5 for
details.

Reporting

level(#) changes the confidence level for confidence-interval (CI) reporting.

Other

svy instructs confa to respect the complex survey design, if one is specified.

from(ones | 2sls | ivreg | smart |ml init args) provides the choice of starting values for
the maximization procedure. The ml command’s internal default is to set all pa-
rameters to zero, which leads to a noninvertible matrix, Σ, and ml has to make
many changes to those initial values to find anything feasible. Moreover, this initial
search procedure sometimes leads to a domain where the likelihood is nonconcave,
and optimization might fail there.

ones sets all the parameters to values of one except for covariance parameters (off-
diagonal values of the Φ and Θ matrices), which are set to 0.5. This might be a
reasonable choice for data with variances of observed variables close to 1 and positive
covariances (no inverted scales).

2sls or ivreg requests that the initial parameters for the freely estimated loadings
be set to the two-stage least-squares (2SLS) instrumental-variable estimates of Bollen
(1996). This requires the model to be identified by scaling indicators (i.e., setting
one of the loadings to 1) and to have at least three indicators for each latent variable.
The instruments used are all other indicators of the same factor. No checks for their
validity or search for other instruments is performed.

smart provides an alternative set of starting values that is often reasonable (e.g.,
assuming that the reliability of observed variables is 0.5).

Other specification of starting values, ml init args, should follow the format of ml
init. Those typically include the list of starting values of the form from(# #

. . . #, copy) or a matrix of starting values from(matname,
[
copy | skip

]
). See

[R] ml.
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loglevel(#) specifies the details of output about different stages of model setup and
estimation, and is likely of interest only to programmers. Higher numbers imply
more output.

Additional ml options may be used to control the maximization process. See [R] max-

imize and [R] ml. Of these, the difficult option, which improves the behavior
of the maximizer in relatively flat regions, is likely to be helpful. See its use in the
examples below.

2.3 Descriptions and options of estat

The postestimation command estat fitindices produces fit indices and supports the
following options:

aic requests the Akaike information criterion (AIC).

bic requests the Schwarz Bayesian information criterion (BIC).

cfi requests the CFI (Bentler 1990b).

rmsea requests the RMSEA (Browne and Cudeck 1993).

rmsr requests the RMSR.

tli requests the TLI (Tucker and Lewis 1973).

all requests all the above indices. This is the default behavior if no option is
specified.

The computed fit indices are returned as r() values.

estat aic and estat bic compute the Akaike and Schwarz Bayesian information cri-
teria, respectively.

estat correlate transforms the covariance parameters into correlations for factor co-
variances and measurement-error covariances. The delta method standard errors are
given; for correlations close to plus or minus 1, the CIs may extend beyond the range
of admissible values. Additional options are allowed.

level(#) changes the confidence level for CI reporting.

bound provides an alternative asymmetrical CI based on Fisher’s z transform (Cox
2008) of the correlation coefficient. It guarantees that the end points of the interval
are in the (−1, 1) range, provided the estimate itself is in this range.

2.4 Description and options of predict

The postestimation command predict can be used to obtain factor scores. The follow-
ing options are supported:
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regression, empiricalbayes, or ebayes requests regression, or empirical Bayes, factor
scoring procedure (6).

mle or bartlett requests Bartlett scoring procedure (7).

2.5 Options of bollenstine

reps(#) specifies the number of bootstrap replications. The default is reps(200).

saving(filename) specifies the file where the simulation results (the parameter estimates
and the fit statistics) are to be stored. The default is a temporary file that will be
deleted as soon as bollenstine finishes.

confaoptions(string) allows the transfer of confa options to bollenstine. If nonde-
fault model (unitvar and correlated) options were used, one would need to use
them with bollenstine as well.

If no starting values are specified among confaoptions, the achieved estimates e(b)
will be used as starting values.

In the author’s experience, confa may fall into nonconvergent regions with some
bootstrap samples. It would be then recommended to limit the number of iterations,
say with confaoptions(iter(20) . . .).

Other bootstrap options (except for the forced notable, noheader, nolegend, and
reject(e(converged) == 0) options) are allowed and will be transferred to the
underlying bootstrap command. See [R] bootstrap.

3 Example 1: Simple structure CFA with psychometric
data

A popular and well-known dataset for confirmatory factor analysis is based on Holzinger
and Swineford (1939) data also analyzed by Jöreskog (1969).2 The dataset contains the
measures of performance of 301 children in grades 7 and 8 from two different schools
on several psychometric tests. The complete dataset has 26 psychometric variables.
The benchmark analyses (Jöreskog 1969; Yuan and Bentler 2007) usually use a smaller
subset with 9 or 12 variables, typically linked to three or four factors, respectively. The
relevant subset is available as follows:

2. Available at http://www.coe.tamu.edu/˜bthompson/datasets.htm.
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. use hs-cfa
(Holzinger & Swineford (1939))

. describe

Contains data from hs-cfa.dta
obs: 301 Holzinger & Swineford (1939)
vars: 15 7 Oct 2008 15:14
size: 24,983 (99.8% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

id int %9.0g Identifier
sex byte %8.0g Gender
ageyr byte %9.0g Age, years
agemo byte %9.0g Age, months
school byte %11.0g school School
grade byte %8.0g Grade
x1 double %10.0g Visual perception test from

Spearman vpt, part iii
x2 double %10.0g Cubes, simplification of

brigham�s spatial relations
test

x3 double %10.0g Lozenges from Thorndike--shapes
flipped then identify target

x4 double %10.0g Paragraph comprehension test
x5 double %10.0g Sentence completion test
x6 double %10.0g Word meaning test
x7 double %10.0g Speeded addition test
x8 double %10.0g Speeded counting of dots in shape
x9 double %10.0g Speeded discrim straight and

curved caps

Sorted by:

Specification and starting values

We shall factor analyze these data, grouping the variables together in three factors:
“visual” factor (x1–x3 variables), “textual” factor (x4–x6 variables), and “math” factor
(x7–x9 variables). In matrix terms,




x1

x2

x3

x4

x5

x6

x7

x8

x9




=




µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

µ9




+




λ11 0 0
λ21 0 0
λ31 0 0
0 λ42 0
0 λ52 0
0 λ62 0
0 0 λ73

0 0 λ83

0 0 λ93







ξ1

ξ2

ξ3


 +




δ1

δ2

δ3

δ4

δ5

δ6

δ7

δ8

δ9




V (ξ) = Φ, V (δ) = diag(θ1, . . . , θ9), Cov(ξ, δ) = 0
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A graphical representation using the standard conventions of structural equation
modeling path diagrams is given in figure 1. Observed variables are represented as boxes
and unobserved variables, as ovals. The directed arrows between objects correspond to
the regression links in the model, and stand-alone arrows toward the observed variables
are measurement errors (the symbols δj are omitted). Two-sided arrows correspond to
correlated constructs (factors).

vis

x1 x2 x3

text

math

x4 x5 x6 x7 x8 x9

Figure 1. The basic model for Holzinger–Swineford data

As described above, this is a moderate size factor analysis model. A simple initial
specification describing the above model is

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9)

initial: log likelihood = -168453.1
rescale: log likelihood = -168453.1
rescale eq: log likelihood = -4169.0999
could not calculate numerical derivatives
flat or discontinuous region encountered
convergence not achieved
r(430);

The default search procedures of ml led to a region with flat likelihood, and ml

maximize was unable to overcome this. As described in the previous section, several
options for better starting values are available in confa. For the standardized data, the
from(ones) option will be expected to perform well. If the factors are identified by
unit loadings of the first variable (the default), one can use from(iv) or its equivalent,
from(2sls), to get the initial values of loadings from the Bollen (1996) 2SLS estimation
procedure, with factor variances and covariances obtained from the variances of the
scaling variables, and error variances obtained by assuming the indicator reliabilities of
0.5. Also, with this normalization by the indicator, the from(smart) option provides
another set of initial values with initial loadings estimated from the covariances of the
variable in question and the scaling variable, with other parameters receiving initial
values similarly to the procedure with the from(iv) settings. Let us demonstrate those
procedures:
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. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(ones)

initial: log likelihood = -3933.9488
rescale: log likelihood = -3933.9488
rescale eq: log likelihood = -3763.1831
Iteration 0: log likelihood = -3820.0525 (not concave)
Iteration 1: log likelihood = -3786.3638
Iteration 2: log likelihood = -3778.5165 (not concave)
Iteration 3: log likelihood = -3748.4099
Iteration 4: log likelihood = -3744.5167 (backed up)
Iteration 5: log likelihood = -3738.5289
Iteration 6: log likelihood = -3737.8633
Iteration 7: log likelihood = -3737.7461
Iteration 8: log likelihood = -3737.7449
Iteration 9: log likelihood = -3737.7449

(output omitted )

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(iv)

initial: log likelihood = -3842.5598
rescale: log likelihood = -3842.5598
rescale eq: log likelihood = -3773.2707
Iteration 0: log likelihood = -3773.2707 (not concave)
Iteration 1: log likelihood = -3747.5598
Iteration 2: log likelihood = -3740.8673
Iteration 3: log likelihood = -3737.8022
Iteration 4: log likelihood = -3737.7451
Iteration 5: log likelihood = -3737.7449

(output omitted )

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(smart)

initial: log likelihood = -4417.3064
rescale: log likelihood = -4417.3064
rescale eq: log likelihood = -4127.3988
Iteration 0: log likelihood = -4127.3988 (not concave)
Iteration 1: log likelihood = -3883.7073 (not concave)
Iteration 2: log likelihood = -3804.466
Iteration 3: log likelihood = -3768.374
Iteration 4: log likelihood = -3739.6488
Iteration 5: log likelihood = -3737.7715
Iteration 6: log likelihood = -3737.745
Iteration 7: log likelihood = -3737.7449

(output omitted )

It appears that the 2SLS initial values performed best, and it should not be surpris-
ing. The 2SLS estimates are consistent if 1) the model is correctly specified, 2) there are
no variables of factor complexity more than 1, and 3) there are no correlated measure-
ment errors. All other starting-value proposals, on the other hand, have some ad-hoc
heuristics that produce reasonable, feasible, but far from optimal values. It is not guar-
anteed, however, that from(iv) will always produce the best starting values that would
ensure the fastest convergence, especially in misspecified models.

The resulting estimates are identical for all three convergent runs:
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log likelihood = -3737.7449 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
x1 4.93577 .0671778 73.47 0.000 4.804104 5.067436
x2 6.08804 .0677543 89.85 0.000 5.955244 6.220836
x3 2.250415 .0650802 34.58 0.000 2.12286 2.37797
x4 3.060908 .066987 45.69 0.000 2.929616 3.1922
x5 4.340532 .0742579 58.45 0.000 4.194989 4.486074
x6 2.185572 .0630445 34.67 0.000 2.062007 2.309137
x7 4.185902 .0626953 66.77 0.000 4.063022 4.308783
x8 5.527076 .0582691 94.85 0.000 5.412871 5.641282
x9 5.374123 .0580698 92.55 0.000 5.260308 5.487938

Loadings
vis
x1 1 . . . . .
x2 .5535013 .1092479 5.07 0.000 .3393794 .7676232
x3 .7293715 .1172686 6.22 0.000 .4995293 .9592138

text
x4 1 . . . . .
x5 1.113077 .0649866 17.13 0.000 .9857055 1.240448
x6 .9261464 .0561948 16.48 0.000 .8160066 1.036286

math
x7 1 . . . . .
x8 1.179951 .1502869 7.85 0.000 .8853936 1.474507
x9 1.081529 .1951225 5.54 0.000 .6990957 1.463962

Factor cov.
vis-vis .8093138 .1497566 5.40 0.000 .5157962 1.102831

text-text .9794911 .1122102 8.73 0.000 .7595632 1.199419
vis-text .4082317 .079676 5.12 0.000 .2520696 .5643939
math-math .3837481 .0920626 4.17 0.000 .2033086 .5641875
text-math .1734945 .0493133 3.52 0.000 .0768422 .2701468
vis-math .2622243 .0553834 4.73 0.000 .1536747 .3707738

Var[error]
x1 .5490568 .11905 4.61 0.000 .315723 .7823905
x2 1.13384 .1042625 10.87 0.000 .9294893 1.338191
x3 .8443248 .0950751 8.88 0.000 .657981 1.030669
x4 .3711736 .047963 7.74 0.000 .2771678 .4651794
x5 .4462552 .0579336 7.70 0.000 .3327075 .559803
x6 .3562031 .0434407 8.20 0.000 .271061 .4413453
x7 .7993921 .0875596 9.13 0.000 .6277784 .9710058
x8 .4876966 .09166 5.32 0.000 .3080462 .667347
x9 .5661322 .0905796 6.25 0.000 .3885995 .7436649

R2
x1 0.5938
x2 0.1788
x3 0.3366
x4 0.7228
x5 0.7287
x6 0.6999
x7 0.3233
x8 0.5211
x9 0.4408

Goodness of fit test: LR = 85.306 ; Prob[chi2(24) > LR] = 0.0000
Test vs independence: LR = 833.546 ; Prob[chi2(36) > LR] = 0.0000



344 Confirmatory factor analysis

The reported estimates are as follows: the estimated means of the data (coincide
with the sample means for complete data); loadings, λjk, grouped by the latent variable,
in the order in which those factors and variables were specified in the call to confa;
factor covariances, φkl; and variances of the error terms, δj . All parameters are freely
estimated, except for loadings used for identification (they have a coefficient estimate
equal to 1 and are missing standard errors). This implies that the covariances are
not guaranteed to comply with Cauchy inequality and that the error variances are not
guaranteed to be nonnegative. Violations of these natural range restrictions are known
as Heywood cases and sometimes indicate improper specification of the model.

The next block in the output gives indicator reliabilities defined as a proportion of
the variance of the observed variable explained by the model. They can be thought
of as R2’s in imaginary regressions of the observed variables on their respective latent
factors.

The final set of the displayed statistics is likelihood ratios. The first line is the test
against a saturated model (when Σ̂ = S), and the second line is the test against an

independence model (when Σ̂ = diag S). The first test shows that the model is not
fitting well, which is known in literature, while the second one shows that the current
model is still a big improvement when compared with the null model, in which variables
are assumed independent.

As a final note on the initial values, the internal logic of ml search cannot take into
account various parameter boundaries and constraints specific to confa. If you see in
your output something like

. confa (f1: x_1*) (f2: x_2*) (f3: x_3*), from(smart)

initial: log likelihood = -3332.5231
rescale: log likelihood = -3290.9289
rescale eq: log likelihood = -3130.3676
initial values not feasible

you have come across such an occurrence. You might want to bypass ml search with
an additional search(off) option.

Standard-error estimation

The results reported above assume multivariate normality and use the inverse ob-
served information matrix as the estimator of the variance–covariance matrix of the
coefficient estimates. Other types of estimators are known in SEM, most prominently
Satorra and Bentler (1994) variance estimator (16). It can be specified with a nonstan-
dard vce(sbentler) option:
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. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(iv)
> vce(sbentler) nolog

log likelihood = -3737.7449 Number of obs = 301

Satorra-Bentler
Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Factor cov.

vis-vis .8093134 .1618238 5.00 0.000 .4921447 1.126482
text-text .9794883 .1187477 8.25 0.000 .746747 1.21223
vis-text .4082305 .0803487 5.08 0.000 .25075 .565711
math-math .38375 .0804103 4.77 0.000 .2261487 .5413514
text-math .1734937 .0551705 3.14 0.002 .0653614 .2816259
vis-math .2622236 .0543578 4.82 0.000 .1556844 .3687629

Var[error]
x1 .5490553 .1403178 3.91 0.000 .2740376 .8240731
x2 1.133841 .1007102 11.26 0.000 .9364526 1.331229
x3 .8443246 .0813374 10.38 0.000 .6849062 1.003743
x4 .3711732 .047562 7.80 0.000 .2779533 .4643931
x5 .4462556 .0526208 8.48 0.000 .3431208 .5493905
x6 .3562028 .0447916 7.95 0.000 .2684129 .4439927
x7 .7993899 .0713344 11.21 0.000 .6595771 .9392028
x8 .4876955 .0701502 6.95 0.000 .3502036 .6251874
x9 .5661339 .0629795 8.99 0.000 .4426963 .6895715

(output omitted )

Goodness of fit test: LR = 85.306 ; Prob[chi2(24) > LR] = 0.0000
Test vs independence: LR = 833.546 ; Prob[chi2(36) > LR] = 0.0000

Satorra-Bentler Tsc = 82.181 ; Prob[chi2(24) > Tsc ] = 0.0000
Satorra-Bentler Tadj = 72.915 ; Prob[chi2(21.3) > Tadj] = 0.0000
Yuan-Bentler T2 = 66.468 ; Prob[chi2(24) > T2 ] = 0.0000

The point estimates are the same as before, but the standard errors are different.
In models with correctly specified structure, the Satorra–Bentler standard errors are
typically larger than the information matrix–based standard errors, although coun-
terexamples can be provided when the distribution of the data has tails lighter than
those of the normal distribution. Note also that additional test statistics are reported:
Tsc, Tadj, and T2. The näıve quasi–maximum-likelihood test statistic reported on the
first line of test statistics is no longer valid when the data do not satisfy the asymptotic
robustness conditions (see p. 332). These additional tests tend to perform much better.
The technical description is given in section 5; see (16) for Satorra–Bentler standard
errors and (18)–(20) for the additional test statistics.

As with most of Stata’s ml-based commands, sandwich standard errors can be ob-
tained with the robust option:

(Continued on next page)
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. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(iv) robust nolog

log pseudolikelihood = -3737.7449 Number of obs = 301

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Loadings

vis
x1 1 . . . . .
x2 .5535009 .1322981 4.18 0.000 .2942013 .8128005
x3 .7293711 .1413231 5.16 0.000 .452383 1.006359

text
x4 1 . . . . .
x5 1.113077 .065795 16.92 0.000 .9841209 1.242033
x6 .9261465 .0614803 15.06 0.000 .8056474 1.046646

math
x7 1 . . . . .
x8 1.179948 .1306601 9.03 0.000 .9238593 1.436037
x9 1.081524 .2668148 4.05 0.000 .5585761 1.604471

Factor cov.
vis-vis .8093134 .1806965 4.48 0.000 .4551548 1.163472

text-text .9794883 .121498 8.06 0.000 .7413566 1.21762
vis-text .4082305 .0994813 4.10 0.000 .2132508 .6032102
math-math .38375 .1068804 3.59 0.000 .1742683 .5932317
text-math .1734937 .0563996 3.08 0.002 .0629525 .2840349
vis-math .2622236 .0601591 4.36 0.000 .1443139 .3801334

Var[error]
x1 .5490553 .1567305 3.50 0.000 .2418692 .8562415
x2 1.133841 .1120656 10.12 0.000 .9141966 1.353485
x3 .8443246 .1004535 8.41 0.000 .6474394 1.04121
x4 .3711732 .0503657 7.37 0.000 .2724582 .4698882
x5 .4462556 .0567984 7.86 0.000 .3349329 .5575784
x6 .3562028 .0465941 7.64 0.000 .2648801 .4475256
x7 .7993899 .0973832 8.21 0.000 .6085223 .9902576
x8 .4876955 .1197326 4.07 0.000 .2530239 .7223671
x9 .5661339 .1189374 4.76 0.000 .333021 .7992468

Goodness of fit test: LR = . ; Prob[chi2( .) > LR] = .
Test vs independence: LR = . ; Prob[chi2( .) > LR] = .

Because the robust option implies that the assumptions of the model are violated,
the likelihood-ratio tests are not computed and indicator reliabilities (squared multiple
correlations) are not reported. Similar behavior is shown by other Stata commands, such
as regress, . . . robust, which omits ANOVA table, because this estimator potentially
corrects for heteroskedasticity of error terms, and in presence of heteroskedasticity, sums
of squared errors are not particularly meaningful. Unlike the Satorra–Bentler variance
estimator, the sandwich estimator does not make any assumptions regarding the model
structure, and hence is likely to retain consistency under a greater variety of situations
compared with the Satorra–Bentler estimator.

Correlated errors

It was argued in substantive literature that one of the reasons the basic CFA model
does not fit well for this dataset is because the variables responsible for the speeded
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counting (x7 and x8) are measuring similar skills, while the other variable in this factor,
x9, has a weaker correlation with either of them than they have with one another.
Hence, the model where errors of x7 and x8 are allowed to correlate might fit better.
Here is how this can be implemented.

. matrix bb=e(b)

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb, skip)
> correlated(x7:x8)

initial: log likelihood = -3737.7449
rescale: log likelihood = -3737.7449
rescale eq: log likelihood = -3737.7449
Iteration 0: log likelihood = -3737.7449 (not concave)
Iteration 1: log likelihood = -3732.2812
Iteration 2: log likelihood = -3730.0893
Iteration 3: log likelihood = -3723.0064 (not concave)
Iteration 4: log likelihood = -3722.2265
Iteration 5: log likelihood = -3721.8698
Iteration 6: log likelihood = -3721.7297
Iteration 7: log likelihood = -3721.7283
Iteration 8: log likelihood = -3721.7283

log likelihood = -3721.7283 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Var[error]

x1 .5758433 .1034751 5.57 0.000 .3730357 .7786508
x2 1.122499 .1019974 11.01 0.000 .9225877 1.32241
x3 .8321163 .089874 9.26 0.000 .6559664 1.008266
x4 .3722489 .0479869 7.76 0.000 .2781963 .4663014
x5 .4436604 .0580119 7.65 0.000 .3299592 .5573615
x6 .3570578 .0434528 8.22 0.000 .2718919 .4422236
x7 1.036463 .088125 11.76 0.000 .863741 1.209185
x8 .7948157 .0831437 9.56 0.000 .6318571 .9577743
x9 .0875355 .1967033 0.45 0.656 -.2979959 .473067

Cov[error]
x7-x8 .3527068 .0662993 5.32 0.000 .2227626 .482651

R2
x1 0.5742
x2 0.1870
x3 0.3461
x4 0.7220
x5 0.7303
x6 0.6992
x7 0.1236
x8 0.2215
x9 0.9107

Goodness of fit test: LR = 53.272 ; Prob[chi2(23) > LR] = 0.0003
Test vs independence: LR = 865.579 ; Prob[chi2(36) > LR] = 0.0000

Note the use of starting values: the previous parameter estimates are saved and
transferred via the from(. . ., skip) option. The skip option in parentheses ensures
that the values are copied by the names rather than by position in the initial vector.
The reported R2’s for variables x7 and x8 went down, while the reported R2 for x9 went
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up and became the largest R2 in the model. This is not surprising. The math factor is
primarily based on covariances between the last three variables, and to a lesser extent,
on covariances between the last three and the first six variables. The latter component
is relatively unchanged between the two models. However, with the covariance between
the error terms δ7 and δ8 freely estimated, the covariance between x7 and x8 no longer
contributes to explaining this factor. The burden of identifying this factor shifts to
covariances x7–x9 and x8–x9. The math factor now has to contribute less to explaining
covariances between x7 and x8, and more to explaining covariance of x9 with other
variables. This produces the observed change in reliabilities.

Is this newly introduced correlation significant? The z statistic is reported to be
5.32, and the likelihood ratio can be formed to be 85.306− 53.272 = 32.034, significant
when referred to χ2

1. Virtually identical results can be obtained with the robust variance
estimator that gives the standard error of 0.0654 and z statistic of 5.39, highly significant
at conventional levels.

Let us demonstrate another important procedure for computing significance of the
χ2-difference tests with nonnormal data.

Satorra–Bentler scaled difference test

Nonnormality of the data may cast doubt on the value of both the goodness-of-
fit test and the likelihood-ratio tests of nested models. Satorra and Bentler (2001)
demonstrated how to obtain a scaled version of the nested models test correcting
for multivariate kurtosis. Suppose two models are fit to the data, resulting in the
(quasi-)likelihood-ratio test statistics T0 and T1; degrees of freedom r0 and r1; and scal-
ing factors c0 and c1 (18), where index 0 stands for a more restrictive (null) model.
Then the test statistic is

T d =
(T0 − T1)(r0 − r1)

r0c0 − r1c1

to be referred to χ2 with r1 − r0 degrees of freedom. It is not guaranteed to be nonneg-
ative in finite samples or with grossly misspecified models.

Here is the sequence of steps to obtain the test statistic T d to test for significance
of correlated errors:

. qui confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb)
> vce(sbentler)

. local T0 = e(lr_u)

. local r0 = e(df_u)

. local c0 = e(SBc)

. qui confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb, skip)
> vce(sbentler) correlated(x7:x8)

. local T1 = e(lr_u)

. local r1 = e(df_u)
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. local c1 = e(SBc)

. local DeltaT = (�T0�-�T1�)*(�r0�-�r1�)/(�r0�*�c0�-�r1�*�c1�)

. di as text "Scaled difference Delta = " as res %6.3f �DeltaT� as text "; Prob
> [chi2>" as res %6.3f �DeltaT� as text "] = " as res %6.4f
> chi2tail(�r0�-�r1�, �DeltaT�)
Scaled difference Delta = 33.484; Prob[chi2>33.484] = 0.0000

See the description of returned values in section 5. The test statistic, which has an
approximate χ2 distribution, again confirms that the correlation is significant.

Bollen–Stine bootstrap

Aside from the Satorra–Bentler fit statistics Tsc and Tadj reported with option
vce(sbentler), an alternative way to correct fit statistics for nonnormality is by resam-
pling methods. The bootstrap procedure for covariance matrices was proposed by Beran
and Srivastava (1985) and Bollen and Stine (1992). This procedure is implemented via
the bollenstine command as a part of the confa package. See syntax diagrams in
section 2.

For a fraction of the bootstrap samples, maximization does not converge (even
though the last parameter estimates are used as starting values, by default). Hence,
bollenstine rejects such samples (via the reject(e(converged)==0) option supplied
to the underlying bootstrap). It is supposed to be used in conjunction with a limit
on the number of iterations given by confaoptions(iter(#) . . .). In most “good”
samples, the convergence is usually achieved in about 5 to 10 iterations. In the output
that follows, the limit on the number of iterations is set to 20. There were two sam-
ples where the bootstrap did not converge, shown with x among the dots produced by
the bootstrap command. If the number of iterations is set to 5, only 208 out of 500
bootstrap samples produce convergent results.

Note the use of confaoptions(corr(x7:x8)) to transfer the original model spec-
ification to bollenstine. Without it, bollenstine would be calling the basic model
without the correlated errors, thus producing inappropriate results.

(Continued on next page)
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. qui confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(bb, skip)
> correlated(x7:x8)

. set seed 1010101

. bollenstine, reps(500) confaoptions(iter(20) corr(x7:x8))
(running confa on estimation sample)

Bootstrap replications (500)
1 2 3 4 5

.................................................. 50

.................................................. 100

.....................x............................ 150

.................................................. 200

.................................................. 250

.................................................. 300

........................x......................... 350

.................................................. 400

.................................................. 450

.................................................. 500

log likelihood = -3721.7283 Number of obs = 301

Bollen-Stine
Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Factor cov.

vis-vis .782528 .1362375 5.74 0.000 .5155074 1.049549
text-text .9784168 .1121731 8.72 0.000 .7585615 1.198272
vis-text .3995371 .0777012 5.14 0.000 .2472456 .5518285
math-math .1466786 .0528322 2.78 0.005 .0431294 .2502278
text-math .1021679 .0360058 2.84 0.005 .0315979 .172738
vis-math .184376 .0512257 3.60 0.000 .0839754 .2847766

Var[error]
x1 .5758433 .1034751 5.57 0.000 .3730357 .7786508
x2 1.122499 .1019974 11.01 0.000 .9225877 1.32241
x3 .8321163 .089874 9.26 0.000 .6559664 1.008266
x4 .3722489 .0479869 7.76 0.000 .2781963 .4663014
x5 .4436604 .0580119 7.65 0.000 .3299592 .5573615
x6 .3570578 .0434528 8.22 0.000 .2718919 .4422236
x7 1.036463 .088125 11.76 0.000 .863741 1.209185
x8 .7948157 .0831437 9.56 0.000 .6318571 .9577743
x9 .0875355 .1967033 0.45 0.656 -.2979959 .473067

Cov[error]
x7-x8 .3527068 .0662993 5.32 0.000 .2227626 .482651

(output omitted )

Goodness of fit test: LR = 53.272 ; Prob[chi2(23) > LR] = 0.0003
Test vs independence: LR = 865.579 ; Prob[chi2(36) > LR] = 0.0000

Bollen-Stine simulated Prob[ LR > 53.2722 ] = 0.0020
Based on 498 replications. The bootstrap 90% interval: (13.258,39.852)

Standard errors have been replaced by the Bollen–Stine bootstrap ones. In addition
to the usual goodness-of-fit tests, the bootstrap p-value and the percentile method CI

for the goodness-of-fit test statistic are reported. The computations of the bootstrap
p-value, the CI, and the standard errors are based on the converged samples only (498
out of 500). Note how this CI compares with the one implied by the theoretical χ2

23 dis-
tribution, [13.091, 35.172]. The test statistic for the current sample size and multivariate
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kurtosis structure appears to be slightly biased upward. The actual test statistic of 53.27
is way outside either interval, and only one out of 498 bootstrap samples produced the
test statistics above it.

Postestimation commands: Fit indices and correlations

There are several postestimation commands available in the confa command that
provide additional estimation and diagnostic results. First, several popular fit indices
can be obtained via the estat fitindices command:

. estat fitindices

Fit indices

RMSEA = 0.0662, 90% CI= (0.0430, 0.0897)
RMSR = 0.0624
TLI = 0.9429
CFI = 0.9635
AIC = 7487.457
BIC = 7569.013

The fit of the model is not that great. RMSEA seems to be barely touching the
desirable region (below 0.05), and CFI is rather low although within the range of what
are considered good-fitting models (from 0.9 to 1.0).

Second, the covariance parameters can be transformed to correlations by estat

correlate. The standard errors are computed by the delta method, and the CIs can
be computed directly by asymptotic normality, or via Fisher’s z transform (Cox 2008)
requested by the bound option, which produces CIs bound to be within a (−1, 1) interval
and shrunk toward zero. If there are any Heywood cases, that is, improper estimates
with implied correlations outside a (−1, 1) interval, then z transform is not applicable,
and a missing CI will result.

. estat corr

Correlation equivalents of covariances

Bollen-Stine
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Factors
vis-text .4566098 .0642273 7.11 0.000 .3307266 .5824929
vis-math .5442157 .0784663 6.94 0.000 .3904246 .6980069
text-math .2696928 .0684068 3.94 0.000 .1356179 .4037677

Errors
x7-x8 .3886009 .053664 7.24 0.000 .2834213 .4937804

(Continued on next page)
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. estat corr, bound

Correlation equivalents of covariances

Bollen-Stine
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Factors
vis-text .4566098 .0642273 7.11 0.000 .32209 .5730564
vis-math .5442157 .0784663 6.94 0.000 .3727556 .6797409
text-math .2696928 .0684068 3.94 0.000 .1311805 .3978771

Errors
x7-x8 .3886009 .053664 7.24 0.000 .2786917 .4884624

Factor predictions

Factor predictions are obtained by the standard postestimation command predict.
The feature of this command is that all factors present in the model must be predicted
at once, so the newvarlist must contain as many new variables as there were factors in
the model:

. predict fa1-fa3, reg

. predict fb1-fb3, bart

. corr fa1-fb3, cov
(obs=301)

fa1 fa2 fa3 fb1 fb2 fb3

fa1 .573319
fa2 .386133 .871388
fa3 .17935 .101985 .135088
fb1 .785136 .400869 .18499 1.15513
fb2 .400869 .981677 .102508 .400869 1.10884
fb3 .184689 .102902 .147167 .18436 .102991 .160725

. corr fa1-fb3
(obs=301)

fa1 fa2 fa3 fb1 fb2 fb3

fa1 1.0000
fa2 0.5463 1.0000
fa3 0.6445 0.2973 1.0000
fb1 0.9648 0.3996 0.4683 1.0000
fb2 0.5028 0.9987 0.2649 0.3542 1.0000
fb3 0.6084 0.2750 0.9988 0.4279 0.2440 1.0000

The factor covariances within each method resemble the estimated Φ matrix, al-
though the regression (empirical Bayes) method factors are shrunk toward zero (and
thus have smaller variances). The factor predictions obtained by the two methods are
almost perfectly correlated, which is to be expected because they are measuring the
same quantities, albeit on different scales.
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Alternative identification

As the last twist that can be applied to these data, let us consider an alternative
identification when factor variances are set to 1 and factor loadings are estimated freely.3

. confa (vis: x1 x2 x3) (text: x4 x5 x6) (math: x7 x8 x9), from(ones)
> unitvar(_all) corr(x7:x8)

initial: log likelihood = -3933.9488
rescale: log likelihood = -3933.9488
rescale eq: log likelihood = -3763.1831
Iteration 0: log likelihood = -3774.4345 (not concave)

(output omitted )
Iteration 9: log likelihood = -3721.7283

log likelihood = -3721.7283 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
x1 4.93577 .0671778 73.47 0.000 4.804104 5.067436
x2 6.08804 .0677543 89.85 0.000 5.955244 6.220836
x3 2.250415 .0650802 34.58 0.000 2.12286 2.37797
x4 3.060908 .066987 45.69 0.000 2.929616 3.1922
x5 4.340532 .0742579 58.45 0.000 4.194989 4.486074
x6 2.185572 .0630445 34.67 0.000 2.062007 2.309137
x7 4.185902 .0626953 66.77 0.000 4.063022 4.308783
x8 5.527076 .0582691 94.85 0.000 5.412871 5.641282
x9 5.374123 .0580698 92.55 0.000 5.260309 5.487938

Loadings
vis
x1 .8846049 .0770051 11.49 0.000 .7336778 1.035532
x2 .5092014 .0782212 6.51 0.000 .3558907 .6625121
x3 .6653939 .0739123 9.00 0.000 .5205284 .8102594

text
x4 .9891496 .0567019 17.44 0.000 .8780159 1.100283
x5 1.102781 .0625864 17.62 0.000 .980114 1.225448
x6 .9161337 .0537635 17.04 0.000 .8107592 1.021508

math
x7 .3829829 .0689764 5.55 0.000 .2477917 .5181741
x8 .4766196 .0775035 6.15 0.000 .3247156 .6285236
x9 .9630566 .1106833 8.70 0.000 .7461214 1.179992

Factor cov.
vis-vis 1 . . . . .

text-text 1 . . . . .
vis-text .4566094 .0642274 7.11 0.000 .330726 .5824928
math-math 1 . . . . .
text-math .269691 .068409 3.94 0.000 .1356118 .4037702
vis-math .5442133 .0784713 6.94 0.000 .3904124 .6980142

3. With an additional restriction if school==2, the results are accurate within 0.01 to those reported
by Yuan and Bentler (2007). The discrepancies are likely to be due to the small differences in the
datasets found in different sources on the Internet.
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Var[error]
x1 .5758446 .1034751 5.57 0.000 .373037 .7786521
x2 1.1225 .1019975 11.01 0.000 .9225884 1.322411
x3 .8321164 .0898742 9.26 0.000 .6559663 1.008267
x4 .3722483 .0479868 7.76 0.000 .2781958 .4663007
x5 .4436603 .0580118 7.65 0.000 .3299593 .5573613
x6 .357058 .0434527 8.22 0.000 .2718922 .4422239
x7 1.036464 .0881257 11.76 0.000 .8637409 1.209187
x8 .794817 .0831478 9.56 0.000 .6318503 .9577837
x9 .0875252 .1967321 0.44 0.656 -.2980627 .4731131

Cov[error]
x7-x8 .3527083 .0663016 5.32 0.000 .2227595 .4826571

R2
x1 0.5742
x2 0.1870
x3 0.3461
x4 0.7220
x5 0.7303
x6 0.6992
x7 0.1236
x8 0.2215
x9 0.9107

Goodness of fit test: LR = 53.272 ; Prob[chi2(23) > LR] = 0.0003
Test vs independence: LR = 865.579 ; Prob[chi2(36) > LR] = 0.0000

Because scaling of the model is different, the previous estimates might be of limited
value, hence the initial values are specified as from(ones). The ivreg option is not
applicable to this situation. The log-likelihood and goodness-of-fit tests are the same
as before: the models are said to be χ2 identical. The variances and covariances of the
error terms are free of the scaling issue and the same as before. Both point estimates of
the factor covariances (which are in fact factor correlations with this identification) and
their standard errors are very close to the factor correlations and their standard errors
reported by estat correlate when the model was identified by unit variable loadings
(see the section above titled Postestimation commands: Fit indices and correlations).

Missing data

By default, confa performs listwise deletion of missing data. Any observation that
has missing values among the observed variables (or the weight variable if weighted
analysis was requested) is dropped from the analysis. Upon excluding such observations,
estimation proceeds as if the data were complete.

A more thorough treatment of missing data (full-information maximum-likelihood
method for missing data in structural equation modeling) is provided with the missing
option. When this option is specified, the following modifications are taken:

1. The sample is restricted to the observations identified by the if and in statements.
If the observed variables have missing values, they are still retained.
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2. Goodness-of-fit tests and R2 for observed variables are not computed because they
rely on the estimate of the unstructured covariance matrix, which is not available
with this method.

3. Factor predictions are not available.

Maximization proceeds by establishing the patterns of missing data and extracting
the relevant submatrices of the mean vector, µ(θ), and covariance matrix, Σ(θ), for
each pattern. A message is printed about the number of missing patterns found; the
computation time should be expected to increase linearly with that number because this
many submatrices of Σ(θ) should be inverted for each evaluation of the log likelihood.

The näıve listwise deletion analysis is appropriate when the data are missing com-
pletely at random (Little and Rubin 2002). The more sophisticated analysis with the
missing option is technically applicable to more complicated situations when the prob-
ability of being missing depends on other observed variables. It can be argued however
that in CFA context, the relevant conditioning should be on the exogenous variables ξ
and δ, which are unobserved. Typically, in the missing-data situations, listwise deletion
will tend to exclude a lot of observations, so specifying the missing option is recom-
mended for most uses. Carrying over the starting values from simpler analysis will speed
up convergence, as usual. My experience suggests that the likelihoods with missing data
tend to have multiple local maximums and thus are more sensitive to starting values.

Let us introduce some missing data in the Holzinger–Swineford example and analyze
the resulting dataset.

. set seed 123456

. forvalues k=1/9 {
2. gen y�k� = cond(runiform()<0.0�k�, ., x�k�)
3. }

(2 missing values generated)
(2 missing values generated)
(8 missing values generated)
(18 missing values generated)
(21 missing values generated)
(14 missing values generated)
(17 missing values generated)
(28 missing values generated)
(33 missing values generated)

By default, confa will perform listwise deletion:

(Continued on next page)
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. confa (vis: y1 y2 y3) (text: y4 y5 y6) (math: y7 y8 y9), from(bb) nolog

log likelihood = -2349.8705 Number of obs = 188

Coef. Std. Err. z P>|z| [95% Conf. Interval]

(output omitted )
Loadings

vis
y1 1 . . . . .
y2 .5961873 .1403271 4.25 0.000 .3211512 .8712234
y3 .7673835 .1403096 5.47 0.000 .4923818 1.042385

text
y4 1 . . . . .
y5 1.170694 .0912381 12.83 0.000 .991871 1.349518
y6 .9482258 .0787462 12.04 0.000 .793886 1.102566

math
y7 1 . . . . .
y8 1.108808 .1974696 5.62 0.000 .7217751 1.495842
y9 1.101076 .2707746 4.07 0.000 .5703674 1.631784

Factor cov.
vis-vis .8740227 .1947933 4.49 0.000 .4922347 1.255811

text-text .9052388 .1378389 6.57 0.000 .6350794 1.175398
vis-text .4241773 .1020139 4.16 0.000 .2242338 .6241209
math-math .369443 .1210115 3.05 0.002 .1322648 .6066213
text-math .1909222 .0617196 3.09 0.002 .0699539 .3118904
vis-math .2244777 .068616 3.27 0.001 .0899928 .3589626

Var[error]
y1 .5456968 .1511219 3.61 0.000 .2495033 .8418903
y2 1.1373 .1376886 8.26 0.000 .8674351 1.407165
y3 .7342031 .114935 6.39 0.000 .5089346 .9594717
y4 .4184883 .063913 6.55 0.000 .2932212 .5437554
y5 .4209509 .0772258 5.45 0.000 .269591 .5723107
y6 .4113066 .0606663 6.78 0.000 .2924029 .5302104
y7 .8200653 .1178993 6.96 0.000 .5889869 1.051144
y8 .5880029 .1172023 5.02 0.000 .3582907 .8177151
y9 .5367541 .1186252 4.52 0.000 .304253 .7692552

(output omitted )

Goodness of fit test: LR = 61.405 ; Prob[chi2(24) > LR] = 0.0000
Test vs independence: LR = 503.076 ; Prob[chi2(36) > LR] = 0.0000

A more sophisticated analysis is available with the missing option:
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. confa (vis: y1 y2 y3) (text: y4 y5 y6) (math: y7 y8 y9), from(iv) missing
> difficult

Note: 29 patterns of missing data found

initial: log likelihood = -3579.9111
rescale: log likelihood = -3579.9111
rescale eq: log likelihood = -3525.1169
Iteration 0: log likelihood = -3525.1169

(output omitted )
Iteration 5: log likelihood = -3493.7822

log likelihood = -3493.7822 Number of obs = 301

Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
y1 4.868664 .0643479 75.66 0.000 4.742544 4.994784
y2 5.882944 .0659704 89.18 0.000 5.753645 6.012244
y3 2.168227 .0707049 30.67 0.000 2.029648 2.306806
y4 3.076254 .0608798 50.53 0.000 2.956932 3.195577
y5 4.41519 .0704952 62.63 0.000 4.277022 4.553358
y6 2.170605 .0643098 33.75 0.000 2.044561 2.29665
y7 4.165661 .0661282 62.99 0.000 4.036052 4.295269
y8 5.502241 .063663 86.43 0.000 5.377463 5.627018
y9 5.388172 .0603112 89.34 0.000 5.269964 5.50638

Loadings
vis
y1 1 . . . . .
y2 .7196496 .0968129 7.43 0.000 .5298999 .9093994
y3 .9898674 .1114766 8.88 0.000 .7713774 1.208358

text
y4 1 . . . . .
y5 1.249689 .0845489 14.78 0.000 1.083977 1.415402
y6 1.08037 .0781354 13.83 0.000 .9272272 1.233512

math
y7 1 . . . . .
y8 1.239025 .1565318 7.92 0.000 .9322288 1.545822
y9 1.0219 .1579594 6.47 0.000 .7123056 1.331495

Factor cov.
vis-vis .8300679 .1255225 6.61 0.000 .5840484 1.076087

text-text .6923659 .0896611 7.72 0.000 .5166333 .8680984
vis-text .2878234 .0663537 4.34 0.000 .1577725 .4178743
math-math .4502683 .0988643 4.55 0.000 .2564979 .6440387
text-math .180085 .0462256 3.90 0.000 .0894844 .2706855
vis-math .261571 .0546761 4.78 0.000 .1544078 .3687341

Var[error]
y1 .4115598 .0872224 4.72 0.000 .2406071 .5825125
y2 .8734908 .0871599 10.02 0.000 .7026606 1.044321
y3 .6667882 .0965589 6.91 0.000 .4775363 .8560401
y4 .389792 .046189 8.44 0.000 .2992632 .4803209
y5 .3682757 .060919 6.05 0.000 .2488767 .4876747
y6 .4094993 .0531293 7.71 0.000 .3053679 .5136308
y7 .8087322 .0883255 9.16 0.000 .6356174 .9818471
y8 .4544227 .0961848 4.72 0.000 .2659039 .6429415
y9 .5391701 .0829834 6.50 0.000 .3765257 .7018146

Goodness of fit test: LR = . ; Prob[chi2( .) > LR] = .
Test vs independence: LR = . ; Prob[chi2( .) > LR] = .
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In this analysis, both variance–covariance matrices of the coefficient estimates (vce
or e(V)) for the complete-data analysis (with x* variables) and missing-data analysis
(with y* variables and the missing option) are smaller than the variance–covariance
matrix in the analysis of y* variables without the missing option. Comparison between
the former two is inconclusive.

A word of caution: It appears that this treatment of missing data leads to highly
unstable results. Table 1, below, shows the maximization results with different start-
ing values and different maximization techniques. The top value in each cell is the
log likelihood at maximum, and the bottom value is the elapsed maximization time.
None of the 20 resulting maximums coincided! This behavior was not observed in the
complete-data analysis where the same maximum has been consistently found with all
starting values and maximization parameters. It is possible that the global maximum
of the procedure was not found, and it is unclear which of the local maximums would
correspond to consistent estimates.

Table 1. Multiple maximums in missing-data problems

Starting technique(nr) technique(dfp)

values difficult: off difficult: on difficult: off difficult: on

Complete −3454.222 −3487.593 −3504.6316 −3697.2417
analysis 89.05 s 87.75 s 60.63 s 67.61 s
Näıve −3532.2684 −3511.787 −3678.0145 −3548.1309
missing 98.61 s 110.59 s 62.69 s 59.08 s
iv −3508.6958 −3563.8789 −3484.9064 −3570.5609

98.38 s 154.69 s 98.37 s 154.69 s
smart −3533.009 −3550.5144 −3601.0655 −3556.5871

131.09 s 160.49 s 90.80 s 234.11 s
ones −3594.406 −3452.5826 −3645.4862 −3569.1392

127.70 s 157.88 s 68.67 s 66.39 s

4 Example 2: Modeling the structure of correlated mea-

surement errors

An interesting class of the CFA models is that of multiple traits and multiple methods
(MTMM). In those models, the observed variables are explained by two unrelated sets
of factors: traits, or the factors of primary interest, and methods, or auxiliary factors,
often modeling relations between measurement errors δ.

Bollen (1993) analyzes two dimensions of liberal democracy, political liberties and
democratic rule, using three sources of data4 (indicators developed by three liberal

4. The complete dataset, codebooks, and data description are available at
http://www.icpsr.umich.edu/cocoon/ICPSR/STUDY/02532.xml.
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democracy researchers: A. Banks, R. D. Gastil, and L. R. Sussman; see references in
Bollen [1993]). Political liberties are measured by freedom of group opposition and party
formation, freedom of the broadcast media, and freedom of print media and civil liber-
ties. Democratic rule is measured by effectiveness of the elected legislative body, political
rights, competitiveness of nomination process, and chief executive election. The mea-
surement errors are believed to be correlated, with correlations coming from variables
that have been produced by the three aforementioned researchers. In MTMM terms, the
two substantive dimensions are the traits, and the data sources are the methods. While
the general MTMM models may have identification problems (Marsh, Byrne, and Craven
1992; Byrne and Goffin 1993; Grayson and Marsh 1994) due to highly structured co-
variance matrices, this model does not load every method to every factor and has been
shown by Bollen (1993) to be identified. The structure of the model is represented in
figure 2. The individual error terms are omitted to reduce the clutter.

Political

liberties

Party

formation

1

Broadcast

media

P r i n t

media

Civil

liberties

Democratic

rule

Gastil

Legislative

efficiency

1

Political

rights

Competitive

nomination

Efficient

selection

Sussman

1

Banks

1

1

Figure 2. Structure of the MTMM model of Bollen (1993)

Building up a complex CFA model

The default initial values logic with one of from(iv), from(ones), or from(smart)
does not apply well in this situation, because each variable has a factor complexity of
two. The model fails to converge when any of those options is submitted as starting
values. Thus we first fit the traits and the methods models separately, using the residuals
from the first model as the data for the second model. The estimates are combined to
form the starting values for the full model.

(Continued on next page)
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. *traits model

. use libdem80, clear
(Cross-National Indicators of Liberal Democracy, 1950-1990)

. confa (pollib: party broad print civlb) (demrul: leg80 polrt compet effec),
> vce(sbentler) from(smart) difficult usenames

initial: log likelihood = -3483.2656
rescale: log likelihood = -3483.2656
rescale eq: log likelihood = -3294.09
Iteration 0: log likelihood = -3294.09 (not concave)
Iteration 1: log likelihood = -3232.2538 (not concave)

(output omitted )
Iteration 14: log likelihood = -2672.5848

(output omitted )

. matrix b_t = e(b)

. preserve

. *methods model: obtain the data by replacing the variables with their residuals

. predict f1 f2, bartlett

. foreach x of varlist party80 broad80 print80 civlb80 {
2. qui replace �x� = �x� - [lambda_�x�_pollib]_cons*f1
3. }

. foreach x of varlist leg80 polrt80 compet80 effec80 {
2. qui replace �x� = �x� - [lambda_�x�_demrul]_cons*f2
3. }

. confa (sussman: broad print) (gastil: civlb polrt)
> (banks: leg80 party compet effec), difficult from(smart) usenames iter(20)

initial: log likelihood = -2072.5146
rescale: log likelihood = -2072.5146
rescale eq: log likelihood = -1944.4457
Iteration 0: log likelihood = -1944.4457 (not concave)
Iteration 1: log likelihood = -1888.2893 (not concave)

(output omitted )
Iteration 20: log likelihood = -1463.6925 (not concave)
convergence not achieved

(output omitted )

. matrix b_res = e(b)

. restore

Next let us fit the full model. First, we define the constraints, specifying that
the traits and methods are uncorrelated. Second, we specify the starting values as a
combination of the loadings and factor covariances from the two runs. The matrix b t

contains the following preliminary estimates: the means of the observed variables, the
loadings of the traits (dimensions of political democracy), the covariances of the trait
factors, and the residual variances from the first model. The matrix b res contains the
following preliminary estimates: the means of the observed variables, the loadings of
the methods (sources of data), the covariances of the method factors, and the residual
variances from the second model. The matrix bb2 updates the traits model results with
the “new” results from the residual model (the loadings and factor covariances of the
methods, and error variances). The range of indices can be identified from output of
matrix list b t and matrix list b res. While the parameters are not in the correct
order in matrix bb2, the combination of from(. . ., skip) and usenames ensures that
parameters are copied by names rather than by position in the initial values vector.
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. constraint define 201 [phi_pollib_sussman]_cons = 0

. constraint define 202 [phi_pollib_gastil]_cons = 0

. constraint define 203 [phi_pollib_banks]_cons = 0

. constraint define 204 [phi_demrul_sussman]_cons = 0

. constraint define 205 [phi_demrul_gastil]_cons = 0

. constraint define 206 [phi_demrul_banks]_cons = 0

. * initial values: combine the previous results

. matrix bb2 = (b_t[1,1..19], b_res[1,9..30] )

. confa (pollib: party broad print civlb) (demrul: leg80 polrt compet effec)
> (sussman: broad print) (gastil: civlb polrt) (banks: leg80 party compet effec),
> constr(201 202 203 204 205 206) from(bb2) usenames difficult vce(sbentler)

initial: log likelihood = -2639.5682
rescale: log likelihood = -2639.5682
rescale eq: log likelihood = -2592.2313
Iteration 0: log likelihood = -2595.7894 (not concave)

(output omitted )
Iteration 10: log likelihood = -2568.1962

log likelihood = -2568.1962 Number of obs = 153

Satorra-Bentler
Coef. Std. Err. z P>|z| [95% Conf. Interval]

Means
party80 3.616557 .344394 10.50 0.000 2.941557 4.291557
broad80 3.398693 .3385019 10.04 0.000 2.735241 4.062144
print80 4.575163 .3517822 13.01 0.000 3.885683 5.264644
civlb80 4.422659 .259731 17.03 0.000 3.913596 4.931723

leg80 4.934636 .2885947 17.10 0.000 4.369001 5.500271
polrt80 4.379082 .2918081 15.01 0.000 3.807149 4.951016

compet80 6.24183 .300571 20.77 0.000 5.652722 6.830938
effec80 4.575163 .2921247 15.66 0.000 4.00261 5.147717

Loadings
pollib
party80 1 . . . . .
broad80 .8605268 .0653934 13.16 0.000 .732358 .9886955
print80 .9250379 .0579294 15.97 0.000 .8114983 1.038577
civlb80 .7187934 .043395 16.56 0.000 .6337408 .8038461
demrul
leg80 1 . . . . .

polrt80 1.078044 .0659108 16.36 0.000 .9488608 1.207227
compet80 .9393674 .0597369 15.73 0.000 .8222852 1.05645
effec80 .4380042 .0780376 5.61 0.000 .2850532 .5909551
sussman
broad80 1 . . . . .
print80 1.191159 .2313778 5.15 0.000 .7376668 1.644651
gastil
civlb80 1 . . . . .
polrt80 .6327867 .1780188 3.55 0.000 .2838763 .981697

banks
party80 -.1835592 .6226701 -0.29 0.768 -1.40397 1.036852

leg80 1 . . . . .
compet80 2.710965 .7441043 3.64 0.000 1.252547 4.169382
effec80 1.936548 .6181943 3.13 0.002 .7249093 3.148187
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Factor cov.
pollib-pol~b 16.03 1.382935 11.59 0.000 13.3195 18.7405
demrul-dem~l 10.4853 1.120171 9.36 0.000 8.28981 12.6808
pollib-dem~l 12.85938 1.113003 11.55 0.000 10.67793 15.04082
sussman-su~n 2.568807 1.111159 2.31 0.021 .3909752 4.746638
demrul-sus~n (omitted)
pollib-sus~n (omitted)
gastil-gas~l 1.432488 .4740313 3.02 0.003 .5034042 2.361573
sussman-ga~l 1.472053 .6605832 2.23 0.026 .1773339 2.766772
demrul-gas~l (omitted)
pollib-gas~l (omitted)
banks-banks .6788023 .4804045 1.41 0.158 -.2627733 1.620378

gastil-banks -.3427659 .2509348 -1.37 0.172 -.8345891 .1490573
sussman-ba~s -.2801559 .309342 -0.91 0.365 -.8864551 .3261433
demrul-banks (omitted)
pollib-banks (omitted)
Var[error]

party80 2.094032 .8899954 2.35 0.019 .3496733 3.838391
broad80 3.092162 .4884588 6.33 0.000 2.134801 4.049524
print80 1.572295 .5140105 3.06 0.002 .5648532 2.579737
civlb80 .6067974 .1927103 3.15 0.002 .2290921 .9845027

leg80 1.57879 .2679765 5.89 0.000 1.053566 2.104014
polrt80 .26886 .3682653 0.73 0.465 -.4529267 .9906467

compet80 -.4186224 .8945279 -0.47 0.640 -2.171865 1.33462
effec80 8.499297 1.068135 7.96 0.000 6.405792 10.5928

R2
party80 0.8788
broad80 0.8181
print80 0.9108
civlb80 0.9348

leg80 0.8705
polrt80 0.9727

compet80 1.0239
effec80 0.3468

Goodness of fit test: LR = 9.206 ; Prob[chi2( 8) > LR] = 0.3253
Test vs independence: LR = 1603.033 ; Prob[chi2(28) > LR] = 0.0000

Satorra-Bentler Tsc = 8.848 ; Prob[chi2( 8) > Tsc ] = 0.3553
Satorra-Bentler Tadj = 8.185 ; Prob[chi2( 7.4) > Tadj] = 0.3558
Yuan-Bentler T2 = 8.683 ; Prob[chi2( 8) > T2 ] = 0.3697

The use of the difficult option helped to bring down the number of iterations from
43 to 13. Goodness-of-fit measures are identical to those reported in Bollen (1993), so
estimation procedures converged to the same maximums as in Bollen (1993).

A mild Heywood case was produced for the compet80 variable: the reported esti-
mated error variance is negative, and the corresponding R2 is greater than 1. However,
the CI for this parameter covers zero. Thus the interpretation can be offered that the
population variance might be a small positive quantity. The error variance of exactly
zero is as suspicious as a negative estimate: it means that we have a perfect measure of
democratic rule, but we know that it is affected by the measurement error associated
with the Banks factor (i.e., this variable came from Banks’ dataset). Heywood cases are
sometimes indicative of model misspecification. If that is the case, only vce(robust)

standard errors are asymptotically valid. Here we used vce(sbentler) to produce a
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range of additional test statistics correcting for multivariate kurtosis expected with this
dataset because many variables are ordinal with few categories (3 to 5).

From the substantive perspective, it might be interesting to note that the variance
of the Banks factor appears to be insignificant. This means that the variables obtained
from Banks and analyzed in the context of the current model are relatively free of the
common influences due to idiosyncrasies of that researcher. This cannot be said about
the variables coming from the other two researchers, Gastil and Sussman, because they
do seem to contain nontrivial amount of common influences. It might be puzzling,
however, that the loadings from the Banks factor to its observed compet80 and effec80

variables are well identified.

5 Technical notes

5.1 Methods and formulas

confa estimates (2) by maximum likelihood. The observed yi variables are described
by

yi = µ + Λξi + δi

where (
δi

ξi

)
∼ N

{
0,

(
Φ 0
0 Θ

)}

Hence,
yi ∼ N(µ,ΛΦΛ′ + Θ)

and the log likelihood for observation i, lnLi = li, is

li = −p

2
ln 2π − 1

2
ln |Σ | − 1

2
(yi − µ)′Σ−1(yi − µ) (8)

where Σ = Σ(θ) = ΛΦΛ′ + Θ is a p × p matrix, and the parameters θ of the model are
the means µ, the free elements of Λ, nonredundant elements of Φ, and the free elements
of Θ. The latter are usually the diagonal elements only, but if the correlated() option
is specified, off-diagonal elements can be estimated, as well. Because the means part of
the model is saturated, the number of covariance structure parameters dim θ = t must
be no greater than the number of the nonredundant moments of the covariance matrix
p∗ = p(p + 1)/2.

When some components of yi are missing and the missing option is specified, the
vector of means, µ, and the parametric covariance matrix, Σ, are restricted to the
nonmissing components in computation of the likelihood (8).

The conventional standard errors are available as the inverse of the observed informa-
tion matrix (vce(oim) method). Other analytic estimators (vce(opg), vce(robust),
and vce(cluster clustvar)) are supported, but resampling estimators need to be spec-
ified explicitly via a bootstrap or a jackknife prefix to the confa command; see
[R] vce option, [R] bootstrap, and [R] jackknife.
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The proportions of the observed-variable variance explained by the model, similar
to R2 in regression and variable communality in EFA, are computed and reported. For
variable j,

R2
j =

σjj(θ) − V (δj)

s2
j

where s2
j is the sample variance of yj .

Two likelihood-ratio tests are computed by default. The first one is a test against a
saturated model:

H0 : Σ = Σ(θ) versus H1 : Σ is unstructured

It has a likelihood-ratio test statistic

Tu = −2

{
l(θ̂) −

(
−pN

2
ln 2π − N

2
ln |S | − pN

2

)}

where subindex u stands for “unstructured”. It has an asymptotic χ2 distribution with
the residual degrees of freedom dfu = p∗ − t.

The second likelihood-ratio test is the test against an “independence” model:

H0 : Σ = Σ0 = diag(σ2
1 , . . . , σ2

p) versus H1 : Σ = Σ(θ)

It has a likelihood-ratio test statistic

Ti = −2

{(
−pN

2
ln 2π − N

2
ln |S0 | −

N

2
tr S0

)
− l(θ̂)

}

where S0 = diag(s2
1, . . . , s

2
p) and subindex i stands for “independent”. The test statistic

has an asymptotic χ2 distribution with degrees of freedom dfi = t − p.

The postestimation command estat fitindices computes and reports several fit
indices that are used to complement the general χ2 goodness-of-fit test.

CFI (Bentler 1990b) is

CFI = 1 − max(Tu − dfu, 0)

max(Tu − dfu, Ti − dfi, 0)
(9)

TLI (Tucker and Lewis 1973) is

TLI =
( Ti

dfi
− Tu

dfu

)/( Ti

dfi
− 1

)
(10)

RMSR (Jöreskog and Sörbom 1986) is

RMSR =





1

p∗

∑

1≤i≤j≤p

(sij − σ̂ij)
2





1/2

(11)
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RMSEA (Steiger 1990; Browne and Cudeck 1993) is

ǫ̂a =

√
max

{
Tu

(N − 1)dfu
, 0

}
(12)

Let G(x;λ, d) be the cumulative distribution function of the noncentral χ2 with non-

centrality parameter λ and d degrees of freedom. If G(Tu | 0, d) ≥ 0.95, find λ̂L as the
solution of

G(Tu; λ̂L,dfu) = 0.95

Otherwise, set λ̂L = 0. Likewise, if G(Tu | 0, d) ≥ 0.05, find λ̂U as the solution of

G(Tu; λ̂U ,dfu) = 0.05

Otherwise, set λ̂U = 0. Finally, set the 90% CI for RMSEA as




√
λ̂L

(N − 1)dfu
,

√
λ̂U

(N − 1)dfu





If sandwich standard errors are requested, the data are implicitly assumed not to
be independent and identically distributed (or violating the model assumptions other-
wise), no test statistics or R2 is reported, and no fit indices are produced by estat

fitindices.

An additional variance estimator (Satorra and Bentler 1994) is available with the
vce(sbentler) nonstandard option. Let s = vech S, σ = vech Σ, where vech is vec-
torization operator suppressing redundant elements (Magnus and Neudecker 1999), and
dependence of Σ and σ on θ is implied. Suppose the model has a correct structural spec-
ification but an incorrect distributional specification. That is, the number of factors and
their relations to observed variables are the true ones, but the distribution of the data is
not multivariate normal. Then, under some regularity conditions, the sample moments
are asymptotically normal: √

N(s − σ) → N(0,Γ)

The simplest estimator of Γ is based on the fourth-order moments of data,

Γ̂N =
1

N − 1

∑

i

(bi − b)(bi − b)′ (13)

where bi = (yi − y)(yi − y)′. Introduce the normal theory weight matrix,

VN =
1

2
D′(Σ ⊗ Σ)D (14)

where D is the duplication matrix (Magnus and Neudecker 1999), and the Jacobian
matrix,

∆̂ =
∂σ

∂θ

∣∣∣∣
θ=bθ

(15)
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Then the Satorra–Bentler variance estimator is

âcov(θ̂) = (N − 1)−1
(
∆̂′VN ∆̂

)−1
∆̂′VNΓNVN∆̂

(
∆̂′VN∆̂

)−1
(16)

When the observed variables come from a nonnormal distribution, the
(quasi-)likelihood-ratio test statistic becomes a mixture of χ2

Tu
d→

dfu∑

j=1

αjXj , Xj ∼ i.i.d. χ2
1

and αj are eigenvalues of the matrix UΓ with

U = V − V ∆(∆′V ∆)−1∆′V (17)

Satorra and Bentler (1994) proposed to use the scaled statistic

Tsc =
T

ĉ
, ĉ =

1

dfu
tr(Û Γ̂N ) (18)

which has an approximate χ2
dfu

distribution, where Û is U evaluated at θ, and the
adjusted statistic

Tadj =
d̂

ĉ
T, d̂ =

{
tr(Û Γ̂N )

}2

tr
{

(Û Ω̂N )2
} (19)

which has an approximate χ2
bd

distribution, where the degrees of freedom d̂ might be a
noninteger number.

Another correction to the T statistic proposed by Yuan and Bentler (1997) is

T2 = T/(1 + T/N) (20)

which has an approximate χ2 distribution with dfu degrees of freedom.

5.2 Implementation details

The confa package consists of the following ado-files: confa (the main estimation
engine), confa estat (postestimation commands), confa lfm (likelihood evaluator),
confa p (prediction), and bollenstine (Bollen–Stine bootstrap). The Mata functions
for confa are available in the lconfa.mlib library. The likelihood maximization is im-
plemented through the ml lf mechanism (observation-by-observation likelihoods with
numerical derivatives). There are approximately 43 KB of ado-code (about 1,400 lines)
and 13 KB of Mata code (about 450 lines).

The ado-code uses the listutil package by N. J. Cox. Its presence is checked, and
if the package is not found, an attempt is made to install it from the Statistical Software
Components archive.
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The memory requirements of confa are likely to be mild. To compute the sandwich
standard errors (with the robust or cluster options or with svy settings), confa will
generate # parameters scores, which would require at least 4 × (# parameters) × (#
observations) bytes of memory. Even for sizeable models with, say, 20 variables (and
thus about 50 or so parameters) and 10,000 observations, this is 2 MB.

5.3 Parameter names and saved results

The nomenclature of the parameter names is as follows.

By default, the parameters are labeled with numeric indices. The observed variables
and factors are numbered in the order of their appearance in factorspec statements. The
estimated means of the observed variables are referred to as [mean j] cons, with j =
1, . . . , p indexing the observed variables. The factor loadings are [lambda j k] cons.
The factor variances and covariances are [phi k l] cons, 1 ≤ k ≤ l ≤ m. The error
variances are [theta j] cons, and error covariances, if specified, are [theta j h] cons.

If the usenames option is specified, all the variable and factor indices are replaced
with their names in the dataset and factor specifications.

Thus, for instance, the model

. confa (f: x1 x2 x3 x4)

will have the lambda 1 1, lambda 2 1, lambda 3 1, lambda 4 1, phi 1 1, theta 1,
theta 2, theta 3, and theta 4 parameters with default settings; and the lambda x1 f,
lambda x2 f, lambda x3 f, lambda x4 f, phi f f, theta x1, theta x2, theta x3, and
theta x4 parameters when the usenames option is specified. Specifying the usenames

option will make the low-level output (such as matrix list e(b)) produce very long
and sparse listings. On the other hand, it is extremely handy when comparing mod-
els using the estimates table command or when transferring starting values between
commands, as shown in one of the examples above.

The saved results include the standard outcomes from ml, such as e(N) and e(ll).
Additional saved results are as follows:

(Continued on next page)
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Scalars
e(pstar) total degrees of freedom
e(df m) model degrees of freedom
e(df u) residual degrees of freedom

e(ll 0) log likelihood of the unrestricted model, bΣ = S
e(ll) log likelihood at the maximum
e(ll indep) log likelihood of “independence” model
e(lr u) likelihood-ratio statistic against unrestricted model; same as e(chi2)
e(p u) p-value against unrestricted model; same as e(p)
e(lr indep) likelihood ratio against “independence” model
e(df indep) model degrees of freedom of “independence” model
e(p indep) p-value against “independence” model

Macros
e(factors) list of factors
e(observed) list of observed variables
e(factork) unabbreviated factor statements, k = 1, . . . , m
e(correlated) unabbreviated correlated errors statements
e(unitvar) the list of factors identified by unit variances
e(missing) indicates that missing option was specified

Matrices
e(S) sample covariance e(Sigma) implied covariance

e(Lambda) estimated loadings, bΛ e(Theta) estimated error variances, bΘ

e(Phi) estimated factor covariances, bΦ e(CONFA Struc)model structure description

Additional saved results posted when the vce(sbentler) option is used are the
following:

Scalars
e(SBc) scaling correction bc in (18) e(Tsc) scaled statistic, Tsc, in (18)

e(SBd) scaling correction bd in (19) e(p Tsc) p-value associated with Tsc

e(T2) T2 statistic in (20) e(Tadj) adjusted statistic, Tadj, in (19)
e(p T2) p-value associated with T2 e(p Tsc) p-value associated with Tadj

Matrices

e(SBU) matrix U in (17) e(SBDelta) matrix b∆ in (15)

e(SBV) matrix V in (14) e(SBGamma) matrix bΓn in (13)

Additional saved results posted by bollenstine are the following:

Scalars
e(B BS) number of replications e(T BS 05) 5th bootstrap percentile
e(p u BS) bootstrap p-value e(T BS 95) 95th bootstrap percentile

Values returned by estat fit are the following:

Scalars
r(AIC) AIC r(RMSEA) root mean squared error of
r(BIC) BIC approximation (12)
r(CFI) CFI (9) r(RMSEA05) 5% lower limit for RMSEA
r(TLI) TLI (10) r(RMSEA95) 95% upper limit for RMSEA
r(RMSR) root mean squared residual (11)
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5.4 Computational complexity

A small simulation was conducted to establish the computational complexity of confa,
i.e., the approximate functional dependence of computational time on the number of
observations, size, and structure of the model. Sample size varied from 100 to 1,000,
the number of factors varied from 1 to 5, and the number of indicators per factor varied
from 2 to 6.

Table 2. Computational complexity simulation results

(1) (2) (3) (4) (5) (6)
# observations 0.680 0.680 0.680 0.680 0.680 0.680
# factors 2.283 2.469 0.341
# observed variables 2.368 2.128 1.245
# indicators per factor 2.128
# parameters 2.207 1.059

AIC 984.48 −226.93 −415.16 −415.16 −201.37 −382.49
BIC 996.51 −214.89 −399.12 −399.12 −189.34 −366.45
R2 0.7541 0.9874 0.9921 0.9921 0.9866 0.9914

The results are summarized in table 2. The entries are coefficients in the regression,
where the dependent variable is the log of elapsed time and explanatory variables are
the logs of the quantities in the first column. The dependence on the sample size is of
the order O(n0.68) (the sample size is orthogonal to the size and model structure, in
the sense of ANOVA factor orthogonality). The dependence on the model complexity is
of the order O(k2.4), where model complexity k can be understood as the number of
parameters t, the number of observed variables p, or the number of factors m.

Those dependencies are within expectations. The only dependence on the sample
size is due to the summation of the likelihood terms, and sublinear growth indicates
good memory management and speed optimization of array arithmetics by Stata. The
growth rate of computational time in model complexity between quadratic and cubic
is indicative of the matrix manipulation complexity, because the algorithms of k ×
k matrix inversion achieve complexity between O(k3) for simple algorithms down to
approximately O(k2.4) for the fastest ones. The matrix inversion operations involved
are inversion of p× p matrix Σ(θ) and inversion of t× t Hessian matrix in the Newton–
Raphson optimization method.

5.5 Verification and certification

Verification (Gould 2001) of confa estimation results was conducted using some pub-
lished results (Yuan and Bentler 2007; Bollen 1993) as well as other software packages
for Holzinger–Swineford data. confa reproduced the point estimates and standard er-
rors reported by Mplus 3.1 (Muthén and Muthén 2004). However, both sets of results
disagreed in the third decimal place with the published results of Yuan and Bentler
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(2007). Both Mplus output and Yuan and Bentler (2007) were given to three decimal
places. confa agreed with gllamm (running with adaptive quadrature and 12 integration
points per factor) to at least two decimal places in point estimates, OIM standard errors,
and robust standard errors (see [R] vce option) for all parameters except the error vari-
ances V [δ]. The discrepancies in the latter are likely due to a different implementation
of the error variance parameters in gllamm via a nonlinear transformation.

5.6 Distribution

The package is maintained and updated by the author, Stanislav Kolenikov. To check
for the most recent update, in Stata type

. net from http://web.missouri.edu/~kolenikovs/stata/

The version of the package at the time of publication is 2.0. Please send comments
and bug reports to the email address given on the title page.
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Abstract. Chernoff (1971, Technical Report 71, Department of Statistics, Stan-
ford University; 1973, Journal of the American Statistical Association 68: 361–
368) proposed the use of cartoon-like faces to represent points in k dimensions.
This article describes a Stata implementation of a face-generating algorithm using
the method proposed by Flury (1980, Technical Report 3, Institute of Mathemati-
cal Statistics and Actuarial Science, Bern University), Schüpbach (1987, Technical
Report 25, Institute of Mathematical Statistics and Acturial Science, Bern Univer-
sity), and Friendly (1991, http://www.math.yorku.ca/SCS/sasmac/faces.html). I
present examples of applying Chernoff faces to data clustering and outlier detec-
tion.

Keywords: gr0038, chernoff, Chernoff faces, graphs

1 Introduction

Chernoff (1971, 1973) proposed a method of representing multivariate data as car-
toon faces. The main use of face graphs was to enhance “the user’s ability to de-
tect and comprehend important phenomena” and to serve “as a mnemonic device
for remembering major conclusions”. Other advantages of faces include the ease of
monitoring the sensitivity of variables to each other, fast identification of key dif-
ferentiating dimensions, and the detection of longitudinal trends. Recent applica-
tions of Chernoff faces include tracking changes in laboratory data (Lott and Durbridge
1990), consumer perception of brand image (Golden and Sirdesai 1992), classification
of forest tree clones (Camussi, Raddi, and Raddi 1992), portrayal of service quality
data (Nel, Pitt, and Webb 1994), attitudes toward environmental protection policies
(Apaiwongse 1995), and classification of drinking water samples (Astel et al. 2006).

However, the method of constructing faces as proposed by Chernoff suffers from cer-
tain disadvantages. First, to make all the faces of equal size, the width and length of each
face need to be normalized, which almost obliterates the effect of the variables assigned
to those two features (Chernoff 1971, 19). Second, extreme values of certain parame-
ters compress the range of other parameters, which results in “artificial dependencies
not originating from the data being represented” (Flury and Riedwyl 1981, 757). The

1. I would like to thank Taha Kass-Hout and an anonymous referee for helpful suggestions.

c© 2009 StataCorp LP gr0038
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algorithm described in this article was developed by Flury (1980), Schüpbach (1987),
and Friendly (1991), and avoids the above mentioned pitfalls.

The article proceeds as follows. Section 2 describes the chernoff command and its
options. Section 3 presents examples of data clustering and outlier detection. Section 4
offers general advice on drawing and interpreting Chernoff faces. Section 5 concludes.

2 The chernoff command

2.1 Syntax

chernoff
[
, isize(exp) iangle(exp) ihor(exp) ivert(exp) psize(exp)

ppos(exp) bcurv(exp) bdens(exp) bhor(exp) bvert(exp) fline(exp)

hupper(exp) hlower(exp) hdark(exp) hslant(exp) nose(exp) msize(exp)

mcurv(exp) gmin(#) gmax(#)
[
lhalf | rhalf

]
hspace(#) ititle(varname)

inote(varname) ilabel(varname) lsize(textsizestyle) xlabel(#) ylabel(#)

placement(clockdirstyle) justification(jstyle) iscale(varname)

imargin(marginstyle) iregion(marginstyle) xface(#) yface(#) show

saveall rescale(#) legend({2 | 3}
[
nolabel

]
) order(varlist) rows(#)

cols(#) colfirst xcombined(#) ycombined(#) nocombine title(tinfo)

subtitle(tinfo) note(tinfo) nodraw saving(filename, replace) timer
]

2.2 Options

Face feature

isize(exp) through mcurv(exp) represent face features and are described in table 1,
below. exp is specified as

varname | . | null
[
,

[
# | .

] [
# | .

] ]

varname is linearly rescaled to a (0, 1) interval before being plotted. If a given face
feature is not specified or is specified as missing, it assumes the default value
of 0.50. Missing values in varname are also assigned the value of 0.50. null

prevents a “logical” set of features from being drawn. For example, specifying
any of the eye features as null will prevent the eyes from being plotted.

The optional part represents a theoretical minimum and maximum for varname. For
example, if the variable gpa in your data ranges from 1.7 to 3.8 but you want
to plot it relative to the possible range (1.0, 4.0), you can do so by specifying
facefeature(gpa,1 4). If you want to specify min only, type facefeature(gpa,1 .)

or facefeature(gpa,1). If you want to specify max only, type facefeature(gpa,.

4).
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Table 1. Explanation of face features

option face feature null group

isize(exp) eye size

null
iangle(exp) eye angle
ihor(exp) eye horizontal position
ivert(exp) eye vertical position
psize(exp) pupil size

null
ppos(exp) pupil position
bcurv(exp) brow curvature

null
bdens(exp) brow density
bhor(exp) brow horizontal position
bvert(exp) brow vertical position
fline(exp) face line null

hupper(exp) hair upper line null

hlower(exp) hair lower line null

hdark(exp) hair darkness
null

hslant(exp) hair shading slant
nose(exp) nose line null

msize(exp) mouth size
null

mcurv(exp) mouth curvature

Individual face graph

gmin(#) and gmax(#) stand for a global minimum and maximum. These options
override the “local” minimums and maximums specified within face features. See
section 3.2 for more details.

lhalf | rhalf tells Stata to draw only the left side or the right side of the face, respec-
tively. Only one option may be specified.

hspace(#) controls the column spacing between half-face graphs. The range of
hspace() is (0.50, 1), with the default being hspace(0.75). Specifying a lower value
will bring the faces closer, and specifying a higher value will spread them apart.

ititle(varname) specifies titles for individual face graphs. The variable may be string
or numeric.

inote(varname) specifies notes for individual face graphs. The variable may be string
or numeric.

ilabel(varname) tells Stata to label faces with the values of varname. The variable
may be string or numeric.
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lsize(textsizestyle) specifies the size of the label. The default is lsize(large). See
[G] textsizestyle for a list of available styles.

xlabel(#) and ylabel(#) denote the (x, y) coordinates of the face label. The default
position is (10,−10) for full faces, (−8,−10) for left faces, and (8,−10) for right
faces.

placement(clockdirstyle) specifies the position of the face label relative to (xlabel(),
ylabel()) coordinates. Possible values are 0, 1, 2, . . . , 12. The default value is
placement(9), or placement(3) if lhalf is specified.

justification(jstyle) specifies text justification of the face label. Possible values are
left, right, and center. The default value is justification(left), or
justification(right) if lhalf is specified.

iscale(varname) specifies a multiplier that affects the size of ititle(), inote(), and
ilabel(). A varname is required, which allows for different scales for different faces.

imargin(marginstyle) specifies the margins between the plot area and the outside area
of a face graph. This option is equivalent to graphregion(margin(marginstyle));
see [G] marginstyle. The default margin is imargin(zero).

iregion(marginstyle) specifies the axes offset from the contents of the plot. This option
is equivalent to plotregion(margin(marginstyle)); see [G] region options. The
default margin is iregion(medsmall).

xface(#) and yface(#) denote the size of the individual face graph. The default size
is xface(5.00) and yface(6.00).

show tells Stata to draw individual face graphs. The default is to draw only the final
combined graph.

saveall tells Stata to save all individual face graphs. This is useful if the user later
wants to combine individual face graphs manually. Graphs are saved in the current
directory as FACE1.gph, FACE2.gph, . . . . Also, a blank graph, FACE0.gph, is saved.

rescale(#) restricts the range of all variables to an interval narrower than (0, 1); use
this option only in the rare cases when some features of the face intersect, producing
an effect that is not aesthetically pleasing. For example, specifying rescale(0.95)

compresses all the variables to the range (0.05, 0.95). It is not recommended to use
values less than 0.90 because it introduces an artificial reduction in the variation of
the data.

Combined graph

legend({2 | 3}
[
nolabel

]
) generates a legend based on variable labels or, if labels are

missing, on variable names. The legend is displayed at the bottom of the combined
graph. You may specify legend(2) or legend(3) to display the legend in two or
three columns, respectively. If you do not want variable labels to be included in the
legend, add the nolabel option. The legend() option overrides the note() option.
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order(varlist) tells Stata to draw faces sorted by varlist.

rows(#) and cols(#) denote the number of rows and columns in a combined face
graph. If both options are specified, cols() takes precedence.

colfirst tells Stata to display face graphs down columns.

xcombined(#) and ycombined(#) specify the size of the combined graph.

nocombine tells Stata not to construct the final combined graph, which is the most time-
consuming part of the chernoff command. This option is most useful in conjunction
with saveall or if the user wants to take a “first peek” as to whether the individual
face graphs look “right”.

title(tinfo), subtitle(tinfo), note(tinfo), nodraw, and saving(filename, replace)

are standard Stata graph options; see [G] twoway options.

Utility

timer reports the amount of time the command spent constructing individual face
graphs (timer 1) and, once the command concludes, the time spent on constructing
the combined graph (timer 2). The first reported time should give you a rough
idea of how long it will take the command to complete—in testing, stage 2 took on
average about 20 percent longer than the time spent on stage 1.

Figure 1 demonstrates a variety of Chernoff faces using the randomly generated
variables x1–x18. Labels have been assigned randomly to half the variables. The code
for this and the next examples can be found in the ancillary files and in the online
appendix.1

1. The online appendix is located at http://www.roofoos.net.
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Figure 1. Random faces with a legend

3 Applications

3.1 Classification/clustering

To illustrate the use of Chernoff faces for the purposes of classification, I replicate the
example of public utility companies from Johnson and Wichern (2007). The variables
are covr (fixed-charge coverage ratio, income/debt), rtrn (rate of return on capital),
cost (cost per kW capacity in place), load (annual load factor), grow (peak kWh
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demand growth from 1974 to 1975), sale (sales, kWh use per year), nuke (percent
nuclear), and fuel (total fuel costs, cents per kWh).

The reader should keep in mind that the purpose of this exercise is to demonstrate
how to create sophisticated face graphs in Stata rather than argue about the appro-
priateness of assignment to a particular group. Table 2 presents the data in a tabular
format. It is not clear whether there is any clustering in the data.

Table 2. Public utility data, 1975

id company state covr rtrn cost load grow sale nuke fuel

1 Arizona Public AZ 1.06 9.2 151 54.4 1.6 9077 0 0.63
2 Boston Edison MA 0.89 10.3 202 57.9 2.2 5088 25.3 1.56
3 C. Louisiana El. LA 1.43 15.4 113 53 3.4 9212 0 1.06
4 Comm. Edison IL 1.02 11.2 168 56 0.3 6423 34.3 0.70
5 Con. Edison NY 1.49 8.8 192 51.2 1 3300 15.6 2.04
6 Florida Power FL 1.32 13.5 111 60 −2.2 11127 22.5 1.24
7 Hawaiian El. HI 1.22 12.2 175 67.6 2.2 7642 0 1.65
8 Idaho Power ID 1.1 9.2 245 57 3.3 13082 0 0.31
9 Kentucky Utils KY 1.34 13 168 60.4 7.2 8406 0 0.86
10 Madison Gas WI 1.12 12.4 197 53 2.7 6455 39.2 0.62
11 Nevada Power NV 0.75 7.5 173 51.5 6.5 17441 0 0.77
12 New England El. NE 1.13 10.9 178 62 3.7 6154 0 1.90
13 Northern States MN 1.15 12.7 199 53.7 6.4 7179 50.2 0.53
14 Oklahoma Gas OK 1.09 12 96 49.8 1.4 9673 0 0.59
15 Pacific Gas CA 0.96 7.6 164 62.2 −0.1 6468 0.9 1.40
16 Puget Sound WA 1.16 9.9 252 56 9.2 15991 0 0.62
17 San Diego Gas CA 0.76 6.4 136 61.9 9 5714 8.3 1.92
18 The Southern Co. AZ 1.05 12.6 150 56.7 2.7 10140 0 1.11
19 Texas Utils TX 1.16 11.7 104 54 −2.1 13507 0 0.64
20 Wisconsin El. WI 1.2 11.8 148 59.9 3.5 7287 41.1 0.70
21 United Illum. CT 1.04 8.6 204 61 3.5 6650 0 2.12
22 Virginia El. VA 1.07 9.3 174 54.3 5.9 10093 26.6 1.31

Figure 2 presents the companies divided into clusters as suggested by Johnson and
Wichern (2007). I performed the following assignments:

... bdens(cost) fline(nuke) hdark(covr) iangle(load) isize(grow) ///
mcurv(sale) hslant(rtrn) nose(fuel)

As can be seen, companies group largely according to geographical location. On
a practical side, I first called chernoff with the nocombine and saveall options and
made cluster name graphs by hand. I then put the graphs in their appropriate places by
using graph combine. The empty spaces in the graph were obtained with the multiple
use of FACE0.gph.
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Figure 2. Chernoff faces for 22 public utilities
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3.2 Outlier detection

An outlier can have a profound effect on the appearance of face features. Consider a
variable with values 0, 1, 2, . . . , 10. If I assign this variable to all the 18 face features,
the face with the values 0 will look “saddest” and the face with the values 10 will look
“happiest”.

Now consider adding one more observation with the value of 100 and redrawing the
faces. Because internally the values are mapped to a (0, 1) range using the formula

x∗
i =

xi − min(x)

max(x) − min(x)

the old mapping 10 → 1 now becomes 10 → 0.10, and all the original faces will get “com-
pressed” and look “sad” compared with the new arrival. I illustrate this phenomenon
on biosurveillance data where I have data points arriving at fixed time intervals. Every
time period, the user is presented with faces corresponding to the last seven time peri-
ods. If the latest data point appears extreme relative to the past data points, it may
signify the beginning of a disease outbreak. Table 3 shows weekly flu data representing
the frequency of Google Internet search queries containing the word flu.2 In theory, the
frequency of search queries ranges from 0 to 100, and because a public health perspective
finds lower values to be more desirable, I define and plot myflu = 100 - flu.

Table 3. Flu data, 2004

t t1 t2 t3 t4 t5 t6 t7 t8

date 11/4 11/11 11/18 11/25 12/2 12/9 12/16 12/23
flu 19.38 20.99 15.71 18.80 21.42 17.73 12.53 97.17
myflu 80.62 79.01 84.29 81.20 78.58 82.27 87.47 2.83

Figure 3a shows faces for t1 − t7 drawn without considering the theoretical extrema.
All the values of myflu are relatively high compared with the possible minimum of 0, yet
I get an impression that most of the time I should be worried about a flu outbreak. Now
consider what happens when myflu at t8 is added. Because the new arrival represents
a true departure from the previous pattern, it completely changes the look of the faces
(figure 3b). The researcher will certainly be baffled by the resulting picture.

2. Data courtesy of Taha Kass-Hout and Google Insights for Search.
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(a) Time period t1–t7 without considering global extrema

(b) Time period t2–t8 without considering global extrema

(c) Time period t1–t7 with adjustment for global extrema

(d) Time period t2–t8 with adjustment for global extrema

Figure 3. Flu data
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Now let’s revisit the data but this time include a theoretical min and max. This can
be done two ways. First, you can specify

. chernoff, isize(myflu, 0 100) iangle(myflu, 0 100) ... mcurv(myflu, 0 100)

which gets the job done but is tedious. This is where the gmin() and gmax() options
come in handy. If all your variables share the same theoretical min or max, you can
specify a global min or max for all of them by typing

. chernoff, isize(myflu) iangle(myflu) ... mcurve(myflu) gmin(0) gmax(100)

Figure 3c presents the same data as figure 3a, but I account for extremes. Now all
the faces are correctly depicted as “happy”. Also, the arrival of an outlier does not alter
face representation for the previous time periods (figure 3d).

The flu example illustrates the importance of including a theoretical minimum and
maximum for variables, especially for continually updated or “live” data. This will not
always be possible because some phenomena do not have a strictly defined min or max,
for example, growth rates. In those cases, the researcher should be aware that an arrival
of an outlier can significantly alter the face landscape.

4 Further advice

Over the years, Chernoff faces received their fair share of criticism. However, most
pitfalls can be avoided by carefully thinking about the problem at hand and by knowing
your data. In this section, I offer several suggestions with respect to the use of Chernoff
graphs and the chernoff command.

4.1 Inverted scales

Be aware of what your variables represent. If you have a depression score where higher
values indicate higher depression, do not assign it to the mouth feature because higher
values will result in a smile. The usual solution is to reverse the values before the
assignment, similar to what I did in the flu example. Good candidates for inverted
scales include employee turnover, occurrence of earthquakes, dropout rate, number of
bankruptcies, and measures of corruption. Be aware that some popular indices are
coded counterintuitively—for example, the Freedom House index of democracy uses 1
to denote free countries and 7 to denote not free countries.3

4.2 No if or in

The sensitivity of face features with respect to outliers is the reason that I have not
implemented the if or in option. You could be tempted to code

. chernoff if foreign==1 ...

3. The Freedom House web site is http://www.freedomhouse.org.
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but does it mean that you want face features to be calculated on the foreign car sub-
sample or do you want calculations to be performed on the whole sample but graph
only faces representing foreign cars? To avoid the confusion, chernoff does not honor
qualifiers. If you wish to plot faces for a particular subsample, you can always drop the
unneeded observations, although you should probably specify a min and max from the
entire sample.

4.3 Limits

The main challenge in programming Chernoff faces is that each individual face requires
many data points to be plotted. For example, a SAS implementation by Friendly (1991)
uses “approximately 800 annotate observations for each face”. In my implementation,
each face requires 51 temporary variables, but those are recycled for each face; thus the
user is not limited by the number of variables Stata can hold. The only restriction is
that the number of sersets is capped at 1,999—because each face uses two sersets, this
limits the size of the combined graph to 999 faces; see [P] serset for more details. Hair
shading is stored as a separate serset, thus specifying hdark( null ) or hslant( null )

will allow for 1,999 faces to be plotted simultaneously.

4.4 Number of observations

Several face features are implemented as fifth-degree polynomials. Upper and lower
hair line, stored in temporary variables, each needs 121 data points to be plotted.
When the chernoff command starts, it checks whether there is a sufficient number of
observations, and if not, it issues set obs 121. The number of observations is restored
to the original value when the command finishes. However, if you press the Break key
in the middle of the execution, the command will not be able to restore the original
number of observations. For this reason, at the start the command reports the number
of observations being processed. If you interrupted the command and had less than 121
observations to begin with, make sure to check for redundant observations.

4.5 Size of a combined graph

The chernoff command is smart enough to calculate the correct dimensions of the
combined graph whether you choose to draw full or half faces and whether you specify
the number of rows or columns or not. Because Stata does not allow the x size or y size
of the graph to exceed 20, the command will rescale both dimensions proportionately if
they do. You may need to adjust the size of the combined graph when you add a title
and subtitle, change the position of the label, etc.
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5 Conclusion

In 1994, Nel, Pitt, and Webb noted that the difficulty with the implementation of Cher-
noff faces is that “some companies may not have access to the facilities and skills with
which to generate faces” (p. 253). They also expressed hope that “recent developments
in the field of personal computers and user-friendly software may eventually alleviate
this to some extent”. The solution is long overdue.

The chernoff command, introduced in this article, is straightforward to use and
does not require any special statistical skills. To my knowledge, this is a second im-
plementation of Chernoff faces in a mainstream statistical software, with the first one
being due to Friendly (1991). I hope that my command will prove useful in many diverse
fields that rely on visualization of highly dimensional data to detect patterns, clusters,
outliers, and temporal trends.
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Abstract. We propose improvements to existing degrees of freedom used for
significance testing of multivariate hypotheses in small samples when missing data
are handled using multiple imputation. The improvements are for 1) tests based on
unrestricted fractions of missing information and 2) tests based on equal fractions
of missing information with M(p− 1) ≤ 4, where M is the number of imputations
and p is the number of tested parameters. Using the mi command available as of
Stata 11, we demonstrate via simulation that using these adjustments can result
in a more sensible degrees of freedom (and hence closer-to-nominal rejection rates)
than existing degrees of freedom.
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1 Introduction

Multiple imputation developed by Rubin (1987) is a popular approach for handling
missing data. The basic idea is for the data collector or imputer to simulate values for the
missing data repeatedly by sampling from predictive distributions of the missing values.
The data analyst, who may be the same person as the imputer or may be a secondary
data user, performs the desired analysis on each completed dataset and combines the
results using simple formulas (Rubin 1987, 76–77). As of Stata 11, the mi command
provides methods for generating multiple imputations and implements the formulas
for combining results (StataCorp 2009). Users also can perform multiple imputation
by using ice and mim (Royston 2004, 2005a, 2005b, 2007; Carlin, Galati, and Royston
2008; and Royston, Carlin, and White 2009). For reviews of multiple imputation, see
Schafer (1997), Little and Rubin (2002), and Reiter and Raghunathan (2007).

Often analysts seek to test multivariate hypotheses, for example, if several regres-
sion coefficients are equal to zero. Rubin (1987) suggests two approaches to doing
so with multiply imputed data. The first approach, which is the most widely used
method, presumes that the fractions of missing information (FMI) are equal across
the parameters of interest. A reference F distribution for this method was derived
by Li, Raghunathan, and Rubin (1991). The second approach does not presume equal

c© 2009 StataCorp LP st0170
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FMIs; however, it may not give well calibrated p-values unless the number of imputed
datasets is large (Li, Raghunathan, and Rubin 1991).

The derivations of these test statistics and their reference distributions presume in-
finite sample size. However, Reiter (2007) demonstrates that, for the equal FMI test,
the infinite sample-size assumption can result in nonsensical procedures. For example,
in modest samples, the computed degrees of freedom for the reference distributions can
exceed the number of cases in the dataset, which should not be possible. A related phe-
nomenon is illustrated by Barnard and Rubin (1999), who derive small-sample degrees
of freedom for univariate inferences.

Reiter (2007) goes on to develop small-sample degrees of freedom for the equal FMI

test that results in better performance than the infinite sample degrees of freedom
of Li, Raghunathan, and Rubin (1991). However, Reiter’s (2007) degrees of freedom
requires M(p − 1) > 4, where M is the number of imputations and p is the number of
tested parameters. While this case may not be a concern in practice because analysts
can set M to be large, it nonetheless must be accounted for when designing software to
implement multiple imputation. For multivariate tests based on unrestricted FMIs, we
are not aware of any published research on small-sample adjustments to the degrees of
freedom.

Motivated by the development of mi, we propose to fill these gaps in the literature.
Specifically, we present small-sample degrees of freedom for the unrestricted FMI test and
for the equal FMI test with M(p− 1) ≤ 4. We demonstrate with simulation results that
using the adjusted degrees of freedom can result in more sensible reference distributions
(and hence closer-to-nominal rejection rates) than using degrees of freedom based on
infinite sample sizes.

2 Significance tests with multiple imputation

We first review the unrestricted and equal FMI tests. Let q be the p × 1 vector of
parameters of interest, such as p regression coefficients. In each completed dataset i,
where i = 1, . . . ,M , let q̂i be the completed-data estimate of q, and let Ûi be its
associated completed-data variance estimate. The analyst combines each q̂i and Ûi

using

q =
1

M

M∑

i=1

q̂i

T = U + (1 +
1

M
)B

Here U =
∑M

i=1 Ûi/M is the within-imputation variance–covariance matrix, and B =∑M
i=1(qi − q)(qi − q)′/(M − 1) is the between-imputation variance–covariance matrix.

The analyst can use q as a point estimate of q and T as an estimate of the variance of
q.
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We now suppose that the analyst seeks to test the null hypothesis, H0: q = q0. The
unrestricted FMI test proposed by Rubin (1987) is

(q0 − q)T−1(q0 − q)′/p ∼ Fp,ν (1)

where

ν = (M − 1)(1 + 1/rave)
2

rave = (1 + 1/M)tr(BU
−1

)/p

Here rave is the average relative variance increase due to missing data.

Note that even under the assumption of infinite sample size, multivariate testing uses
an F reference distribution rather than a chi-squared distribution. This is because of
the fact that the variance T in the test statistic (1) involves estimates of the within- and
between-imputations variances based on the finite number of M imputations. Therefore,
the denominator degrees-of-freedom parameter ν in (1) represents the amount of inde-
pendent information used to estimate the variance after accounting for a finite number
of imputations. In standard multiple-imputation contexts, this amount of information
theoretically cannot exceed the number of cases in the dataset, which sometimes hap-
pens with the approximations of Rubin (1987) and Li, Raghunathan, and Rubin (1991).

The equal FMI test originally suggested by Rubin (1987) is

(1 + rave)
−1(q0 − q)U

−1
(q0 − q)′/p ∼ Fp,(p+1)ν/2 (2)

Reiter (2007) uses the same test statistic as (2) with an alternative denominator degrees
of freedom for the F distribution appropriate when M(p − 1) > 4.

The key distinction between the two test statistics is the variance inside the quadratic
form. The unrestricted FMI test uses T, whereas the equal FMI test uses (1 + rave)U.
This difference arises because of the equal FMI condition. To see this, define B∞ = limB

as M → ∞, and define T∞ = U + (1 + 1/M)B∞; we could obtain these values if we
had an infinite number of datasets to estimate B and T. Under equal FMIs, U = ρB∞

for some constant ρ, and thus T∞ = (1 + ρ)U. The relative variance increase, rave, in
(2) is an estimate of ρ.

At first glance, the unrestricted test would seem to be always preferable because
it is derived under more general conditions. However, Rubin (1987) shows that the
unrestricted test can perform poorly when M is small relative to p because B can
be unreliable. Essentially, using B to estimate B∞ from the M datasets is akin to
estimating a p × p covariance matrix with only M observations, which can be prob-
lematic when M < p. Using the equal FMI test mitigates these difficulties because
the analyst estimates only one parameter, ρ, rather than p2 + p(p − 1)/2 parameters.
Li, Raghunathan, and Rubin (1991) demonstrate that testing procedures based on the
assumption of equal FMIs perform well as long as the fractions do not vary substantially.
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3 Small-sample degrees-of-freedom adjustments

We now consider adjustments for the denominator degrees of freedom in the reference
distributions in (1) and, for cases with M(p − 1) ≤ 4, in (2) to reflect small samples.

For the unrestricted FMI test, we propose to use the small-sample degrees of freedom
of Barnard and Rubin (1999) in place of ν in (1). That is, we use

νbr =
(
ν−1

⋆ + ν̂−1
obs

)−1

where

ν⋆ = (M − 1)γ−2
ave

ν̂obs = (1 − γave)νcom(νcom + 1)/(νcom + 3)

γave = (1 + 1/M)tr(BT−1)/p

Here νcom is the degrees of freedom if the data were complete, and γave is the approx-
imate average FMI. The quantity νbr has several features that led Barnard and Rubin
(1999) to recommend its general use, regardless of the sample size. First, νbr ≤ νcom,
whereas ν can exceed νcom. This property of νbr is desirable because the presence of
missing data should reduce the degrees of freedom rather than increase it. Second,
νbr < ν with approximate equality when the sample size is large, so using νbr instead
of ν is slightly conservative in large samples. Third, νbr is always between νcom and ν,
making it a compromise degrees of freedom.

Barnard and Rubin (1999) illustrate the effectiveness of this degrees of freedom for
univariate inferences. To our knowledge, νbr is rarely, if ever, used for multivariate
inferences. However, Barnard and Rubin (1999) note that the steps in the derivation
of νbr for multivariate q follow immediately under equal FMIs. Hence, by using νbr for
the degrees of freedom in the unrestricted test, we lean on the equal FMI assumption
to avoid unrealistic degrees of freedom, but we do allow the variance in the quadratic
form to be estimated without the restriction.

For the equal FMI test, we suggest a refinement to the degrees of freedom of Reiter
(2007) for cases when M(p − 1) ≤ 4. Here we again propose to substitute νbr for ν in
(2). This is similar in spirit to the suggestion of Li, Raghunathan, and Rubin (1991),
who use (2) for cases when M(p − 1) ≤ 4 for their large-sample tests. The primary
difference is that we use a degrees of freedom, νbr, that has more desirable properties
in small samples.

4 Simulation studies of properties of adjustments

The proposed adjusted degrees of freedom are ad hoc in nature. As noted by Rubin
(1987), there is little way around such constructions, because we are approximating
complicated Bayesian integrals with simple distributions. Thus it is imperative to eval-
uate the operating characteristics of tests based on these procedures by using simulation
studies.
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In all simulations studies, we generate an outcome, Y , and covariates, (X1, X2, . . . ,
Xp), where p depends on the simulation scenario, for 50 observations. The covariates
are sampled from a multivariate normal distribution with means equal to zero, variances
equal to one, and all pairwise correlations equal to 0.5. The outcome is sampled from a
normal distribution with mean equal to zero and variance equal to one independently
of covariates. The simulate command is used to generate the data. We investigate
the empirical significance levels of the procedures when testing if all coefficients in the
regression of Y on (X1,X2, . . . ,Xp) are equal to zero; that is, we test H0: β1 = β2 =
· · · = βp = 0. The empirical significance levels are based on 10,000 replications.

We consider four simulation scenarios in which we vary FMIs; these are described in
sections 4.1 and 4.2. Multiple imputations are performed using mi impute mvn, which
implements multivariate normal imputation. The estimation step is performed using
mi estimate. The results of the equal FMI test are obtained from the default settings
of mi test. The results of the unrestricted FMI test are obtained by specifying the
ufmitest option with mi test. The results from the corresponding large-sample tests
are obtained by specifying the nosmall option with mi test.

4.1 Small-sample adjustment for the unrestricted FMI test

Scenarios 1, 2, and 3 use p = 4 covariates, and scenario 4 uses p = 5 covariates.
In scenario 1, we randomly delete 10% of the 50 observations, which corresponds to
approximately equal fractions of information missing due to nonresponse. Scenario
2 is similar to scenario 1 but with 30% of the observations deleted. In scenario 3, we
introduce variation among the FMIs by randomly deleting 10% of the data from X2, 20%
of the data from X4, and 35% of the data from X3; here X1 and Y are complete. Scenario
4 represents a relatively large deviation from equal FMI with increased missingness: 10%
of the data are deleted from X4, 30% of the data are deleted from X2, 50% of the data
are deleted from X1 and X3, and X5 and Y are complete. We use M = 20 multiple
imputations.

Table 1 displays key results from the 10,000 replications. Across all scenarios, the
small-sample degrees of freedom, νbr, is more sensible than the large-sample degrees of
freedom in (2), ν, which always greatly exceeds the sample size of 50. The unrestricted
FMI test using νbr provides close-to-nominal significance levels and is somewhat conser-
vative. In contrast, the unrestricted FMI test using ν is anticonservative; its empirical
significance levels always exceed the corresponding nominal significance levels. The dif-
ference between the empirical and nominal levels is always smaller for the test based on
νbr. Thus we recommend νbr over ν for the unrestricted FMI test.
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Table 1. Simulated significance levels for the unrestricted FMI test of all coefficients
equal to zero. ν denotes the denominator degrees of freedom averaged over replications.

Scenario DF ν α = 0.1 α = 0.05 α = 0.01

10% missing, equal FMI (1) small 36.22 0.0941 0.0455 0.0081

large 1180.76 0.1164 0.0636 0.0168

30% missing, equal FMI (2) small 22.57 0.0819 0.0361 0.0069

large 130.58 0.1103 0.0587 0.0162

max 35% missing, unequal FMI (3) small 33.04 0.0965 0.0477 0.0082

large 660.37 0.1209 0.0674 0.0185

max 50% missing, unequal FMI (4) small 23.57 0.0892 0.0452 0.0089

large 151.24 0.1224 0.0725 0.023

4.2 Small-sample adjustment for the equal FMI test

To evaluate the performance of the testing procedure under the equal FMI assumption for
the case when M(p−1) ≤ 4, we consider four simulation scenarios similar to those used
for the unrestricted test. We use p = 2 covariates, (X1,X2), and M = 3 imputations so
that M(p−1) = 3. In scenario 1, we randomly delete 10% of all observations. In scenario
2, we randomly delete 30% of all observations. In scenario 3, we randomly delete 10%
of the data from X1 and 35% of the data from X2. In scenario 4, we randomly delete
30% of the data from X1 and 50% of the data from X2.

Table 2 displays the key results from the 10,000 replications. In all cases, νbr is
less than the sample size of 50, whereas the degrees of freedom in (2) far exceeds 50.
For the scenarios with modest FMIs (scenarios 1 and 3), the test based on νbr generally
has closer-to-nominal empirical significance levels than the test based on the degrees of
freedom in (2). However, the picture is less clear with large FMIs (scenarios 2 and 4):
the levels for the test based on νbr are closer to nominal when α = 0.01 but not when
α ∈ (0.05, 0.10). For the scenarios with equal FMIs, the test based on νbr is conservative,
whereas the test based on the degrees of freedom in (2) can be anticonservative. For
both degrees of freedom, the tests in scenarios 3 and 4 are reasonably well calibrated
despite the unequal FMI, although the levels for the test based on νbr can exceed the
nominal α in this case.

(Continued on next page)
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Table 2. Simulated significance levels for the equal FMI test of two coefficients equal to
zero. ν denotes the denominator degrees of freedom averaged over replications.

Scenario DF ν α = 0.1 α = 0.05 α = 0.01

10% missing, equal FMI (1) small 40.09 0.0933 0.0485 0.0099

large 2025.32 0.1017 0.0558 0.0123

30% missing, equal FMI (2) small 15.65 0.0795 0.0406 0.0096

large 97.74 0.0886 0.0480 0.0127

max 35% missing, unequal FMI (3) small 31.08 0.1023 0.0536 0.0132

large 888.59 0.1111 0.0625 0.0170

max 50% missing, unequal FMI (4) small 17.22 0.0872 0.0435 0.011

large 154.50 0.0967 0.0509 0.0147

Taking these results as a whole, we recommend using the adjusted degrees of freedom
when M(p−1) ≤ 4. The test based on νbr tends to be conservative when the assumption
of equal FMI is true or nearly true, which is when these tests perform best. Of course,
data analysts need not force themselves into choosing between these two degrees of
freedom. They can increase M sufficiently so that M(p − 1) > 4 and use the degrees
of freedom developed by Reiter (2007) for the equal FMI test, which has been shown to
perform well with approximately equal FMIs. For small sample sizes, using a large M
should not be a computational burden and can greatly improve analyses.

5 Illustration of testing with multiple imputation in Stata

As an example of testing multivariate hypotheses, we use multiply imputed data on
house resale prices, mhouses1993s30.dta, from example 2 in the Stata manual for
the mi estimate command, [MI] mi estimate. The original data are provided by
the Albuquerque Board of Realtors and distributed by the Data and Story Library
(http://lib.stat.cmu.edu/DASL/Stories/homeprice.html).

We are interested in the effect of house characteristics like square footage, age of
house, and amount of taxes paid on house prices, which we estimate with a linear
regression. The data contain missing values on age and taxes. mhouses1993s30.dta

contains M = 30 imputations created using mi impute mvn, which invokes multivariate
normal imputations. The imputation strategies are described in detail in example 3 of
the Stata manual entry [MI] mi impute mvn.

Below we present the results of the regression on the multiply imputed data. These
results are obtained by using mi estimate. We specify the vartable option to display
the estimated FMIs. The test statistic and p-value for the test of all coefficients equaling
zero are displayed in the regression output header. By default, this test is based on the
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equal FMI test with the degrees of freedom of Reiter (2007). Based on this test, there
is significant evidence to reject the null hypothesis that all coefficients equal zero.

. use http://www.stata-press.com/data/r11/mhouses1993s30
(Albuquerque Home Prices Feb15-Apr30, 1993)

. mi estimate, vartable: regress price sqft age nfeatures ne custom corner tax

Multiple-imputation estimates Imputations = 30

Variance information

Imputation variance Relative
Within Between Total RVI FMI efficiency

sqft .004442 .003623 .008186 .842713 .464984 .984737
age .277762 .896309 1.20395 3.33446 .778164 .974717

nfeatures 157.333 26.7139 184.937 .175452 .150568 .995006
ne 1104.74 114.734 1223.29 .107319 .097502 .99676

custom 1783.12 85.8858 1871.87 .049772 .04756 .998417
corner 1548.13 93.6976 1644.95 .06254 .059084 .998034

tax .012421 .00814 .020832 .677183 .410355 .986506
_cons 3834.84 257.487 4100.91 .069382 .065152 .997833

Linear regression Number of obs = 117
Average RVI = 0.5415
Complete DF = 109

DF adjustment: Small sample DF: min = 16.42
avg = 72.83
max = 101.18

Model F test: Equal FMI F( 7, 96.3) = 45.63
Within VCE type: OLS Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

sqft .2900879 .0904748 3.21 0.003 .1073624 .4728134
age -.7524605 1.097246 -0.69 0.502 -3.073675 1.568754

nfeatures 4.361055 13.59917 0.32 0.749 -22.67719 31.3993
ne 5.495913 34.97562 0.16 0.875 -63.95148 74.94331

custom 132.3453 43.26507 3.06 0.003 46.52087 218.1697
corner -66.95606 40.55801 -1.65 0.102 -147.4264 13.51429

tax .5516444 .1443319 3.82 0.000 .2612817 .842007
_cons 130.3491 64.03837 2.04 0.044 3.277868 257.4203

We can use mi test to test hypotheses about subsets of coefficients. Suppose that
we seek to test the null hypothesis that the coefficients for age, nfeatures (number of
certain features), and ne (whether the city is located in the northeast, largest residential,
area) all equal zero. By default, mi test performs the equal FMI test, as illustrated
below.

. mi test age nfeatures ne
note: assuming equal fractions of missing information

( 1) age = 0
( 2) nfeatures = 0
( 3) ne = 0

F( 3, 70.4) = 0.39
Prob > F = 0.7639
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However, from the output of mi estimate, the assumption of equal FMIs for age,
nfeatures, and ne does not seem plausible: the estimated FMIs range from 0.10 for
ne to 0.78 for age. We therefore perform the unrestricted FMI test with the ufmitest

option, as follows.

. mi test age nfeatures ne, ufmitest

( 1) age = 0
( 2) nfeatures = 0
( 3) ne = 0

F( 3, 41.8) = 0.28
Prob > F = 0.8376

The unrestricted FMI test results in a larger p-value than the equal FMI test. How-
ever, both tests indicate that these three variables are not strong predictors of house
resale prices, at least according to the model we fit here.

6 Conclusion

We proposed improvements to the existing degrees of freedom for multivariate tests for
multiply imputed data. In particular, we proposed a small-sample adjustment to the de-
grees of freedom of the unrestricted FMI test, and we refined the small-sample adjustment
for the equal FMI test when M(p− 1) ≤ 4. Empirical evaluations of these adjustments,
while admittedly limited in scope as all such evaluations must be, demonstrated that
using tests based on the proposed small-sample adjustments can improve performance
over using tests based on the large-sample analogues. Simulations also showed that the
proposed testing procedures become more conservative as FMIs increase or start varying
substantially. The deviations from nominal significance result because the adjustments
are, as noted previously, unavoidably ad hoc in nature. For example, the derivation
of the proposed degrees of freedom presumes that FMIs are approximately equal even
though this assumption is not used in the test statistic. Additionally, estimates of the
within-imputation and between-imputations variance components can be unreliable for
small sample sizes and modest numbers of imputations.

We also considered using the denominator degrees of freedom suggested by Reiter
(2007) for the unrestricted FMI test. This led to a slightly more conservative test than
the one using the degrees of freedom from Barnard and Rubin (1999).

Other simulations not shown here suggested that the small-sample unrestricted FMI

test performs better than the small-sample equal FMI test when the FMIs vary no-
ticeably, and that the small-sample equal FMI test performs better when the FMIs are
approximately equal. Further research is needed to compare the properties of these two
tests in a wide range of plausible scenarios.
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Abstract. We present a minimum distance approach for conducting hypothesis
testing in the presence of potentially weak instruments. Under this approach, we
propose size-correct tests for limited dependent variable models with endogenous
explanatory variables such as endogenous tobit and probit models. Addition-
ally, we extend weak-instrument tests for the linear instrumental-variables model
by allowing for variance–covariance estimation that is robust to arbitrary het-
eroskedasticity or intracluster dependence. We invert these tests to construct
confidence intervals on the coefficient of the endogenous variable. We also provide
a postestimation command for Stata, called rivtest, for computing the tests and
estimating confidence intervals.
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1 Introduction
In this article, we present an indirect method for performing hypothesis testing based
on the classical minimum distance approach. This method allows us to develop two ex-
tensions to the current set of weak-instrument robust tests that are available for linear
instrumental-variables (IV) models. The first extension allows one to perform size-
correct inference for a class of limited dependent variable (LDV) models that includes
the endogenous tobit and probit models. The second extension allows size-correct in-
ference with the linear IV model when dealing with covariance matrices with arbitrary
heteroskedasticity or intracluster dependence.

There exists vast literature dealing with inference in the linear IV model when instru-
ments are weak (see Stock, Wright, and Yogo [2002] for a review). When instruments
are weak, point estimators are biased and Wald tests are unreliable. There are several
tests available for linear IV models that have the correct size even when instruments are
weak. These include the Anderson–Rubin (AR) statistic (Anderson and Rubin 1949),
the Kleibergen–Moreira Lagrange multiplier (LM) test (Moreira 2003; Kleibergen 2007),
the overidentification (J) test, and the conditional likelihood-ratio (CLR) test.

Concern about weak identification is not isolated to linear IV models. Identification
issues also arise in the popular class of LDV models with endogenous explanatory vari-
ables. The endogenous tobit and endogenous probit models are two examples of these
models (the ivtobit and ivprobit commands in Stata).

c© 2009 StataCorp LP st0171
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Extending the weak-instrument robust tests from the linear IV case to the LDV mod-
els is not straightforward. In the LDV models, the untested (nuisance) parameters are
not separable from the structural parameters. As such, the orthogonal transformation
that projects nuisance parameters out from the tests in the linear IV is not valid in the
LDV case.

Fortunately, for this particular class of LDV models, the structural model also has a
reduced-form representation. Consequently, inference on the structural parameter can
be conducted indirectly by testing the restrictions on the reduced-form coefficients im-
posed by the underlying relationship between the structural and reduced-form param-
eters. Magnusson (2008a) describes this method of conducting inference under weak
identification as the minimum distance approach. Our proposed tests for the endoge-
nous variable coefficient have the correct size regardless of whether the identification
condition holds.

Working with the reduced-form models also allows us to relax the homoskedastic
assumption used in other implementations of the tests (e.g., the condivreg command
of Moreira and Poi [2003] and Mikusheva and Poi [2006]). This is possible because
the asymptotic behavior of our tests is derived from the reduced-form parameters es-
timator. In the linear IV model, this property allows us to use the heteroskedastic-
robust variance–covariance matrix estimate as the reduced-form parameters covariance
matrix. The same method allows us to deal with covariance matrices with cluster
dependence. Some of these tests are asymptotically equivalent to those proposed by
Chernozhukov and Hansen (2008), who also use a reduced-form approach.

Once we compute the statistical tests, we derive confidence intervals by inverting
them. This guarantees that our confidence intervals have the correct coverage prob-
ability despite the instruments’ strength or weakness. For the linear IV model under
homoskedasticity, the existence of a closed-form solution for confidence intervals has
been shown by Dufour (2003) for the AR test and by Mikusheva (2005) for the LM and
CLR tests. However, their methods do not extend to nonlinear models or models with
nonspherical residuals, so we use a grid search for estimating confidence intervals for
the other models.

Because our tests are not model specific, we propose just one postestimation com-
mand for Stata, called rivtest. The command tests the simple composite hypothesis
H0 : β = β0 against the alternative Ha : β 6= β0 using five statistics: AR, LM, J , the
combination of LM and J , and CLR. The command will also compute the confidence in-
tervals based on these statistics. rivtest can be used after running ivregress, ivreg2,
ivprobit, or ivtobit in Stata with one endogenous variable.

In the next section, we present a brief description of our tests. Then we present a
general algorithm for implementing them. Next we discuss the command syntax of our
postestimation command, rivtest, and provide examples of its use. Finally, we show
results from Monte Carlo simulations we performed using the rivtest command.
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2 Weak-instrument robust tests in LDV models: A min-

imum distance approach

2.1 Setup

We start by considering a class of models that includes both typical two-stage least-
squares models and LDV models. Suppose there exists a model that satisfies the following
structural form representation:

{
y∗

i = xiβ + wiγ + ui

xi = ziπz + wiπw + vi

for i = 1, . . . , n (1)

where y∗
i is a latent endogenous variable and xi is a continuously observed endogenous

explanatory variable; wi and zi are, respectively, vectors of included and excluded instru-
ments with dimensions 1×kw and 1×kz; and the residuals ui and vi are independently
distributed. Rather than observing y∗

i , we observe

yi = f (y∗
i )

where f is a known function. This representation is compatible with the class of LDV

models in this study. For the endogenous tobit model, let dlb and dub be, respectively, the
lower and the upper bound. So, we have yi = dlb if y∗

i ≤ dlb; yi = y∗
i if dlb < y∗

i < dub;
and yi = dub if y∗

i ≥ dub. For the endogenous probit, we have yi = 0 if y∗
i ≤ 0 and

yi = 1 if y∗
i > 0. In particular, when yi = y∗

i we have the well-known linear IV model.

Our goal is to test H0 : β = β0 against Ha : β 6= β0. However, whereas the coefficient
γ can be concentrated out of the linear IV model, this is not possible under a more
general specification, so the available tests are inappropriate.

An unrestricted reduced-form model derived from (1) is
{

y∗
i = ziδz + wiδw + ǫi

xi = ziπz + wiπw + vi

(2)

where ǫi = viβ +ui. The restrictions imposed by the structural model over the reduced-
form parameters give us the following relation:

δz = πzβ (3)

We use (3) to develop our tests on the structural parameter, β, based on the unrestricted
model (2). In this representation, the global identification of β requires that ‖πz ‖ 6= 0.
So as πz approaches zero, the instruments become weaker.

For now, let’s assume that δz and πz are consistently estimated by δ̂z and π̂z. Let’s

also assume that Λ, the asymptotic variance–covariance of
√

n
[
(δ̂z − δz)

′, (π̂z − πz)
′
]′

,

is also consistently estimated by

Λ̂ =

[
Λ̂δzδz

Λ̂δzπz

Λ̂πzδz
Λ̂πzπz

]
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Let’s introduce two more statistics:

Ψ̂β = Λ̂δzδz
− βΛ̂δzπz

− βΛ̂πzδz
+ (β)2Λ̂πzπz

π̂β = π̂z −
(
Λ̂πzδz

− βΛ̂πzπz

)
Ψ̂−1

β

(
δ̂z − π̂zβ

)

The first statistic is an estimate of the asymptotic covariance matrix of
√

n(δ̂z − π̂zβ).
The second statistic is an estimate of πz, whose properties are discussed in Magnusson
(2008a).

2.2 Weak-instrument robust tests

Under H0 : β = β0, our version of the AR test is

ARMD(β0) = n
(
δ̂z − π̂zβ0

)′

Ψ̂−1
β0

(
δ̂z − π̂zβ0

)

d−→ χ2(kz)

where the value inside the parentheses indicates the chi-squared distribution degrees of
freedom. Then we reject H0 at significance level α if ARMD(β0) is greater than the 1−α
percentile of the χ2(kz) distribution.

The ARMD statistic simultaneously tests the value of the structural parameter and
the overidentification restriction. We can make an orthogonal decomposition of the
ARMD test into two statistics, namely, the LMMD and JMD tests. Under the null hy-
pothesis, the LMMD statistic tests the value of the structural parameter given that the
overidentification condition holds, while the JMD statistic tests the overidentification
restriction given the value of β0. They are

LMMD(β0) = n
{

Ψ̂
− 1

2

β0

(
δ̂z − π̂zβ0

)}′

P̂β0

{
Ψ̂

− 1

2

β0

(
δ̂z − π̂zβ0

)}
(4)

JMD(β0) = n
{

Ψ̂
− 1

2

β0

(
δ̂z − π̂zβ0

)}′

M̂β0

{
Ψ̂

− 1

2

β0

(
δ̂z − π̂zβ0

)}
(5)

where

P̂β0
=

(
Ψ̂

− 1

2

β0
π̂β0

) (
Ψ̂

− 1

2

β0
π̂β0

)′

(
π̂
′

β0
Ψ̂−1

β0
π̂β0

)

M̂β0
= Ikz

− P̂β0

and Ikz
is a kz × kz identity matrix. Assuming that some regularity conditions hold

under the null hypothesis, we have

LMMD(β0)
d−→ χ2(1)

JMD(β0)
d−→ χ2(kz − 1)
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independent of whether the instruments are weak (see Magnusson [2008a] for more
details). From (4) and (5), we have

ARMD = LMMD + JMD

It is well-known that the LMMD test suffers from a spurious decline of power at
some regions of the parameter space. In those regions, the JMD test approximates the
ARMD test, which always has discriminatory power. We combine the LMMD and JMD

tests to rule out regions where the LMMD test behaves spuriously. For example, testing
H0 : β = β0 at the 5% significance level could be performed by testing the null at the
4% significance level with the LMMD test and at the 1% significance level with the JMD

test. We reject the null if either KMD or JMD is rejected. We call this combination test
the LM-JMD test.

The minimum distance version of Moreira’s (2003) conditional likelihood-ratio test
is

CLRMD(β0) =
1

2

[
ARMD(β0) − rk(β0)+

√
{ARMD(β0) + rk(β0)}2 − 4JMD(β0)rk(β0)

]

where

rk(β0) = n
(
π̂
′

β0
Ξ̂−1

β0
π̂β0

)

Ξ̂β0
= Λ̂πzπz

−
(
Λ̂πzδz

− β0Λ̂πzπz

)
Ψ̂−1

β0

(
Λ̂δzπz

− β0Λ̂πzπz

)

The asymptotic distribution of the CLRMD is not pivotal and depends on rk(β0). The
critical values of this test are calculated by simulating independent values of χ2(1) and
χ2(kz−1) for a given value of rk(β0). This approach is not satisfactory because accuracy
demands many simulations, which can be computationally intensive. For linear IV

models under homoskedasticity, Andrews, Moreira, and Stock (2007) provide a formula
for computing the p-value function of the CLR test (which is embedded in the condivreg
command). Although this is not the correct p-value function when homoskedasticity is
violated, our simulations indicate that it provides a good approximation.

Two Stata packages currently provide some functionality to perform these tests.
For the linear IV case under homoskedastic residuals, the condivreg command in
Stata provides a set of weak-instrument robust tests (Moreira and Poi 2003; Mikusheva
and Poi 2006). Our command, rivtest, complements condivreg by offering weak-
instrument robust tests for a larger class of models. For nonhomoskedastic residuals,
Baum, Schaffer, and Stillman (2007) provide the AR test in the ivreg2 package. The
degrees of freedom of the AR test depends on the number of instruments and not on the
number of endogenous variables, so its power decreases as one increases the number of
instruments. We complement this package by offering a set of tests that are valid even
with many instruments.
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2.3 Confidence intervals

Confidence intervals for the proposed tests are derived by inverting the statistical tests.
By definition, confidence intervals derived from the ARMD, LMMD, LMMD–JMD, and
CLRMD tests are, respectively,

CARMD

(1−τ) =
{
β0 : ARMD(β0) < χ2

1−τ,kz

}

CLMMD

(1−τ) =
{
β0 : LMMD(β0) < χ2

1−τ,1

}

CLMMD−JMD

(1−τ) =
{
β0 :

[
LMMD(β0) < χ2

1−w1τ,1

]
∩

[
JMD(β0) < χ2

1−w2τ,kz−1

]}

CCLRMD

(1−τ) = {β0 : CLRMD(β0) < c [rk(β0)]}

where τ denotes the significance level, w1 +w2 = 1, and c{rk(β0)} is the 95th percentile
of the distribution of the CLRMD tests conditional on the value of rk(β0).

The weak instrument robust confidence intervals are not necessarily convex or sym-
metric as is the usual Wald-type confidence interval, which includes points two standard
deviations from the estimated coefficient. For example, they can be a union of disjoint
intervals or the real line when the instruments are completely irrelevant. The ARMD

confidence interval can be empty. This occurs when the overidentifying restriction is re-
jected for any value of β. However, the LMMD and CLRMD confidence intervals are never
empty because the continuous updating minimum distance estimate always belongs to
them.1

Dufour (2003) and Mikusheva (2005) provide closed-form solutions for obtaining
confidence intervals in the homoskedastic linear IV model. In particular, Mikusheva, by
solving quadratic inequalities, proposes a numerically simple algorithm for estimating
confidence intervals derived from the LMMD and CLRMD tests. However, their methods
are not generalized to either nonspherical residuals or models with LDV. We employ
their solutions for the homoskedastic linear IV model. In the other models, we use
the grid search method for generating the confidence intervals by testing points in the
parameter space. Points β for which H0 : β = β is not rejected belong in the confidence
interval. The user has the option to choose the interval and the number of points in
the grid search. For the LM-JMD test, the user can select the weight, w1, given to the
LMMD. The default option is w1 = 0.8.

1. The continuous updating minimum distance estimate is the value that minimizes the ARMD test.
It is not numerically equal to the generalized method of moments continuous updating estimate of
Hansen, Heaton, and Yaron (1996).
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3 Generic algorithm for implementing minimum distance

weak-instrument robust tests

The implementation of our weak-instrument robust tests takes advantage of several
built-in functions of Stata. We separate our implementation into two cases: one in
which residuals are homoskedastic and another in which residuals have either arbitrary
heteroskedasticity or intracluster dependence.

3.1 Homoskedastic residuals

Under a homoskedastic assumption, we use the fact that ui = viα + εi, where α =
σ−1

vu σvv. This condition is suitable, for example, if residuals are jointly normally dis-
tributed. Moreover, the assumption allows the computation of the tests by using built-in
functions available in Stata (Magnusson 2008b). The reduced-form (2) becomes

{
y∗

i = ziδz + wiδw + viδv + εi

xi = ziπz + wiπw + vi

(6)

In the above representation, εi and vi are independent by construction. The test algo-
rithm has the following steps:

1. Estimate πz and Λπzπz
by ordinary least squares (OLS). Denote the estimated

values as π̂z and Λ̂πzπz
. Also compute the OLS estimated residuals:

v̂i = xi − ziπ̂z − wiπ̂w

2. Estimate δz and δw by using the following equation:

y∗
i = ziδz + wiδw + v̂iδv + ε̃i

where ε̃i = εi − (v̂i − vi)δv. Denote the estimated values of δz, δw, and δv as δ̂z,

δ̂w, and δ̂v, respectively. For the endogenous probit model, our algorithm fixes
σεε = 1 for normalization, which is a different normalization than the default
option in Stata (σuu = 1) but the same as the Newey two-step estimator (see
[R] ivprobit).

3. Save Γ̂δzδz
, the output of the variance–covariance matrix estimate of δ̂z. This is

not the “correct” variance–covariance of δ̂z because we are not adjusting for the
presence of v̂i.

Using the same notation as in the body of the text, we have

Ψ̂β = Γ̂δzδz
+ (δ̂v − β)2Λ̂πzπz

π̂β = π̂z − (δ̂v − β)2Ψ̂−1
β Λ̂πzπz

Ξ̂β0
= Λ̂πzπz

− (δ̂v − β)2Λ̂πzπz
Ψ̂−1

β Λ̂πzπz
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3.2 Heteroskedastic/clustered residuals

For heteroskedasticity or cluster dependence in the distribution of errors, we consider
just the linear model. Baum, Schaffer, and Stillman (2007) provide an option using a
generalized method of moments approach for autocorrelation- and heteroskedasticity-
robust AR tests in the ivreg2 command. We extend this functionality for the LMMD,
LM-JMD, and CLRMD tests.

The implementation is similar to the homoskedastic case. The reduced-form model
is {

yi = ziδz + wiδw + ei

xi = ziπz + wiπw + vi

We estimate the δz, πz, Λδzδz
, and Λπzπz

by running two separate regressions with
the appropriate robust or cluster options. The covariance term Λπzδz

has the general
sandwich formula

Λ̂πzδz
= A B A′

where A = (Z⊥′

Z⊥)−1 is a kz×kz matrix, Z⊥ = MW Z, and MW = In−W (W ′W )−1W ′,
the matrix that projects Z to the orthogonal space spanned by W . Let’s denote v̂ and
ê as the vectors of OLS residuals. The B matrix is given by:

∑

j

z⊥
′

j v̂j ê
′
jz

⊥
j

For robust standard errors, z⊥j is a kz×1 vector, and v̂j and ûj are scalars. For clustered

standard errors, z⊥j is a kz × nj matrix, and v̂j and ûj are nj × 1 vectors, where nj is
the number of observations in cluster j.

The tests obtained here and by Chernozhukov and Hansen (2008) are closely related.
They work with the following regression model:

yi − Yiβ = Ziγ + ui (7)

A simple t test, γ̂/sbγ , is the same as testing H0 : β = β0, where γ̂ is the OLS estimator
derived from (7) replacing β with β0. Our AR test and the AR test of Chernozhukov and
Hansen (2008) are identical. Our LM test, however, is only asymptotically equivalent to
theirs; they are slightly different in small samples.2

4 The rivtest command

The software package accompanying this article contains a Stata command, rivtest,
to implement the tests discussed above after using the ivregress, ivreg2, ivprobit,
or ivtobit command.

2. A proof is available upon request.



406 Implementing weak-instrument tests

4.1 Command description

For ivregress and ivreg2, rivtest supports limited-information maximum likeli-
hood and two-stage least-squares models (the liml and 2sls options of ivregress,
respectively), as well as vce(robust) and vce(cluster clustvar) options for variance–
covariance estimation. For ivprobit and ivtobit, rivtest supports all variance–
covariance estimation options except the vce(robust) and vce(cluster clustvar) op-
tions. Weights are allowed as long as they are supported by the appropriate IV command.

rivtest calculates the minimum distance version of the AR test statistic. When
the IV model contains more than one instrumental variable, rivtest also conducts
the minimum distance versions of the CLR test, the LM test, the J overidentification
test, and a combination of the LM multiplier and overidentification tests (LM-J). As a
reference, rivtest also presents the Wald test.

The AR test is a joint test of the structural parameter and the overidentification
restrictions. The AR statistic can be decomposed into the LM statistic, which tests only
the structural parameter, and the J statistic, which tests only the overidentification
restrictions. (This J statistic, evaluated at the null hypotheses, is different from the
Hansen J statistic, which is evaluated at the parameter estimate.) The LM test loses
power in some regions of the parameter space when the likelihood function has a local
extrema or inflection. In the linear IV model with homoskedasticity, the CLR statistic
combines the LM statistic and the J statistic in the most efficient way, thereby testing
both the structural parameter and the overidentification restrictions simultaneously.
The LM-J combination test is another approach for testing the hypotheses simultane-
ously. It is more efficient than the AR test and allows different weights to be put on the
parameter and overidentification hypotheses. The CLR test is the most powerful test
for the linear model under homoskedasticity (within a class of invariant similar tests),
but this result has not been proven yet for other IV-type estimators, so we present all
test results.

rivtest can also estimate confidence intervals based on the AR, CLR, LM, and LM-J

tests. With ivregress there is a closed-form solution for these confidence intervals
only when homoskedasticity is assumed. More generally, rivtest estimates confidence
intervals through test inversion over a grid. The default grid is twice the size of the
confidence interval based on the Wald test. As a reference, rivtest also presents the
Wald confidence interval.

4.2 Syntax

The following is the command syntax for rivtest:

rivtest
[
, null(#) lmwt(#) small ci grid(numlist) points(#)

gridmult(#) usegrid retmat level(#)
]
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4.3 Options

The options for rivtest relate to testing and confidence-interval estimation.

Testing options

null(#) specifies the null hypothesis for the coefficient on the endogenous variable in
the IV model. The default is null(0).

lmwt(#) is the weight put on the LM test statistic in the LM-J test. The default is
lmwt(0.8).

small specifies that small-sample adjustments be made when test statistics are calcu-
lated. The default is given by whatever small-sample adjustment option was chosen
in the IV command.

Confidence-interval options

ci requests that confidence intervals be estimated. By default, these are not estimated
because grid-based test inversion can be time intensive.

grid(numlist) specifies the grid points over which to calculate the confidence sets. The
default grid is centered around the point estimate with a width equal to twice the
Wald confidence interval. That is, if β̂ is the estimated coefficient on the endogenous
variable, σ̂β is its estimated standard error, and 1 − α is the confidence level, then
the default endpoints of the interval over which confidence sets will be calculated
are β̂±2zα/2σ̂β . With weak instruments, this is often too small of a grid to estimate
the confidence intervals. grid(numlist) may not be used with the other two grid
options: points(#) and gridmult(#). If one of the other options is used, only
input from grid(numlist) will be used to construct the grid.

points(#) specifies the number of equally spaced values over which to calculate the
confidence sets. The default is points(100). Increasing the number of grid points
will increase the time required to estimate the confidence intervals, but a greater
number of grid points will improve precision.

gridmult(#) is another way of specifying a grid to calculate confidence sets. This
option specifies that the grid be # times the size of the Wald confidence interval.
The default is gridmult(2).

usegrid forces grid-based test inversion for confidence-interval estimation under the
homoskedastic linear IV model. The default is to use the analytic solution. Under
the other models, grid-based estimation is the only method.

retmat returns a matrix of test results over the confidence-interval search grid. This
matrix can be large if the number of grid points is large, but it can be useful for
graphing confidence sets.
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level. Because the LM-J test has no p-value
function, we report whether the test is rejected. Changing level(#) also changes
the level of significance used to determine this result: [100-level(#)]%.

4.4 Saved results

rivtest saves the following in r():

Scalars
r(null) null hypothesis
r(clr p) CLR test p-value
r(clr stat) CLR test statistic
r(ar p) AR test p-value
r(ar chi2) AR test statistic
r(lm p) LM test p-value
r(lm chi2) LM test statistic
r(j p) J test p-value
r(j chi2) J test statistic
r(lmj r) LM-J test rejection indicator
r(rk) rk statistic
r(wald p) Wald test p-value
r(wald chi2) Wald test statistic
r(points) number of points in grid used to estimate confidence sets

Macros
r(clr cset) confidence set based on CLR test
r(ar cset) confidence set based on AR test
r(lm cset) confidence set based on LM test
r(lmj cset) confidence set based on LM-J test
r(wald cset) confidence set based on Wald test
r(inexog) list of instruments included in the second-stage equation
r(exexog) list of instruments excluded from the second-stage equation
r(endo) endogenous variable
r(grid) range of grid used to estimate confidence sets

Matrices
r(citable) table with test statistics, p-values, and rejection indicators for every grid

point over which hypothesis was tested

5 Examples: Married female labor market participation

We demonstrate the use of the rivtest command in a set of applications with the data
from Mroz (1987), available from the Stata web site at
http://www.stata.com/data/jwooldridge/eacsap/mroz.dta. These examples are related
to married female labor supply and illustrate the differences between robust and non-
robust inference when instruments are potentially weak.

5.1 Example 1: Two-stage least squares with unknown heteroskedas-
ticity

In this example, we fit a two-stage least-squares model with Stata’s ivregress com-
mand using the robust variance–covariance estimation option to account for arbitrary
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heteroskedasticity. We regress working hours (hours), on log wages (lwage), other
household income in logs (nwifeinc), years of education (educ), number of children less
than 6 years old (kidslt6), and the number of children at least 6 years old (kidsge6).
As instruments for the wage, we use labor market experience (exper) and its square
(expersq), and father’s and mother’s years of education (fatheduc and motheduc). We
consider the subsample of women who are participating in the labor market and have
strictly positive wages.

. use http://www.stata.com/data/jwooldridge/eacsap/mroz.dta

. ivregress 2sls hours nwifeinc educ age kidslt6 kidsge6 (lwage = exper expersq
> fatheduc motheduc) if inlf==1 , first vce(robust)

First-stage regressions

Number of obs = 428
F( 9, 418) = 10.78
Prob > F = 0.0000
R-squared = 0.1710
Adj R-squared = 0.1532
Root MSE = 0.6655

Robust
lwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

nwifeinc .0057445 .0027375 2.10 0.036 .0003636 .0111255
educ .1127654 .0154679 7.29 0.000 .0823609 .1431699
age -.0053092 .0063134 -0.84 0.401 -.0177191 .0071007

kidslt6 -.066367 .103709 -0.64 0.523 -.2702231 .137489
kidsge6 -.0192837 .0292029 -0.66 0.509 -.0766866 .0381191

exper .0404503 .0151505 2.67 0.008 .0106697 .0702309
expersq -.0007512 .0004056 -1.85 0.065 -.0015485 .000046

fatheduc -.0061784 .0106541 -0.58 0.562 -.0271208 .0147639
motheduc -.016405 .0119691 -1.37 0.171 -.039932 .0071221

_cons -.2273025 .3343392 -0.68 0.497 -.8844983 .4298933

Instrumental variables (2SLS) regression Number of obs = 428
Wald chi2(6) = 18.22
Prob > chi2 = 0.0057
R-squared = .
Root MSE = 1143.2

Robust
hours Coef. Std. Err. z P>|z| [95% Conf. Interval]

lwage 1265.326 473.6747 2.67 0.008 336.9408 2193.711
nwifeinc -8.353995 4.57849 -1.82 0.068 -17.32767 .6196797

educ -148.2865 54.38669 -2.73 0.006 -254.8824 -41.69053
age -10.23769 9.299097 -1.10 0.271 -28.46358 7.98821

kidslt6 -234.3907 181.9979 -1.29 0.198 -591.1001 122.3187
kidsge6 -59.62672 49.24854 -1.21 0.226 -156.1521 36.89865

_cons 2375.395 535.4835 4.44 0.000 1325.867 3424.923

Instrumented: lwage
Instruments: nwifeinc educ age kidslt6 kidsge6 exper

expersq fatheduc motheduc
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. rivtest, ci grid(-1000(10)8000)
Estimating confidence sets over grid points

1 2 3 4 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.................................................. 850
.................................................. 900
.
Weak instrument robust tests and confidence sets for linear IV with robust VCE
H0: beta[hours:lwage] = 0

Test Statistic p-value 95% Confidence Set

CLR stat(.) = 27.27 Prob > stat = 0.0000 [ 810, 5330]
AR chi2(4) = 32.61 Prob > chi2 = 0.0000 [ 770, 6930]
LM chi2(1) = 21.22 Prob > chi2 = 0.0000

[ -830, -670] U [ 790, 5460]
J chi2(3) = 11.39 Prob > chi2 = 0.0098

LM-J H0 rejected at 5% level [ 760, 5940]

Wald chi2(1) = 7.14 Prob > chi2 = 0.0076 [ 336.941, 2193.71]

Note: Wald test not robust to weak instruments. Confidence sets estimated for
901 points in [-1000,8000].

The confidence intervals derived from weak-instrument robust tests are wider than
the Wald confidence interval, indicating that instruments are not strong and that point
estimates are biased. The negative values of the LM confidence set are discarded in the
LM-J confidence interval, indicating the spurious behavior of the LM test in that part of
the parameter space. The above result suggests a positive effect of wages on the labor
supply, but rivtest is unable to predict the magnitude of the effect.

5.2 Example 2: Endogenous probit

Next we fit a model of labor force participation for the married women in the sample.
The binary variable inlf equals one if the woman is in the labor market and zero
otherwise. The endogenous explanatory variable is nonwife household income, which
is instrumented by husband’s hours of work (hushrs), father’s education, mother’s
education, and the county-level unemployment rate (unem). As exogenous variables,



K. Finlay and L. M. Magnusson 411

we include education, years of labor market experience, experience squared, number of
children less than 6 years old, number of children at least 6 years old, and a dummy for
whether the individual lives in a metropolitan area (city).

. ivprobit inlf educ exper expersq kidslt6 kidsge6 city (nwifeinc = hushrs
> fatheduc motheduc unem), twostep first
Checking reduced-form model...
First-stage regression

Source SS df MS Number of obs = 753
F( 10, 742) = 16.00

Model 18057.3855 10 1805.73855 Prob > F = 0.0000
Residual 83739.7301 742 112.856779 R-squared = 0.1774

Adj R-squared = 0.1663
Total 101797.116 752 135.368505 Root MSE = 10.623

nwifeinc Coef. Std. Err. t P>|t| [95% Conf. Interval]

hushrs .0029782 .0006719 4.43 0.000 .0016591 .0042972
fatheduc .1760206 .1385697 1.27 0.204 -.0960147 .4480558
motheduc -.1395621 .1458037 -0.96 0.339 -.425799 .1466749

unem .1652976 .1283373 1.29 0.198 -.0866498 .417245
educ 1.218966 .2011015 6.06 0.000 .8241703 1.613762
exper -.3562876 .1406571 -2.53 0.012 -.632421 -.0801543

expersq .0031554 .0045229 0.70 0.486 -.0057239 .0120346
kidslt6 -.3788863 .7624489 -0.50 0.619 -1.8757 1.117928
kidsge6 -.1729039 .3105805 -0.56 0.578 -.782625 .4368172

city 4.949449 .8419922 5.88 0.000 3.296478 6.602419
_cons -2.916913 2.883583 -1.01 0.312 -8.577865 2.744039

Two-step probit with endogenous regressors Number of obs = 753
Wald chi2(7) = 136.69
Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

nwifeinc -.0631912 .0292417 -2.16 0.031 -.1205038 -.0058785
educ .2148807 .0473224 4.54 0.000 .1221304 .307631
exper .1067194 .0225831 4.73 0.000 .0624574 .1509813

expersq -.0022201 .0006423 -3.46 0.001 -.003479 -.0009611
kidslt6 -.5794973 .1113274 -5.21 0.000 -.797695 -.3612996
kidsge6 .1284411 .0429235 2.99 0.003 .0443126 .2125696

city .1421479 .1805589 0.79 0.431 -.2117411 .4960368
_cons -2.038166 .3551659 -5.74 0.000 -2.734279 -1.342054

Instrumented: nwifeinc
Instruments: educ exper expersq kidslt6 kidsge6 city

hushrs fatheduc motheduc unem

Wald test of exogeneity: chi2(1) = 3.05 Prob > chi2 = 0.0808

(Continued on next page)
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. rivtest, ci grid(-.2(.001).6)
Estimating confidence sets over grid points

1 2 3 4 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.
Weak instrument robust tests and confidence sets for IV probit
H0: beta[inlf:nwifeinc] = 0

Test Statistic p-value 95% Confidence Set

CLR stat(.) = 5.82 Prob > stat = 0.0249 [ -.172, -.01]
AR chi2(4) = 9.50 Prob > chi2 = 0.0498 [ -.197, -.001]
LM chi2(1) = 4.75 Prob > chi2 = 0.0293

[ -.177, -.008] U [ .17, .534]
J chi2(3) = 4.75 Prob > chi2 = 0.1913

LM-J H0 rejected at 5% level [ -.186, -.005]

Wald chi2(1) = 4.67 Prob > chi2 = 0.0307 [-.120504,-.005879]

Note: Wald test not robust to weak instruments. Confidence sets estimated for
801 points in [-.2,.6].

In the endogenous probit model, the rivtest command uses the normalization of
Newey’s minimum chi-squared estimator, σε = 1 in (6), which is different from the de-
fault normalization used in maximum likelihood estimation, σu = 1 in (1) (see [R] ivpro-

bit for further explanation). Therefore, the confidence intervals produced by rivtest

and the maximum likelihood version of ivprobit are not comparable.

In this example, although one instrument, husband’s hours of work, has a first-stage
t statistic greater than 4, the confidence intervals produced from the weak-instrument
tests are significantly larger than the nonrobust Wald confidence interval; for example,
the LM-J confidence interval is 50% larger than the Wald confidence interval. Thus the
presence of only one strong instrument in the first stage among other weaker ones does
not imply that classical inference is correct.
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5.3 Example 3: Endogenous tobit

In the following example, we fit an endogenous tobit model with Stata’s ivtobit com-
mand. We regress hours of work, including the many observations in which the woman
does not supply labor, on the same regressors as in the previous example.

. ivtobit hours educ exper expersq kidslt6 kidsge6 city (nwifeinc = hushrs
> fatheduc motheduc unem), ll(0) first nolog

Tobit model with endogenous regressors Number of obs = 753
Wald chi2(7) = 173.12

Log likelihood = -6686.3386 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours
nwifeinc -71.02316 33.59912 -2.11 0.035 -136.8762 -5.170087

educ 183.002 51.47165 3.56 0.000 82.11939 283.8846
exper 121.0376 23.65995 5.12 0.000 74.66493 167.4102

expersq -2.478807 .623252 -3.98 0.000 -3.700358 -1.257255
kidslt6 -639.99 116.5606 -5.49 0.000 -868.4446 -411.5353
kidsge6 74.23684 41.79029 1.78 0.076 -7.670611 156.1443

city 187.9859 194.1849 0.97 0.333 -192.6095 568.5814
_cons -1436.843 351.9196 -4.08 0.000 -2126.593 -747.0931

nwifeinc
educ 1.284978 .198927 6.46 0.000 .8950883 1.674868
exper -.368858 .1399175 -2.64 0.008 -.6430913 -.0946248

expersq .0033886 .0044934 0.75 0.451 -.0054183 .0121955
kidslt6 -.3558916 .75725 -0.47 0.638 -1.840074 1.128291
kidsge6 -.1665826 .308437 -0.54 0.589 -.771108 .4379429

city 4.833468 .8349314 5.79 0.000 3.197033 6.469904
hushrs .0027375 .0007263 3.77 0.000 .001314 .0041611

fatheduc .1481241 .1277639 1.16 0.246 -.1022886 .3985368
motheduc -.2084148 .1309959 -1.59 0.112 -.465162 .0483325

unem .2506685 .1163957 2.15 0.031 .022537 .4787999
_cons -2.883293 2.871029 -1.00 0.315 -8.510407 2.743821

/alpha 57.91175 34.02567 1.70 0.089 -8.777325 124.6008
/lns 7.062261 .0372561 189.56 0.000 6.989241 7.135282
/lnv 2.356454 .02581 91.30 0.000 2.305867 2.40704

s 1167.081 43.48089 1084.897 1255.491
v 10.55346 .2723849 10.03287 11.10106

Instrumented: nwifeinc
Instruments: educ exper expersq kidslt6 kidsge6 city

hushrs fatheduc motheduc unem

Wald test of exogeneity (/alpha = 0): chi2(1) = 2.90 Prob > chi2 = 0.0888

Obs. summary: 325 left-censored observations at hours<=0
428 uncensored observations

0 right-censored observations
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. rivtest, ci points(500) gridmult(14)
Estimating confidence sets over grid points

1 2 3 4 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500

Weak instrument robust tests and confidence sets for IV Tobit
H0: beta[hours:nwifeinc] = 0

Test Statistic p-value 95% Confidence Set

CLR stat(.) = 5.35 Prob > stat = 0.0315 [-176.335, -10.053]
AR chi2(4) = 11.53 Prob > chi2 = 0.0212 [-154.164,-17.4433]
LM chi2(1) = 3.73 Prob > chi2 = 0.0535

[-202.201, 1.03251] U [ 122.973, 813.968]
J chi2(3) = 7.81 Prob > chi2 = 0.0502

LM-J H0 not rejected at 5% level [-216.982, 4.72767]

Wald chi2(1) = 4.47 Prob > chi2 = 0.0345 [-136.876,-5.17009]

Note: Wald test not robust to weak instruments. Confidence sets estimated for
500 points in [-992.966, 850.92].

After the rivtest command, we have requested two rivtest options related to
confidence estimation: points(500) and gridmult(14), which specify that confidence
set estimation should be performed on a grid of 500 points over a width of 14 times the
Wald confidence interval (centered around the IV point estimate).3

Here we obtain similar results to the ones in the endogenous probit example. While
the estimated confidence sets are generally consistent with a negative effect of nonwife
income on labor supply, the estimated confidence sets from the weak-instrument tests
are wider than the Wald confidence interval.

6 Monte Carlo simulations

To show the performance of the tests, we perform Monte Carlo simulations of the
rivtest command with linear IV, IV probit, and IV tobit. We show simulations from
small (N = 200) samples, but results were qualitatively similar with larger samples. We
performed simulations with both weak (πz = 0.1) and nonweak (πz = 1) instruments.
The coefficient β is 0.5 and the excluded instruments are drawn from independent stan-
dard normal distributions and are the same for all simulations. Finally, we experimented

3. Calculation of the test statistics is almost instantaneous, but grid-based confidence-interval esti-
mation takes time (increasing linearly with the number of grid points). In the IV tobit example,
the command required about 2 seconds for 100 grid points and 8 seconds for 500 points.
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with three levels of correlation between the error terms in the two equations (ρ): 0.1
for low levels of simultaneity, 0.5 for moderate simultaneity, and 0.8 for a high degree
of simultaneity. For each Monte Carlo experiment, we generated 5,000 simulations and
computed the rejection probability under the true null hypothesis. All simulations were
performed in Stata with the built-in regression commands with our rivtest command.4

Table 1 shows the results of Monte Carlo simulations for the linear IV model under
homoskedasticity and arbitrary heteroskedasticity. Panel A shows the results when the
errors are homoskedastic. Here we see that the Wald test does not have the correct size
when the instrument is weak for all different degrees of simultaneity. For example, with
a highly correlated interequation error (ρ = 0.8), the Wald test incorrectly rejected the
true parameter in 44.94% of the simulations.

Panel B shows the results when the errors are arbitrarily heteroskedastic.5 The per-
formance of the Wald test with weak instruments (π = 0.1) is similar to the previous
case: it overrejects the null hypothesis when the errors in the two equations are mod-
erately or highly correlated (ρ = 0.5 or ρ = 0.8), and underrejects the null hypothesis
when the simultaneity is low (ρ = 0.1). For the case of strong instruments (π = 1), the
tests have similar nominal sizes.

4. The Monte Carlo simulations include five instruments excluded from the second-stage equation,
but only one of the instruments has a nonzero coefficient in the first stage. In the tables, we refer to
this coefficient as π. Also, two control variables entered the model, including a vector of ones. The
error terms were drawn from a bivariate standard normal distribution with correlation coefficient ρ.

5. We generated this heteroskedasticity by multiplying homoskedastic errors by an independently
drawn uniform random variable between zero and two—separately for each equation error.
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Table 1. Size (in percent) for testing H0 : β = 0.5 at the 5% significance level in the
linear IV model under homoskedasticity and arbitrary heteroskedasticity

Models Test size
Simulation parameters Rejection rate for tests (percent)

A. 2SLS with homoskedasticity

N π ρ CLR AR LM J LM-J Wald

200 0.1 0.8 5.34 5.40 5.34 5.30 5.62 44.94
(0.32) (0.32) (0.32) (0.32) (0.33) (0.70)

200 0.1 0.5 5.22 5.08 5.42 5.48 5.38 13.28
(0.31) (0.31) (0.32) (0.32) (0.32) (0.48)

200 0.1 0.1 5.84 5.52 6.00 5.02 5.56 0.90
(0.33) (0.32) (0.34) (0.31) (0.32) (0.13)

200 1 0.8 5.06 5.38 5.08 5.40 5.28 5.68
(0.31) (0.32) (0.31) (0.32) (0.32) (0.33)

200 1 0.5 4.64 5.34 4.68 5.36 4.94 4.96
(0.30) (0.32) (0.30) (0.32) (0.31) (0.31)

200 1 0.1 5.32 5.52 5.34 5.10 5.46 5.10
(0.32) (0.32) (0.32) (0.31) (0.32) (0.31)

B. 2SLS with arbitrary heteroskedasticity

N π ρ CLR AR LM J LM-J Wald

200 0.1 0.8 6.34 6.68 6.08 6.42 6.16 36.66
(0.34) (0.35) (0.34) (0.35) (0.34) (0.68)

200 0.1 0.5 6.60 6.72 6.18 6.58 6.22 11.60
(0.35) (0.35) (0.34) (0.35) (0.34) (0.45)

200 0.1 0.1 6.80 6.46 6.30 6.44 6.56 0.84
(0.36) (0.35) (0.34) (0.35) (0.35) (0.13)

200 1 0.8 6.26 6.84 6.22 5.92 6.76 6.20
(0.34) (0.36) (0.34) (0.33) (0.36) (0.34)

200 1 0.5 5.70 6.46 5.72 6.36 6.42 5.38
(0.33) (0.35) (0.33) (0.35) (0.35) (0.32)

200 1 0.1 6.06 6.32 6.02 6.28 6.12 5.08
(0.34) (0.34) (0.34) (0.34) (0.34) (0.31)

Note: Simulation standard errors are in parentheses.

In table 2, we present the result from some Monte Carlo simulations for the linear IV

model when the errors have intracluster dependence.6 We experimented with different
combinations of overall sample sizes (N), number of clusters (G), and resulting clus-
ter sizes (Mg). In general, asymptotics related to cluster–robust variance–covariance
estimation apply only to the case when the cluster sample sizes are small and the num-

6. Within clusters, errors were drawn from a multivariate normal distribution with a nondiagonal co-
variance matrix. The off-diagonal blocks are multiplied by the cross-equation correlation coefficient.
Across clusters, the errors are independent.
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ber of clusters goes to infinity. In our simulations, we find that this is true for the
weak-instrument robust tests as well.

Table 2. Size (in percent) for testing H0 : β = 0.5 at the 5% significance level in the
linear IV model with intracluster-dependent errors

Models Test size
Simulation parameters Rejection rate for tests (percent)

N G Mg π ρ CLR AR LM J LM-J Wald

400 100 4 0.1 0.8 6.44 6.52 5.96 6.20 6.28 1.12
(0.35) (0.35) (0.33) (0.34) (0.34) (0.15)

400 100 4 0.1 0.5 6.88 7.08 6.34 6.20 6.66 1.10
(0.36) (0.36) (0.34) (0.34) (0.35) (0.14)

400 100 4 0.1 0.1 6.82 7.20 6.42 6.46 6.54 0.98
(0.36) (0.37) (0.35) (0.35) (0.35) (0.14)

400 100 4 1 0.8 6.30 7.16 6.22 6.76 6.76 4.78
(0.34) (0.36) (0.34) (0.36) (0.36) (0.30)

400 100 4 1 0.5 5.98 7.16 5.96 6.84 6.22 4.86
(0.34) (0.36) (0.33) (0.36) (0.34) (0.30)

400 100 4 1 0.1 6.26 7.08 6.22 6.48 6.90 4.94
(0.34) (0.36) (0.34) (0.35) (0.36) (0.31)

500 50 10 0.1 0.8 8.46 8.74 7.68 7.18 8.64 1.50
(0.39) (0.40) (0.38) (0.37) (0.40) (0.17)

500 50 10 0.1 0.5 7.88 8.04 7.26 6.94 7.94 1.12
(0.38) (0.38) (0.37) (0.36) (0.38) (0.15)

500 50 10 0.1 0.1 8.56 8.72 7.66 7.46 8.62 1.38
(0.40) (0.40) (0.38) (0.37) (0.40) (0.14)

500 50 10 1 0.8 6.90 8.50 6.92 7.90 7.74 4.62
(0.36) (0.39) (0.36) (0.38) (0.38) (0.30)

500 50 10 1 0.5 6.98 8.40 6.98 7.38 7.98 5.05
(0.36) (0.39) (0.36) (0.37) (0.38) (0.31)

500 50 10 1 0.1 7.82 8.94 7.86 7.66 8.70 4.98
(0.38) (0.40) (0.38) (0.38) (0.40) (0.31)

Note: Simulation standard errors are in parentheses.

In the first six simulations, with 400 observations split into 100 clusters, the weak-
instrument robust tests slightly overreject the null hypothesis, having a nominal size
between 5% and 8%. This holds with weak or nonweak instruments. The Wald test,
however, has a less predictable pattern; it consistently underrejects when instruments
are weak but has the correct size when instruments are not weak. In the second six
simulations, with 500 observations split into 50 clusters (an example consistent with
many applications that use cross-sectional data from U.S. states), the weak-instrument
robust tests also overreject, but their performance is still closer to the correct size than
the Wald tests when instruments are weak.
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We also conducted simulations with larger and smaller numbers of clusters and dif-
ferent numbers of observations within cluster. We found that the number of clusters is
the most important element in determining the rejection probability of the tests. The
overrejection decreases as the number of clusters increases.7 We recommend bootstrap-
ping the test to find appropriate critical values when the number of clusters is small
(less than 50). A discussion of techniques that work well in the single equation linear
model can be found in Cameron, Gelbach, and Miller (2008).

In table 3, we present the results from Monte Carlo simulations for the endogenous
probit and tobit models (panels A and B, respectively). To avoid having to rescale
the maximum likelihood test in the endogenous probit model, we let the population
parameter, β, equal zero.8

7. Results are available upon request.
8. When β = 0, we have β/σu = β/σε = 0 for positive values of σu and σε.
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Table 3. Size (in percent) for testing H0 : β = 0 at the 5% significance level in the
endogenous probit model and H0 : β = 0.5 at the 5% significance level in the endogenous
tobit model

Models Test size
Simulation parameters Rejection rate for tests (percent)

A. IV probit (β = 0)
N π ρ CLR AR LM J LM-J Wald
200 0.1 0.8 3.58 3.52 4.59 4.07 4.01 32.95

(0.26) (0.26) (0.30) (0.28) (0.28) (0.67)
200 0.1 0.5 3.99 3.93 5.03 4.49 4.77 41.94

(0.28) (0.28) (0.31) (0.29) (0.30) (0.70)
200 0.1 0.1 4.90 4.70 5.24 4.68 4.90 45.17

(0.31) (0.30) (0.32) (0.30) (0.31) (0.70)
200 1 0.8 3.94 3.88 3.96 4.72 3.82 5.12

(0.28) (0.27) (0.28) (0.30) (0.27) (0.31)
200 1 0.5 4.68 4.88 4.66 4.90 4.38 5.68

(0.30) (0.30) (0.30) (0.31) (0.29) (0.33)
200 1 0.1 5.24 5.10 5.26 5.32 5.16 6.18

(0.32) (0.31) (0.32) (0.32) (0.31) (0.34)

B. IV tobit

N π ρ CLR AR LM J LM-J Wald
200 0.1 0.8 5.18 5.38 5.24 5.16 5.06 18.10

(0.31) (0.32) (0.32) (0.31) (0.31) (0.54)
200 0.1 0.5 5.34 5.50 5.16 5.44 5.24 7.20

(0.32) (0.32) (0.31) (0.32) (0.32) (0.37)
200 0.1 0.1 6.28 5.86 6.02 5.36 6.10 0.74

(0.34) (0.33) (0.34) (0.32) (0.34) (0.12)
200 1 0.8 5.12 5.22 5.10 5.40 5.22 5.14

(0.31) (0.31) (0.31) (0.32) (0.31) (0.31)
200 1 0.5 5.30 5.66 5.24 5.26 5.44 5.20

(0.32) (0.33) (0.32) (0.32) (0.32) (0.31)
200 1 0.1 5.16 5.84 5.26 5.72 5.26 5.04

(0.31) (0.33) (0.32) (0.33) (0.32) (0.31)

Note: Simulation standard errors are in parentheses.

(Continued on next page)
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With any value of the simultaneity parameter, we find that the Wald test performs
poorly when the instruments are weak (π = 0.1) in both the endogenous probit and tobit
models. Surprisingly, the rejection probability for the Wald test in the endogenous probit
model with weak instruments is above 30% independent of the degree of simultaneity,
which contrasts with patterns observed in the linear IV and endogenous tobit models.9

Regardless of the strength or weakness of the instruments, our tests are estimated to
have rejection rates between 3.5% and 6.3%, close to the correct size of 5%.
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Abstract. Many economic time series exhibit important systematic fluctuations
within the year, i.e., seasonality. In contrast to usual practice, I argue that using
original data should always be considered, although the process is more compli-
cated than that of using seasonally adjusted data. Motivations to use unadjusted
data come from the information contained in their peaks and troughs and from
economic theory. One major complication is the possible unit root at seasonal
frequencies. In this article, I tackle the issue of implementing a test to identify
the source of seasonality. In particular, I follow Hylleberg et al. (1990, Journal of

Econometrics 44: 215–238) for quarterly data.

Keywords: st0172, sroot, unit roots, seasonality

1 Introduction

Many economic time series exhibit important systematic fluctuations within the year,
i.e., seasonality. Although applied econometricians have long used seasonally adjusted
data, there exists increasing consensus that this practice is suboptimal for at least two
reasons. First, peaks and troughs convey information that is lost during the adjustment;
second, seasonally adjusted data often conflicts with the economic theory. Consider
the rational expectation hypothesis or the permanent income hypothesis. Seasonal
adjustment, for example, by the widely known CENSUS-X11, invalidates the theory by
construction, because it is a two-sided filter, which thus violates the key orthogonality
condition between the data at time t and the available information at the same time. To
avoid these flaws, one can use the original data and either control for a set of seasonal
dummies or redefine the error term to incorporate the seasonal fluctuations. The first
solution is weak because “data adjusted by the seasonal dummy technique will [. . . ]
tend to reject the model if it contains fundamental nonlinearities” (Miron 1986, 1260).
The second solution is wrong because the error terms would be predictable to some
extent, thus invalidating the rational expectation hypothesis (Osborn 1988). These
simple facts have two important consequences: using seasonally adjusted data can have
serious consequences on our results and the treatment of seasonality requires a serious
systematic approach.

c© 2009 StataCorp LP st0172
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In this article, I am particularly interested in seasonality and unit roots at seasonal
frequencies. I first review some basic theory about unit roots at seasonal frequencies
(section 2); then I describe the new sroot command, which performs a formal test for
unit roots in quarterly data (section 3); and then I give some advice for the applied
researcher based on some Monte Carlo simulations (section 4). In section 5, I use the
sroot command to detect seasonal unit roots in the original series of consumption in
the UK for the years 1955–2006.

2 Unit roots at various frequencies

The spectrum of a seasonal series has distinct peaks at seasonal frequencies ωs = 2πj/s,
where j = 1, . . . , s/2 and s is the number of periods within a year. In particular, we
deal with s = 4 because it is the most common case.

While there is consensus on the importance of seasonality, there is little agreement
on its treatment. Indeed, there are several ways to handle seasonality, each implicitly
making different assumptions about the process, namely, as if it is

• a purely deterministic seasonal process,

• a stationary seasonal process, or

• an integrated seasonal process.

In applied work, the general (incorrect) belief is that the three methodologies are equiv-
alent. In fact, they imply a very different data-generating process, as discussed below.

In a purely deterministic seasonal process, the reference model for the conditional
mean of the dependent variable, y, can be written as

y = xβ +

3∑

i=1

δi Di

where y is a vector of dimension n; x is an n×k matrix with the first column containing
only ones; β is a vector of length k; and each δi is the coefficient attached to the
vector Di, a dummy vector equal to 1 only in season i. This notation will be employed
throughout the article.

A stationary seasonal process can be written as an autoregressive model,

φ(L)yt = ǫt (1)

with all the roots of φ(L) outside the unit circle (but some come in complex pairs). If
s = 4, then a stationary seasonal process is yt = ρL4yt + ǫt, where L is the lag operator
and L4yt = yt−4. If some of the roots lie on the unit circle, the process is an integrated
seasonal process.



424 Test for seasonal unit-roots

Continuing with s = 4, a seasonally integrated series can be further decomposed
into

(1 − L4) yt = ǫt

= (1 − L)(1 + L)(1 + L2)yt
(2)

which shows that in seasonal processes, the roots of modulus 1 can be four and not only
one, as for the classical case. Also, two of the roots will be complex. Properties of each
root are very similar to those at zero frequency; in particular, shocks have a permanent
effect on the seasonal pattern, and their variances increase linearly with time, but shocks
are asymptotically uncorrelated with unit-root processes of other frequencies. To see
this more formally, consider the process in (2) as a stochastic difference process (details
are in Hylleberg et al. [1990]), whose homogeneous solutions are

s1,t =
∑t−1

j=0 ǫt−j for zero-frequency root;

s2,t =
∑t−1

j=0(−1)jǫt−j for two-cycle-per-year root;

s3,t =
∑int{(t−1)/2}

j=0 (−1)∆ǫt−2j for one-cycle-per-year root

(3)

By expanding each single component of (3), we can show that the variance of each
frequency increases linearly with time [specifically, V (s1,t) = V (s2,t) = V (s3,t) = tσ2].
Using the same technique, we can show that covariances are zero for complete years of
data when the series are excited by the same ǫt and, thus, that the series are uncorre-
lated; for example,

cov(s1, s2) =

s1,t︷ ︸︸ ︷
(ǫt + ǫt−1 + ǫt−2 + ǫt−3 + . . .)

s2,t︷ ︸︸ ︷
(ǫt − ǫt−1 + ǫt−2 − ǫt−3 + . . .)

= σ2 − σ2 + σ2 − σ2 + . . .
= 0

Differently from what has been suggested by many practitioners, I argue that using not
seasonally adjusted (NSA) data should always be considered. At least as a robustness
check, one should perform all the analysis with both seasonally adjusted (SA) and NSA

data. However, we showed that NSA data have more involved processes than SA data,
particularly because of unit roots at seasonal frequencies.

In what follows, I analyze a formal test to study the presence of seasonal unit roots
on a statistical basis, focusing on Hylleberg et al. (1990).

A general expression for seasonal processes combines the three seasonal processes
and is compactly represented by

d(L)a(L)(yt − µt) = ǫt

where the roots of a(L) = 0 lie outside the unit circle, the roots of d(L) = 0 lie on the

unit circle, and µt = x β +
∑3

i=1 δi Di. It follows that stationary components of y are in
a(L), while deterministic seasonality is in µt when there are no seasonal unit roots in
d(L). The test by Hylleberg et al. (1990) studies this model and detects seasonal unit
roots at different seasonal frequencies, as well as at zero frequency.
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The methodology strongly relies on a Lagrangian polynomial expansion for φ(L) in
(1). Applying this representation for quarterly data, Hylleberg et al. (1990) study

φ(L)y4,t = π1 y1,t−1 + π2 y2,t−1 + π3 y3,t−2 + π4 y3,t−1 + ǫt (4)

where

y1,t = (1 + L + L2 + L3) yt

y2,t = −(1 − L + L2 − L3) yt

y3,t = (1 − L2) yt

y4,t = (1 − L4) yt

and πi’s are coefficients for seasonal roots, which we test to establish the nature of
seasonality. In particular, at root 1 − L the test is on coefficient π1 = 0, at seasonal
root 1 + L the test is on coefficient π2 = 0, and finally, at seasonal roots 1 + L2 the
test is joint on coefficients π3 = π4 = 0. For a unit root in a given frequency, the
associated coefficient πi is zero. If π2 and either π3 or π4 are different from zero, there
is no seasonal unit root. Similarly, if π1 is also different from zero, the series has no unit
roots at all. The natural alternative for these tests is stationarity, π1 < 0 and π2 < 0,
respectively, for π1 and π2, or that π3 and π4 are not jointly equal to zero. To consider
all the possible cases in the three seasonal processes, (4) can be augmented in various
directions, such as lagged values of y4 or deterministic components, and consistently
estimated by ordinary least squares.

Although I focus on quarterly data, this identical setup can be readily generalized
to other cases frequently encountered in practice, like biannual data or monthly data
(see Franses and Hobijn [1997]).

The asymptotic distribution of the estimator of the coefficients in (4) is nonstandard.
Because the method is analogous to that of Dickey and Fuller (1979), the distribution
theory for these tests can be extracted from Dickey and Fuller (1979) and Fuller (1976)
for π1 and π2, and from Dickey, Hasza, and Fuller (1984) for π3, if π4 is assumed to be
zero. The tests are asymptotically invariant with respect to nuisance parameters. Ac-
cording to Hylleberg et al. (1990, 224), the finite-sample results are well approximated
by the asymptotic theory, and the tests have reasonable power against each of the spe-
cific alternatives. The intercept and trend in the model affect only the distribution of
π1, whereas seasonal dummies affect only the distributions of π2, π3, and π4.

I would like to conclude this section with a natural extension of the seasonal unit
root, i.e., a seasonal cointegration and seasonal vector error-correction model. There
are several methods for testing and estimation of cointegration at seasonal frequencies
(Lee [1995], Johansen and Schaumburg [1999], and Cubadda [2001], among others),
and each deserves a specific treatment, which we leave for future extensions. However, a
simpler approach goes back to Engle and Granger (1987) and is adapted to the seasonal
case by Engle et al. (1993). This simpler approach is a two-step estimator that simply
requires estimating the linear combination(s) of levels on data transformed to account
for seasonality and, for seasonal vector error-correction model estimation, relies on the
speed of convergence in the first step.
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3 The sroot command

The increasing variety of time-series methods in Stata has increased the number of time-
series users with Stata. Thanks to the simplicity of data management, the proposed
command makes extensive use of Stata’s routines for lag operators and the regress

command. The syntax of sroot is

sroot varname
[
if

] [
in

] [
, noconstant trend season(varlist) regress

lags(#) generate(string) residuals(string)
]

3.1 Options

noconstant suppresses the constant term (intercept) in the model and indicates that
the process under the null hypothesis is a random walk without drift. noconstant

may not be used with the trend or season(varlist) option.

trend specifies that a trend term be included in the associated regression and that the
process under the null hypothesis is a random walk, perhaps with drift. This option
may not be used with the noconstant option.

season(varlist) indicates that the process under the null hypothesis is a random walk
augmented for seasonal dummies. It is possible that varlist contains only one word
(in which case the command builds the dummies) or that varlist contains the full
set of dummies (in which case the command drops the last quarter because of mul-
ticollinearity). This option may not be used with the noconstant option.

regress specifies that the associated regression table appear in the output. By default,
the regression table is not produced.

lags(#) specifies the number of lagged difference terms to include in the covariate list.

generate(string) generates a set of variables adjusted for seasonal filtering.

residuals(string) generates a variable containing the residual terms.

4 Some practical issues

In this section, I give some advice for applied research. I first explore distinctive features
of sroot with respect to an existing similar command (section 4.1), and then I give some
practical guidelines useful in empirical applications (section 4.2).

4.1 Why a new command?

The hegy4 command in Stata performs the Hylleberg et al. (1990).1 The two commands
(hegy4 and sroot) have key distinctions that I briefly explore in this section. I conclude

1. I thank C. Baum for bringing to my attention a very similar routine (Baum and Sperling 2001).
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that hegy4 and sroot are similar; thus suggestions in section 4.2 will be valid for both
procedures.

First of all, the default in hegy4 is to run a sequential test for the proper number of
lags. A simple (unreported) simulation reveals that in some circumstances, it could be
inappropriate. I designed the simulation for 48, 100, and 200 observations (12, 25, and
50 years), and for parameters βi∆4yt−i = {−0.8,−0.4,−0.2,−0.02, 0, 0.02, 0.2, 0.4, 0.8}
with i = 1, 2, along with their combinations (notice that coefficients are exactly equal
to zero sometimes). The performance of a sequential test increases with sample size
and with the absolute values of coefficients. However, two remarks are needed: First, as
either β1 or β2 approaches but is different from zero, the practice is questionable and only
in a bunch of cases, all with 200 observations, is the lag selection 100% correct. With
48 observations, the operational tool performs poorly. Second, undoubtable advantages
are when β1 or β2 is indeed zero. However, hegy4 offers the option “notest [that] may
be specified to suppress the lag length test and utilize the lags specified in the option
in generating the test statistic” (Baum and Sperling 2001).

Even though the Hylleberg et al. (1990) results are unaffected by nuisance parame-
ters, according to the experiments in the next section, in cases of uncertainty about the
correct number of lags, specifying the notest option seems a more convincing approach.

The second, most important, difference is in the generate() option. Engle et al.
(1993) show that it is possible to study seasonal cointegration starting from transformed
variables. The interested reader is referred to that article for further details, but for what
matters here, we can build stationary combinations from transformed nonstationary
variables in levels and study a vector autoregression augmented for these components
in a seasonal error-correction model. I view this as a key distinction to push efforts
toward the new sroot command.

A very minor difference is the regress option for sroot.

Of course, the tests, ceteris paribus, give the very same numbers, as shown with the
following example:

. sroot x_nsa, lag(1) trend season(quarter)

HEGY test for SEASONAL unit roots Number of obs = 203
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) - Fr 0 0.180 -4.050 -3.490 -3.180
Z(t) - Fr 1/2 2.522 -3.520 -2.910 -2.600
Z(t) - L.Ann. 0.437 -4.040 -3.410 -3.100
Z(t) - Annual 0.286 -2.650 -1.920 -1.480
Joint Annual 0.133 8.960 6.570 5.560
All SEAS. fr. 2.170 . 5.890 5.100
All freq. 1.644 . 6.380 5.610

(Continued on next page)
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. hegy4 x_nsa, lag(1) det(strend)

HEGY Quarterly seasonal unit root test for x_nsa

Number of observations : 203
Deterministic variables : Seasonal dummies + constant + trend
Lags tested: 1
Augmented by lags : 1

Stat 5% critical 10% critical
------------------------------------------------------------------------------
t[Pi1] 0.180 -3.490 -3.180
t[Pi2] 2.522 -2.910 -2.600
t[Pi3] 0.437 -3.410 -3.100
t[Pi4] 0.286 -1.920 -1.480

F[3-4] 0.133 6.570 5.560
F[2-4] 2.170 5.890 5.100
F[1-4] 1.644 6.380 5.610

4.2 Some practical guidelines

The most troublesome practical issues with this seasonal unit-root test are related to the
deterministic terms and to the appropriate number of lags. In particular, with respect
to the deterministic terms, the important question is whether they should be included
in the model specification; with respect to the lags, the important question is how many
lags should be considered. I try to answer these questions in this section by using Monte
Carlo experiments based on 5,000 repetitions and designs specified below.

Nevertheless, I strongly suggest that the researcher verify, case by case, that residuals
have desired properties, through the residuals() option. For example, Baum and
Sperling (2001) suggest the regression of the (generated) residuals on four lags and
the original regressors under the rationale that if all the information has already been
considered, the null hypothesis that all coefficients are jointly equal to zero should not be
rejected; other useful checks could be performed on specific moments of the distribution
of the residuals, like the third moment (skewness) and the fourth moment (kurtosis).

Finally, it should be clear that here I adopt an empirical approach; theoretical
consequences can be found in Ghysels, Lee, and Noh (1994).

More deterministic terms is better than fewer deterministic terms

I first examine the importance of deterministic terms in the model specification. Ac-
cording to the common wisdom, I will conclude that in the empirical applications, in
case of uncertainty, it is safer to include deterministic terms even when they are not in
the true data-generating process (DGP), rather than vice versa, neglecting deterministic
terms that, in fact, are in the true DGP.
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I use the following experiment:

yt = ρ yt−4 +

4∑

i=1

δi Di + γt + ut t = 1, . . . , T

where ρ determines the (non)stationarity of the model; Di is for seasonal dummies,
associated to parameters δi = (−0.1, 0.05,−0.05, 0.1), which correspond to a −10%
annualized drop, followed by a 5% increase, a 5% decrease, and a 10% increase, respec-
tively; γ is set equal to 0.05; and ut is white noise. The correct lag length in the DGP

is zero, but we carried on the test for different lags, from zero to four. Additional lags
will be indicative of the consequences of controlling for more lags than are needed in
the presence of deterministic components. This experiment, except for the time trend,
is used in Ghysels, Lee, and Noh (1994).

In table 1, I report the share of rejection of the null hypothesis of the unit root.
The table has two main parts: on the left-hand side, the true DGP does in fact contain
unit roots at all frequencies (ρ = 1), and the right-hand side is stationary (ρ = 0.85;
see Ghysels, Lee, and Noh [1994] for further details on this specific value). Each side
is further differentiated: in one case, the model is misspecified because we neglect the
presence of seasonal dummies, and in the other case, it is correctly specified because all
the deterministic components are controlled for. For easier readability, we report only
the share of stationary roots at zero frequency and jointly at all the frequencies. When
unit roots are in the true DGP, the entry should be zero, whereas when the model is
stationary, the entry should be one. I discuss these measures.

When the data contain unit roots at all frequencies, neglecting seasonal dummies
has serious consequences on the share of rejection. Because we control, by default of
the command, for the intercept, the consequences on frequency 0 will be attenuated (as
expected from section 2). Nevertheless, when we consider the whole set of frequencies,
the conclusion will be seriously biased. As suggested in Ghysels, Lee, and Noh (1994),
the reason is that test statistics under this misspecification are functions of the unknown
seasonal dummy coefficients.

When we consider stationary data, two main conclusions can be drawn from the
table. First, when the data are stationary but we neglect the deterministic terms in
the model specification, our conclusions about unit roots at zero frequency are biased
toward the nonrejection of the null hypothesis, which (however) is false (technically,
the power of the test against this misspecification is low). Second, once deterministic
terms are considered, a correct specification of lag length is less important, as shown by
the comparison of the first panel (labeled “Lag: 0”) with respect to lower panels. This
specific aspect is elaborated upon in the next subsection.

Aside from the correct specification, the number of observations plays a critical
role. A performance with fewer than 100 observations is unsatisfactory, whereas a
performance with 200 or more observations is good.
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Table 1. Consequences of neglecting deterministic components

Unit root Stationary
Obser. Misspec. Correct Misspec. Correct

Fr 0 All Fr 0 All Fr 0 All Fr 0 All

Lag: 0
48 0.000 0.701 0.001 0.019 0.000 0.070 0.018 0.085
100 0.000 1.000 0.001 0.007 0.000 0.388 0.064 0.175
200 0.000 1.000 0.000 0.006 0.000 0.846 0.340 0.700
300 0.000 1.000 0.000 0.006 0.000 0.983 0.684 0.974

Lag: 1
48 0.000 0.426 0.002 0.019 0.000 0.058 0.017 0.080
100 0.000 1.000 0.001 0.010 0.000 0.311 0.063 0.169
200 0.000 1.000 0.000 0.007 0.000 0.784 0.321 0.676
300 0.000 1.000 0.000 0.007 0.000 0.973 0.657 0.967

Lag: 2
48 0.000 0.284 0.002 0.024 0.000 0.057 0.015 0.083
100 0.000 0.994 0.002 0.011 0.000 0.279 0.059 0.159
200 0.000 1.000 0.001 0.006 0.000 0.731 0.292 0.650
300 0.000 1.000 0.000 0.006 0.000 0.961 0.619 0.961

Lag: 3
48 0.000 0.183 0.004 0.025 0.000 0.049 0.012 0.074
100 0.000 0.891 0.002 0.009 0.000 0.235 0.061 0.157
200 0.000 0.990 0.000 0.008 0.000 0.679 0.272 0.614
300 0.000 0.985 0.000 0.006 0.000 0.946 0.574 0.956

Lag: 4
48 0.000 0.149 0.002 0.019 0.000 0.045 0.015 0.057
100 0.000 0.660 0.002 0.008 0.000 0.218 0.055 0.127
200 0.000 0.772 0.000 0.007 0.000 0.640 0.235 0.553
300 0.000 0.553 0.000 0.006 0.000 0.922 0.536 0.931

Of course, one can wonder what the consequences are of controlling for undue deter-
ministic terms. The same experiment from above, without deterministic terms, supports
the view that the impact of undue deterministic components in the model specification
is rather limited. Indeed, the shares of rejection of nonstationary root are close between
the misspecified model that controls for deterministic terms and the correctly specified
models (table 2).
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Table 2. Consequences of imposing deterministic components

Unit root Stationary
Obser. Misspec. Correct Misspec. Correct

Fr 0 All Fr 0 All Fr 0 All Fr 0 All

Lag: 0
48 0.022 0.060 0.035 0.048 0.030 0.106 0.051 0.130
100 0.031 0.048 0.051 0.056 0.052 0.157 0.088 0.362
200 0.040 0.046 0.051 0.055 0.107 0.491 0.211 0.907
300 0.041 0.045 0.052 0.052 0.202 0.865 0.410 0.999

Lag: 1
48 0.015 0.061 0.032 0.046 0.015 0.090 0.047 0.117
100 0.027 0.047 0.051 0.052 0.042 0.147 0.083 0.351
200 0.036 0.045 0.053 0.054 0.097 0.480 0.200 0.901
300 0.040 0.044 0.050 0.052 0.187 0.861 0.392 0.998

Lag: 2
48 0.018 0.060 0.035 0.043 0.016 0.091 0.044 0.115
100 0.033 0.048 0.049 0.051 0.041 0.146 0.084 0.350
200 0.035 0.046 0.051 0.050 0.096 0.479 0.193 0.900
300 0.039 0.044 0.050 0.053 0.177 0.861 0.383 0.998

Lag: 3
48 0.015 0.060 0.038 0.050 0.010 0.076 0.043 0.107
100 0.027 0.047 0.049 0.048 0.031 0.132 0.081 0.334
200 0.036 0.048 0.050 0.050 0.087 0.465 0.181 0.901
300 0.036 0.043 0.050 0.053 0.158 0.853 0.356 0.998

Lag: 4
48 0.016 0.048 0.032 0.045 0.020 0.067 0.036 0.080
100 0.030 0.042 0.045 0.046 0.043 0.114 0.073 0.272
200 0.037 0.044 0.050 0.048 0.096 0.385 0.176 0.826
300 0.038 0.044 0.049 0.050 0.172 0.766 0.338 0.994

For these reasons, I strongly suggest controlling for deterministic terms when per-
forming a seasonal unit-root test.

More lags is better than fewer lags

The second important issue is related to the appropriate specification of the number of
lags. I will conclude that it is a less important decision than that about deterministic
terms, but in case of uncertainty about the true DGP, it could be safer to control for
more lags than for fewer lags.
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This conclusion is based on the following experiment:

yt = ρ yt−4 +

2∑

j=1

αj∆yt−j + ut t = 1, . . . , T

for various combinations of α1 and α2. The correct lag length would be two, but we
carried on the test for different lags, from zero to four. In table 3, we select only lag
zero (i.e., fewer lags than needed), lag two (i.e., correctly specified), and lag four (i.e.,
more lags than needed).

The parameter ρ determines the (non)stationarity of the model. In table 3, on the
left, the true DGP is nonstationary (ρ = 1), while on the right-hand side, it is stationary
(ρ = 0.85).

The main message from table 3 is that a correct lag specification is less important
than a correct specification of deterministic terms. As expected, the best performances
are achieved when the lag is correctly specified, overall with 300 observations. However,
under lag misspecification, controlling for more lags than are needed could be safer
than controlling for fewer. Indeed, based on experiments in Ghysels, Lee, and Noh
(1994, 425), adding lags beyond what is necessary could be understood as an attempt
to control for possible moving-average components whose “bias shrinks as additional
lags of the autoregressive terms are included in the model”. Finally, from table 3, the
trade-off in the number of lags is clear, because adding lagged values reduces the power

of the test, while the size suffers if too few parameters are included (Engle et al. 1993).

Although the evidence is not clear-cut, based on theoretical considerations, the prac-
tical guidance for the applied researcher in case of uncertainty is that it is safer to control
for more lags than are needed.
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Table 3. Consequences of neglecting lags; the model is stationary

Unit root Stationary
Observ. αt−1 αt−2 Fr 0 All Fr 0 All

Lag: 0
100 0.000 0.000 0.063 0.066 0.106 0.405
100 0.020 0.000 0.063 0.066 0.106 0.405
100 0.020 0.020 0.055 0.059 0.085 0.391
100 0.400 0.000 0.063 0.066 0.106 0.405
100 0.400 0.020 0.055 0.059 0.085 0.391
100 0.400 0.400 0.086 0.403 0.000 0.885
300 0.000 0.000 0.058 0.059 0.422 0.999
300 0.020 0.000 0.058 0.059 0.422 0.999
300 0.020 0.020 0.050 0.051 0.373 0.999
300 0.400 0.000 0.058 0.059 0.422 0.999
300 0.400 0.020 0.050 0.051 0.373 0.999
300 0.400 0.400 0.100 0.487 0.000 1.000

Lag: 2
100 0.000 0.000 0.052 0.051 0.086 0.346
100 0.020 0.000 0.052 0.051 0.086 0.346
100 0.020 0.020 0.052 0.052 0.089 0.346
100 0.400 0.000 0.052 0.051 0.086 0.346
100 0.400 0.020 0.052 0.052 0.089 0.346
100 0.400 0.400 0.054 0.056 0.658 0.759
300 0.000 0.000 0.050 0.051 0.374 0.998
300 0.020 0.000 0.050 0.051 0.374 0.998
300 0.020 0.020 0.050 0.051 0.401 0.999
300 0.400 0.000 0.050 0.051 0.374 0.998
300 0.400 0.020 0.050 0.051 0.401 0.999
300 0.400 0.400 0.056 0.052 1.000 1.000

Lag: 4
100 0.000 0.000 0.046 0.051 0.078 0.267
100 0.020 0.000 0.046 0.051 0.078 0.267
100 0.020 0.020 0.046 0.050 0.078 0.264
100 0.400 0.000 0.046 0.051 0.078 0.267
100 0.400 0.020 0.046 0.050 0.078 0.264
100 0.400 0.400 0.054 0.055 0.507 0.584
300 0.000 0.000 0.048 0.051 0.331 0.993
300 0.020 0.000 0.048 0.051 0.331 0.993
300 0.020 0.020 0.048 0.051 0.357 0.994
300 0.400 0.000 0.048 0.051 0.331 0.993
300 0.400 0.020 0.048 0.051 0.357 0.994
300 0.400 0.400 0.050 0.052 1.000 1.000



434 Test for seasonal unit-roots

5 Example

In this section, I use the sroot command to test for the presence of the unit root
at seasonal frequency for the series of consumption in the UK. The data are from the
National Institute of Statistics for the years 1955–2006 on a quarterly basis. I first test
for the presence of a unit root for NSA data:

. sroot x_nsa,lag(4) trend season(quarter) regress gen(pi1 pi2 pi3)

HEGY test for SEASONAL unit roots Number of obs = 200
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) - Fr 0 0.330 -4.050 -3.490 -3.180
Z(t) - Fr 1/2 2.739 -3.520 -2.910 -2.600
Z(t) - L.Ann. 1.014 -4.040 -3.410 -3.100
Z(t) - Annual -0.023 -2.650 -1.920 -1.480
Joint Annual 0.514 8.960 6.570 5.560
All SEAS. fr. 2.842 . 5.890 5.100
All freq. 2.166 . 6.380 5.610

x_nsa Coef. Std. Err. t P>|t| [95% Conf. Interval]

x_nsa
Freq.0 .0001847 .0005594 0.33 0.742 -.0009189 .0012882

Freq.1/2 .0461743 .0168582 2.74 0.007 .0129175 .0794311
L.Annual .0154886 .0152743 1.01 0.312 -.0146435 .0456206

Annual -.0003434 .0152415 -0.02 0.982 -.0304109 .0297241
LD. .7711865 .0777132 9.92 0.000 .6178793 .9244938

L2D. .0894235 .0952005 0.94 0.349 -.0983814 .2772285
L3D. .1412389 .0953463 1.48 0.140 -.0468536 .3293314
L4D. -.2178033 .0753951 -2.89 0.004 -.3665376 -.069069

_trend .0117578 .0031245 3.76 0.000 .005594 .0179216
Q1 -.1432412 .1811381 -0.79 0.430 -.5005779 .2140954
Q2 -.0581299 .1837385 -0.32 0.752 -.4205965 .3043368
Q3 .1162713 .1815115 0.64 0.523 -.2418021 .4743447

_cons -.3112752 .1896996 -1.64 0.103 -.6855015 .0629511

Because I specified regress, the result has two main pieces, i.e., the test in the
upper panel and the regression table in the lower panel. Let’s start from the lower
panel for clarity. It is helpful to have a look at regression results because there are
four important components. The first four regressors are crucial for the test statistics.
The second component is the set of lagged values, which are included in an attempt
to remove serial correlation in ǫit. Third are the deterministic components, namely, a
trend and a set of seasonal dummies. The set of seasonal dummies automatically drops
the last quarter because of multicollinearity. The user may either specify the varname

for quarter or specify directly for the complete set of dummies. Fourth, there is the
constant term.

We are mainly interested in the upper panel, which is intrinsically tied to the lower
panel. In particular, the t statistics of the variables Freq.0–Annual from the lower
panel will be the very same numbers that we find in test statistics in the upper panel.
However, because the distribution is nonstandard, we also report the critical values at
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some sensible confidence level, namely, 1, 5, and 10%. Further, for frequency zero and
frequency 1/2, we can rely on the significance level for single coefficients, whereas for
L.Ann. and Annual, we should test that their coefficients are jointly equal to zero, as
we do in the line Joint Annual, along with their own critical values. The last two
lines test the joint hypotheses that all seasonal coefficients are zero, i.e., the presence of
seasonal unit roots, and that all relevant unit root coefficients are zero, i.e., full set of
unit roots at all frequencies. In these cases, critical values are available only for 5 and
10% confidence levels.

In what follows, I interpret these numbers.

According to the t statistics from Freq.0, we do not reject that π1 is different from
zero at a conventional confidence level. Equivalently, we cannot reject that the time
series has a unit root at frequency zero. According to section 2, test statistics and
critical values for this frequency could have been obtained from those already tabulated
from the Dickey–Fuller test, and most importantly, the decision is based on the same
rule.

For frequency π/2, we do not reject the presence of a (seasonal) unit root at, say, the
95% confidence level. This is because the alternative hypothesis concerning π2 in (4) is
stationarity, or π2 < 0; thus values of the t statistic smaller than the critical values at
the preferred confidence level reject the null hypothesis of unit root. Vice versa, values
of the t statistic larger than the critical values at the preferred confidence level do not
reject the null hypothesis of unit root. Here the t statistic is 2.739 against a critical
value of −2.910 at a 5% confidence level, and thus we cannot reject the presence of a
(seasonal) unit root.

In (4), we have the annual frequency and its lag, and in principle they can return
contrasting results. However, from section 2 we know that results depend on the joint
test on coefficients. Being an F -type statistic, we reject the null hypothesis in cases
where the test statistic is larger than the critical value. For the example at hand, we
cannot reject the unit root at the annual frequency based on the line Joint Annual.

The test for unit roots at all seasonal frequencies and the test for unit roots at all
frequencies are also F -type; thus the decision is based on the same rule of the annual
frequency. From the line All SEAS. fr., we do not reject the joint significance of
seasonal unit roots, and from the line All freq., the joint significance of the full set of
unit roots, at seasonal and nonseasonal frequencies.

The evidence indicates that UK consumption has a unit root at frequency zero,
as could be inferred from the classical Dickey–Fuller test. The new sroot command
indicates that there are two more roots, one at frequency 1/2 (or biannual) and the
other at annual frequency. hegy4 returns the same qualitative conclusions. In general,
hegy4 and sroot test statistics need not be equal because hegy4 uses an automatic lag
selection method unless notest is specified. In the case at hand, the sequential tests on
lags of the dependent variable select only lags 1 and 4:
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. hegy4 x_nsa, lag(1 2 3 4) det(strend)

HEGY Quarterly seasonal unit root test for x_nsa

Number of observations : 200
Deterministic variables : Seasonal dummies + constant + trend
Lags tested: 1 2 3 4
Augmented by lags : 1 4

Stat 5% critical 10% critical
------------------------------------------------------------------------------
t[Pi1] 0.354 -3.490 -3.180
t[Pi2] 2.812 -2.910 -2.600
t[Pi3] 0.589 -3.410 -3.100
t[Pi4] 0.414 -1.920 -1.480

F[3-4] 0.254 6.570 5.560
F[2-4] 2.731 5.890 5.100
F[1-4] 2.084 6.380 5.610

For comparison purposes, we repeat the Hylleberg et al. (1990) test for SA data. As
expected, they have only one unit root, found at frequency zero:

. sroot x_sa, lag(4) trend season(quarter)

HEGY test for SEASONAL unit roots Number of obs = 200
Test 1% Critical 5% Critical 10% Critical

Statistic Value Value Value

Z(t) - Fr 0 0.290 -4.050 -3.490 -3.180
Z(t) - Fr 1/2 -4.784 -3.520 -2.910 -2.600
Z(t) - L.Ann. -5.310 -4.040 -3.410 -3.100
Z(t) - Annual -4.676 -2.650 -1.920 -1.480
Joint Annual 28.976 8.960 6.570 5.560
All SEAS. fr. 32.859 . 5.890 5.100
All freq. 24.734 . 6.380 5.610

The actual existence of seasonal unit roots in the series of consumption sheds more
light on the potentially dramatic impact that a suboptimal econometric technique can
have on a test of an economic theory. In this sense, the results from sroot are important
per se. However, we can go a step further.

In particular, the generate() option is crucial to consider one possible extension
of the unit root at seasonal frequencies, namely, cointegration at seasonal frequencies.
Indeed, the option stores three different variables obtained from the transformation
employed in the procedure. We just plot the transformed series in figure 1 as they
are generated by sroot (i.e., with no editing adjustment). Although not pursued here,
notice that the option allows the replication of the procedure by Engle et al. (1993) to
fit a seasonal vector error-correction model.
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Figure 1. Series of consumption and its transformations

6 Conclusion

In this article, I presented the new sroot command, which implements a test to detect
unit roots at frequencies other than zero, in quarterly data. The motivation for the new
command is that many time series may have seasonal unit roots. Although the usual
practice is to work with seasonally adjusted data, I view this as a weak solution because
fluctuations do contain information and because adjustments can be responsible for
rejection of economic theories even though the underlying model is correct. I argue that
one should always consider using seasonally unadjusted data, which can be characterized
by seasonal unit roots. It is important to go beyond the classical test at frequency zero,
as I propose with sroot, paying much attention to the model specification. Finally,
a promising extension is cointegration at seasonal frequencies that can be studied by
exploiting the generate() option in sroot, even though more efficient methods are
available in the literature.
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Abstract. In regression analysis, the presence of outliers in the dataset can
strongly distort the classical least-squares estimator and lead to unreliable results.
To deal with this, several robust-to-outliers methods have been proposed in the
statistical literature. In Stata, some of these methods are available through the
rreg and qreg commands. Unfortunately, these methods resist only some specific
types of outliers and turn out to be ineffective under alternative scenarios. In this
article, we present more effective robust estimators that we implemented in Stata.
We also present a graphical tool that recognizes the type of detected outliers.

Keywords: st0173, mmregress, sregress, msregress, mregress, mcd, S-estimators,
MM-estimators, outliers, robustness

1 Introduction

The objective of linear regression analysis is to study how a dependent variable is linearly
related to a set of regressors. In matrix notation, the linear regression model is given
by

y = Xθ + ε

where, for a sample of size n, y is the n×1 vector containing the values for the dependent
variable, X is the n×p matrix containing the values for the p regressors, and ε is the n×1
vector containing the error terms. The p × 1 vector θ contains the unknown regression
parameters and needs to be estimated. On the basis of the estimated parameter θ̂, it
is then possible to fit the dependent variable by ŷ = Xθ̂ and compute the residuals
ri = yi − ŷi for i = 1 ≤ i ≤ n. Although θ can be estimated in several ways, the
underlying idea is always to try to get as close as possible to the true value by reducing
the magnitude of the residuals, as measured by an aggregate prediction error. For the
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support.
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well-known ordinary least squares (OLS), this aggregate prediction error is defined as
the sum of squared residuals. The vector of parameters estimated by OLS is then

θ̂OLS = arg min
θ

n∑

i=1

r2
i (θ)

with ri(θ) = yi−θ0−θ1Xi1−· · ·−θpXip for 1 ≤ i ≤ n. This estimation can be performed
in Stata by using the regress command. A drawback of OLS is that by considering
squared residuals, it tends to award an excessive importance to observations with very
large residuals and, consequently, distort parameters’ estimation in case of the existence
of outliers.

The scope of this article is, first, to describe regression estimators that are robust
with respect to outliers and, second, to propose Stata commands to implement them
in practice. The structure of the article is the following: in the next section, we briefly
present the types of outliers that can be found in regression analysis and introduce the
basics of robust regression. We recommend using estimators with a high breakdown
point, which are known to be resistant to outliers of different types. In section 3, we
describe them and provide a sketch of the Stata code we implemented to estimate them
in practice. In section 4, we give an example using the well-known Stata auto.dta

dataset. In section 5, we provide some simulation results to illustrate how the estima-
tors with a high breakdown point outperform the robust estimators available in Stata.
Finally, in section 6, we conclude.

2 Outliers and robust regression estimators

In regression analysis, three types of outliers influence the OLS estimator. Rousseeuw
and Leroy (2003) define them as vertical outliers, bad leverage points, and good leverage

points. To illustrate this terminology, consider a simple linear regression as shown in
figure 1 (the generalization to higher dimensions is straightforward). Vertical outliers
are those observations that have outlying values for the corresponding error term (the y
dimension) but are not outlying in the space of explanatory variables (the x dimension).
Their presence affects the OLS estimation and, in particular, the estimated intercept.
Good leverage points are observations that are outlying in the space of explanatory
variables but that are located close to the regression line. Their presence does not
affect the OLS estimation, but it affects statistical inference because they do deflate the
estimated standard errors. Finally, bad leverage points are observations that are both
outlying in the space of explanatory variables and located far from the true regression
line. Their presence significantly affects the OLS estimation of both the intercept and
the slope.
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Figure 1. Outliers in regression analysis

Edgeworth (1887) realized that because of the squaring of the residuals, OLS becomes
extremely vulnerable to the presence of outliers. To cope with this, he proposed a
method consisting of minimizing the sum of the absolute values of the residuals rather
than the sum of their squares. More precisely, his method defines the L1, or median

regression, estimator as

θ̂L1
= arg min

θ

n∑

i=1

| ri(θ) | (1)

The median regression estimator is available with Stata’s offical qreg command. This
estimator protects against vertical outliers but not against bad leverage points. It has
an efficiency of only 64% at a Gaussian error distribution (see Huber [1981]).

Huber (1964) generalized median regression to a wider class of estimators, called M-
estimators, by considering functions other than the absolute value in (1). This allows an
increase in Gaussian efficiency while keeping robustness with respect to vertical outliers.
An M-estimator is defined as

θ̂M = arg min
θ

n∑

i=1

ρ

{
ri(θ)

σ

}
(2)

where ρ(·) is a loss function, which is even, nondecreasing for positive values and less
increasing than the square function. To guarantee scale equivariance (i.e., indepen-
dence with respect to the measurement units of the dependent variable), residuals are
standardized by a measure of dispersion σ. M-estimators are called monotone if ρ(·) is
convex over the entire domain and redescending if ρ(·) is bounded.
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The practical implementation of M-estimators uses an iteratively reweighted OLS

algorithm. To simplify, suppose that σ is known, and define weights as ωi = ρ(ri/σ)/r2
i .

Then (2) can be rewritten as

θ̂M = arg min
θ

n∑

i=1

ωir
2
i (θ)

which is a weighted OLS estimator. The weights ωi are, however, a function of θ and
are thus unknown. Using an initial estimate θ̃ for θ, the weights can be computed and
serve as the start of an iteratively reweighted OLS algorithm. Unfortunately, the latter
is guaranteed to converge to the global minimum of (2) only for monotone M-estimators,
which are not robust with respect to bad leverage points.

In Stata, the rreg command computes a highly efficient M-estimator. The loss
function used is the Tukey biweight function defined as

ρ(u) =

{
1 −

{
1 −

(
u
k

)2
}3

if |u | ≤ k

1 if |u | > k
(3)

where k = 4.685. The starting value of the iterative algorithm θ̃ is taken to be a
monotone M-estimator with a Huber ρ(·) function:

ρ(u) =

{
1
2 (u)2 if |u | ≤ c
c |u | − 1

2c2 if |u | > c

where c = 1.345. Moreover, to give protection against bad leverage points, observations
associated with Cook distances larger than 1 receive a weight of zero. A command
(mregress) to compute a standard monotone M-estimator with a Huber ρ(·) function
is described in section 6.

Unfortunately, the rreg command does not have the expected robustness properties
for two main reasons. First, Cook distances only manage to identify isolated outliers
and are inappropriate when clusters of outliers exist, where one outlier can mask the
presence of another (see Rousseeuw and van Zomeren [1990]). It can therefore not be
guaranteed to have identification of all leverage points. Second, the initial values for the
iteratively reweighted OLS algorithm are monotone M-estimators that are not robust to
bad leverage points and that may lead the algorithm to converge to a local instead of a
global minimum.

3 Estimators with a high breakdown point

Full robustness can be achieved by tackling the regression problem from a different
perspective. The OLS estimator is based on the minimization of the variance of the
residuals. Hence, because the variance is highly sensitive to outliers, OLS is largely
influenced as well. For this reason, Rousseeuw and Yohai (1984) propose to minimize
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a measure of dispersion of the residuals that is less sensitive to extreme values than
the variance.2 They call this class of estimators the S-estimators. The intuition behind
the method is simple. For OLS, the objective is to minimize the variance, σ̂2, of the
residuals. The latter can be rewritten as 1/n

∑n
i=1 (ri/σ̂)

2
= 1. As stated previously,

the square value can be damaging because it gives a huge importance to large residuals.
Thus, to increase robustness, the square function could be replaced by another loss
function, ρ, that awards less importance to large residuals.3 The estimation problem
would now consist of finding the smallest robust scale of the residuals. This robust
dispersion, denoted by σ̂S , satisfies

1

n

n∑

i=1

ρ

{
ri(θ)

σ̂S

}
= b (4)

where b = E{ρ(Z)} with Z ∼ N(0, 1). The value of θ that minimizes σ̂S is then called
an S-estimator. More formally, an S-estimator is defined as

θ̂S = arg min
θ

σ̂S {r1(θ), . . . , rn(θ)} (5)

where σ̂S is the robust estimator of scale as defined in (4).

The choice of ρ(·) is crucial to have good robustness properties and a high Gaussian
efficiency. The Tukey biweight function defined in (3), with k = 1.547, is a common
choice. This S-estimator resists contamination of up to 50% of outliers; it is said to have
a breakdown point of 50%. Unfortunately, this S-estimator has a Gaussian efficiency of
only 28.7%. If k = 5.182, the Gaussian efficiency rises to 96.6%, but the breakdown point
drops to 10%. To cope with this, Yohai (1987) introduced MM-estimators that combine
a high breakdown point and a high efficiency. These estimators are redescending M-
estimators as defined in (2), but with the scale fixed at σ̂S . So an MM-estimator is
defined as

θ̂MM = arg min
θ

n∑

i=1

ρ

{
ri(θ)

σ̂S

}
(6)

The preliminary S-estimator guarantees a high breakdown point, and the final MM-
estimate guarantees a high Gaussian efficiency. It is common to use a Tukey biweight
ρ(·) function for both the preliminary S-estimator and the final MM-estimator. The
tuning constant k can be set to 1.547 for the S-estimator to guarantee a 50% breakdown
point, and it can be set to 4.685 for the second-step MM-estimator in (6) to guarantee
a 95% efficiency of the final estimator.

2. The least trimmed squares estimator and the least median squares estimator, introduced by
Rousseeuw (1984) rely on the same logic. We programmed these two estimators in Stata and made
them available through the ltsregress and lmsregress commands. ltsregress and lmsregress

are available from the authors upon request.
3. As before, ρ(·) is a function that is even, nondecreasing for positive values, less increasing than the

square with a unique minimum at zero.
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For computing the MM-estimator, the iteratively reweighted OLS algorithm can be
used, taking θ̂S as its initial value. Once the initial S-estimate is computed, θ̂MM

comes at almost no additional computational cost. We programmed an S- and an MM-
estimator in Stata (with Tukey biweight loss function) using the algorithm of Salibian-
Barrera and Yohai (2006). Explicit formulas for the estimators are not available, and it
is necessary to call on numerical optimization to compute them. We present, in the next
section, a sketch of the algorithm we implemented in Stata. The commands to compute
S- and MM-estimators (called sregress and mmregress, respectively) are described in
section 6.

3.1 S-estimator and MM-estimator algorithms

The algorithm implemented in Stata for computing the S-estimator starts by randomly
picking N subsets of p observations (defined as p-subset), where p is the number of
regression parameters to estimate. For each p-subset, the equation of the hyperplane
that fits all points perfectly is obtained, yielding a trial solution of (5). This trial value
is more reliable if all p points are regular observations, such that the p-subset does not
contain outliers. The number N of subsamples to generate is chosen to guarantee that
at least one p-subset without outliers is selected with high probability. As shown in
Salibian-Barrera and Yohai (2006), this can be achieved by taking

N =

⌈
log(1 − Pclean)

log{1 − (1 − α)p}

⌉
(7)

where α is the (maximal) expected proportion of outliers, p is the number of parameters
to estimate, and Pclean is the desired probability to have at least one p-subset without
outliers among the N subsamples.4

For each of the p-subsets, a hyperplane that perfectly fits the p-subset is computed.
Then, for all n observations in the sample, residuals with respect to this hyperplane
are computed, and a scale estimate, σ̂S , is computed from them as in (4). In this way,
scale estimates are obtained for each p-subset, and an approximation for the final scale
estimate, σ̂S , is then given by the trial value that leads to the smallest scale over all
p-subsets. This approximation can be improved further by carrying some refinement
steps that bring the approximation even closer to the solution of (5).

This algorithm is implemented in Stata and can be called either directly using
the sregress command or indirectly using the mmregress command and invoking the
initial option. Once the S-estimator is obtained, the MM-estimator directly follows
by applying the iteratively reweighted OLS algorithm up to convergence. We provide
a Stata command for MM-estimators through the mmregress command. As far as
inference is concerned, standard errors robust to heteroskedasticity (and asymmetric
errors) are computed according to the formulas available in the literature (see, e.g.,
Croux, Dhaene, and Hoorelbeke [2008]).

4. The default values we use in the implementation of the algorithm are α = 0.2 and Pclean = 0.99.
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The need of calling on subsampling algorithms becomes the Achilles’ heel of the
algorithm when several dummy variables are present. Indeed, as stated by Maronna and
Yohai (2000), subsampling algorithms can easily lead to collinear subsamples if various
dummies are among the regressors. To cope with this, Maronna and Yohai (2000)
introduce the MS-estimator that alternates an S-estimator (for continuous variables)
and an M-estimator (for dummy ones) till convergence. This estimator is out of the
scope of this article, and we thus do not elaborate on it here. We nevertheless briefly
describe the Stata command implemented to compute it in practice (msregress). This
estimator can be particularly helpful in the fixed-effects panel-data models, as suggested
by Bramati and Croux (2007).

3.2 Outlier detection

In addition to reducing the importance of outliers on the estimator, robust statistics
are also intended to identify atypical individuals. Once identified, they could be an-
alyzed separately from the bulk of the data. To do so, it is important to recognize
their type. This can be easily achieved by calling on the graphical tool proposed
by Rousseeuw and van Zomeren (1990). This graphical tool is constructed by plot-
ting, on the vertical axis, the robust standardized residuals, defined as ri/σ̂S , with

ri ≡ ri(θ̂
S), to give an idea of outlyingness with respect to the fitted regression plane.

On the horizontal axis, a measure of the (multivariate) outlyingness of the explana-
tory variables is plotted. The latter is measured by Mahalanobis distance defined as
di =

√
(Xi − µ)Σ−1(Xi − µ)′ , where µ is the multivariate location vector, Σ is the co-

variance matrix of the explanatory variables, and Xi is the ith row vector of matrix
X, for 1 ≤ i ≤ n. Obviously, both µ and Σ should be estimated robustly if we want
these distances to resist the presence of outliers. Several methods have been proposed
to robustly estimate the Mahalanobis distances. In Stata, the hadimvo command is
available, but more robust estimates for the covariance matrix (such as the minimum
covariance determinant estimator) are also available. We briefly describe the command
(mcd) to compute the minimum covariance determinant in section 6.

It is possible to set the limits outside which individuals can be considered as outliers.
For the y dimension, we set them to −2.25 and +2.25. These represent the values of
the standard normal that separate the 2.5% remotest area of the distribution from the

central mass. For the x dimension, we set the limit to
√

χ2
p,0.975, motivated by the fact

that the squared Mahalanobis distance is χ2
p distributed under normality.

4 Example

To illustrate the usefulness of the robust methods, we present an example based on the
well-known Stata auto.dta dataset. More specifically, we regress the price of cars on
the following set of characteristics: the mileage (mpg), the headroom (in.), the trunk
space (cu. ft.), the length (in.), the weight (lbs.), the turn circle (ft.), the displacement
(cu. in.), the gear ratio, four dummies identifying the categorical variable repair record
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in 1978, and a foreign dummy identifying whether the car was built in the United States.
We first identify outliers. For this purpose, we call on the graphical tool described in
section 3.2. The resulting plot is pictured in figure 2. This can be easily replicated by
typing the following Stata commands (which are described more precisely in section 6).

. use http://www.stata-press.com/data/r11/auto
(1978 Automobile Data)

. xi: mmregress price mpg headroom trunk length weight turn displacement
> gear_ratio foreign i.rep78, outlier graph label(make)

(output omitted )

Several features emerge. First, the Cadillac Seville is a bad leverage point. Indeed,
it is an outlier in the horizontal as well as in the vertical dimension. This means that
its characteristics are pretty different from those of the bulk of the data and its price
is much higher than it should be according to the fitted model. The Volkswagen Diesel
and the Plymouth Arrow are large good leverage points because they are outlying in the
horizontal dimension but not in the vertical one. This means that their characteristics
are rather different from the other cars but their prices are in accordance with what
the model predicts. Finally, the Cadillac Eldorado, the Lincoln Versailles, the Lincoln
Mark V, the Volvo 260, and some others are standard in their characteristics but are
more expensive than the model would suggest. They correspond to vertical outliers.
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Figure 2. Diagnostic plot of standardized robust residuals versus robust Mahalanobis
distances for the auto.dta dataset

Are these outlying observations sufficient to distort classical estimations? Because
several vertical outliers are present as well as a severe bad leverage point, there is a
serious risk that the OLS estimator becomes strongly attracted by the outliers. To
illustrate this, we compare the results obtained by using the recommended estimator
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with a high breakdown point, mmregress, with those obtained by using OLS (regress),
Huber’s monotonic M-estimator (rreg), and median regression (qreg). MM-estimators
with 70% and with 95% efficiency (for normal errors) are considered. The commands
(used in a do-file) to estimate these models are

. webuse auto, clear

. local exogenous="mpg headroom trunk length weight turn displacement
> gear ratio foreign i.rep78"

. xi: regress price �exogenous�

. xi: qreg price �exogenous�

. xi: rreg price �exogenous�

. xi: mmregress �exogenous�, eff(0.7)

. xi: mmregress �exogenous�, eff(0.95)

The differences are, as expected, important. We present the regression output in
table 1.

(Continued on next page)
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Table 1: Pricing of autos

Auto dataset. Dependent variable: Price in US$

regress qreg rreg MM(0.70) MM(0.95)

Mileage −43.95 −44.45 −68.91 −44.88 −46.74
(0.52) (0.55) (0.92) (−1.67) (1.56)

Headroom −689.40∗ −624.19∗ −739.30∗∗ −311.96∗∗ −440.06∗∗∗
(1.72) (1.71) (2.09) (2.52) (4.10)

Trunk space 74.29 37.50 114.53 186.60∗∗∗ 128.98∗∗∗
(0.74) (0.40) (1.29) (7.10) (3.53)

Length −80.66∗ −48.78 −27.50 −33.74∗∗ 0.03
(1.86) (1.17) (0.72) (2.57) (0.00)

Weight 4.67∗∗∗ 2.89∗∗ 2.59∗ 1.03∗∗∗ 0.37
(3.19) (2.10) (1.99) (5.29) (0.62)

Turn circle −143.71 30.22 −104.26 10.51 −23.79
(1.11) (0.30) (0.91) (0.48) (0.69)

Displacement 12.71 9.79 11.34 2.31 2.51
(1.45) (1.27) (1.46) (0.98) (0.58)

Gear ratio 115.08 92.28 917.19 492.467 370.20
(0.09) (0.08) (0.82) (0.89) (0.99)

Foreign 3064.52∗∗∗ 2496.04∗∗ 2326.91∗∗ −91.66 763.91∗
(2.89) (2.38) (2.48) (0.19) (1.89)

rep78==2 1353.80 −355.92 465.98 5.99 31.45
(0.79) (0.27) (0.31) (0.02) (0.11)

rep78==3 955.44 19.24 488.23 −720.50∗∗∗ −286.70
(0.59) (0.02) (0.34) (2.76) (1.17)

rep78==4 976.63 241.79 813.11 −275.89 390.71
(0.59) (0.18) (0.55) (1.04) (1.49)

rep78==5 1758.00 1325.18 1514.13 606.77∗ 359.01
(0.97) (0.91) (0.95) (1.70) (0.86)

Constant 9969.75 4083.51 2960.68 5352.18∗∗∗ 3495.97
(1.40) (0.60) (0.47) (3.10) (1.43)

Absolute value of t statistics is in parentheses.

Significant at ***1%, **5%, and *10%.

Let’s compare the results. First, headroom, trunk space, and length seem to be
unimportant in explaining prices (at a 5% level) when looking at the OLS, median,
and M-estimators (i.e., regress, qreg, and rreg). However, when the influence of
outliers (and especially of the bad leverage point) is taken into account (i.e., MM(0.7)
column), they turn out to be significantly different to zero. If we consider a more
efficient estimator (i.e., MM(0.95) column), length again becomes insignificant. The
weight variable is flagged as significant by most specifications (though the size of the
effect is very different). The turn, displacement, and gear ratio variables turn out to be
insignificant in all specifications. The foreign dummy is insignificant when using only
the most robust estimators.
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5 Simulations

Several recent articles have proven the theoretical properties of the estimators described
in the previous sections. In this article, we will compare the performances of the Stata
codes we implemented with the previously available robust commands and OLS. To do
so, we run some simulations according to the following setup. We start by creating
a dataset (of size n = 1,000) by randomly generating five independent explanatory
continuous variables (labeled X1, . . . ,X5) and an error term (e) from six independent
univariate normal distributions with mean zero and unit variance. A y variable is then
generated according to the formula yi = β0 +

∑5
j=1 βjXij +ei, where β0 = 0 and βj = 1

for j = 1, . . . , 5. This dataset is called the clean dataset. We then contaminate the
data by randomly replacing 10% of the X1 observations without modifying y. These
contaminated points are generated from a normal distribution with mean 5 and standard
deviation 0.1 and are bad leverage points. We call this the contaminated dataset. We
then repeat this procedure 1,000 times, and each time we estimate the parameters
using OLS, L1, M-estimators, S-estimators, and MM-estimators (with a 95% and a 70%
efficiency). On the basis of all the estimated parameters, we measure the bias (i.e., the
average of the estimated parameters minus the true value) and the mean squared error
(MSE) (i.e., the variance of the estimated parameters plus the square of the bias). The
results are presented in table 2. We do not present the results associated with the clean
sample because all estimation methods lead to comparable and very low biases.

Table 2: Simulated bias and MSE (sample size n = 1,000, 10% of outliers)

Estimation method β1 β2 β3 β4 β5 β0

OLS Bias 0.7149 0.0015 0.0010 0.0002 0.0016 −0.1440
reg MSE 0.5118 0.0017 0.0018 0.0019 0.0018 0.0223
L1 Bias 0.6369 0.0006 0.0013 0.0004 0.0011 −0.1281
qreg MSE 0.4071 0.0026 0.0024 0.0027 0.0027 0.0188
M Bias 0.6725 0.0012 0.0010 0.0005 0.00167 −0.1353
rreg MSE 0.4532 0.0018 0.0018 0.0019 0.0019 0.0200
MM(0.95) Bias 0.6547 0.0011 0.0009 0.0010 0.00167 −0.1318
mmregress MSE 0.4298 0.0018 0.0018 0.0020 0.0020 0.0190
MM(0.7) Bias 0.0867 0.0012 0.0028 −0.0008 −0.0010 −0.0164
mmregress MSE 0.0236 0.0015 0.0015 0.0015 0.0014 0.0024

The results of the simulations clearly show that for this contamination setup, the
least biased estimator among those we considered is the MM-estimator with an efficiency
of 70%. Its bias and MSE are 0.087 and 0.024, respectively, for β1 and −0.016 and 0.002
for β0. As a comparison, the bias and MSE of OLS are 0.715 and 0.512 for β1 and
−0.144 and 0.022 for β0. For the other coefficients, the performances of all estimators
are comparable. It is important to stress that if we set the efficiency of MM to 95%,
its performance in terms of bias worsens too much and would thus not be desirable.
The L1 and M-estimators (computed respectively with the qreg and rreg commands)
behave rather poorly and have a bias and an MSE comparable to that of OLS.
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6 The implemented commands

The mmregress command computes the MM-estimators with a high breakdown point,
described in section 3, and their standard errors. The general syntax for the command
is

mmregress depvar indepvars
[
if

] [
in

] [
, noconstant eff(#)

dummies(dummies) outlier graph label(varname) replic(#) initial
]

The optional parameter eff() fixes the efficiency of the MM-estimator. It can take
any value between 0.287 and 1; the higher its value, the more efficient the MM-estimator.
While the breakdown point of the MM-estimator is always 50%, its bias increases with
its efficiency. Therefore, to have a good compromise between robustness and efficiency
of the MM-estimator, we take eff(0.7) as a default. The dummies() option specifies
which variables are dichotomous. If dummies() is declared, the initial estimator will be
the MS-estimator rather than the S-estimator. Not declaring this option when dummy
variables are present may cause the algorithm for computing the S-estimator to fail (see
section 3.1).

The noconstant option specifies that no constant term has to be considered in
the regression. The outlier option provides robust standardized residuals and robust
Mahalanobis distances. These can be used to construct a diagnostic plot, as discussed
in section 3.2. The graph option calls on this graphical tool for outlier identification.
The label() option specifies the variable that will label the outlier. This option only
works jointly with the graph option. If label() is not declared, the label will be the
observation number.

The replic() option fixes the number of p-subsets to consider in the initial steps
of the algorithm. The user can use (7) to change the value of N in accordance to the
desired level of Pclean or α. The default value for N corresponds to Pclean = 0.99 and
α = 0.2. Finally, the initial option will return as output the initial S-estimator, or the
MS-estimator if the dummies() option is invoked, instead of the final MM-estimator.

The general syntax for the command to compute the S-estimator is

sregress depvar indepvars
[
if

] [
in

] [
, noconstant outlier graph

replic(#)
]

The optional parameters available are a subset of those available in mmregress; their
use is therefore the same as described above. If sregress is called exclusively defining
a dependent variable, the code will return an M-estimator of scale (sometimes called an
S-estimator of scale) and an S-estimator of location of that variable.
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The general syntax for the command to compute the MS-estimator is

msregress depvar indepvars
[
if

] [
in

]
, dummies(dummies)

[
noconstant

outlier graph replic(#)
]

Here again the use of options is comparable to mmregress. The dummies() option is
compulsory and is used to declare which variables among the explanatory are dichoto-
mous.

The general syntax for the command to compute the Huber M-estimator is

mregress depvar indepvars
[
if

] [
in

] [
, noconstant tune(#) level(#)

]

The noconstant option removes the constant, while the tune() option changes the
tuning parameter as in Stata’s rreg command. mregress is only a slight modification
of the rreg command.

The general syntax for the minimum covariance determinant command is

mcd varlist
[
if

] [
in

] [
, e(#) proba(#) trim(#) outlier bestsample raw

setseed(#)
]

The e() and proba() options are used to modify α and Pclean, respectively, in (7);
trim() sets the percentage of trimming desired; outlier calls for robust Mahalanobis
distances and flags outliers; bestsample identifies the observations that have been used
for calculating the robust covariance matrix; raw returns the raw robust covariance ma-
trix estimated classically, but on the sample cleaned of identified outliers; and setseed()

sets the seed. The algorithm for computing the minimum covariance determinant is de-
scribed in Rousseeuw and van Driessen (1999).

7 Conclusion

The strong impact of outliers on the OLS regression estimator has been known for a
long time. Consequently, much literature has been developed to find robust estimators
that cope with the “atypical” observations and have a high breakdown point. At the
same time, the statistical efficiency of the robust estimators needs to remain sufficiently
high. In recent years, it seems that a consensus has emerged to recommend the MM-
estimators as the best-suited estimation method, because they combine a high resistance
to outliers and high efficiency for regression models with normal errors.

On the other hand, robust methods were not often used by applied researchers,
mainly because their practical implementation remained quite cumbersome. Over the
last decade, efficient and relatively fast algorithms for computing robust estimators,
including MM-estimators, were developed. Nowadays, the use of robust statistical
methods has become much more widespread in the applied sciences, like engineering
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and chemistry. By providing the Stata code, we also make robust regression methods
available for the econometrics research community.

In this article, we summarized the properties of the best-known robust estima-
tion procedures and provided Stata commands to implement them. We created the
mmregress command (based on a set of commands that can be run separately if needed);
furthermore, we showed how this estimator outperforms all “robust” estimators avail-
able in Stata by means of a modest simulation study. We hope that this article will
contribute to the development of further robust methods in Stata. In particular, devel-
opment of robust procedures for panel-data and time-series models would be of major
interest for applied economic research. The time-series setting will give rise to new
problems; for example, selecting random p-subsets will not be appropriate because they
break the temporal structure of the data.
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Abstract. In statistics, two-sample tests are used to determine whether two sam-
ples have been drawn from the same population. An example of such a test is the
widely used Kolmogorov–Smirnov two-sample test. There are other distribution-
free tests that might be applied in similar occasions. In this article, we describe a
two-sample omnibus test introduced by Epps and Singleton, which usually has a
greater power than the Kolmogorov–Smirnov test although it is distribution free.
The superiority of the Epps–Singleton characteristic function test is illustrated in
two examples. We compare the two tests and supplement this contribution with
a Stata implementation of the omnibus test.
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1 Introduction

In many empirical scientific fields, statistical tests are used to determine whether two
samples have been drawn from the same population. The commonly used procedure
is to test the data in question against the null hypothesis, H0, that the underlying
distributions of the two samples are equal. The Kolmogorov–Smirnov two-sample (KS)
test, the Wilcoxon–Mann–Whitney rank-sum (MW) test, and the Epps–Singleton (ES)
test are examples of this approach. Implementations of the KS and MW tests are included
in Stata. In this article, we introduce a Stata implementation of the ES test. The KS

and ES tests are able to detect differences in distributions—be it by location, scale, or
family. The MW test detects only locational shifts. The reason for this is its directional

1. Any opinions expressed in this paper are those of the authors and do not reflect the opinion of the
Bundesbank.
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alternative hypothesis, H1, which states that the underlying distribution of one sample
is stochastically larger than the underlying distribution of the other sample.

It has been shown by Epps and Singleton (1986) that the ES test is usually more
powerful than the KS test. There exists one more advantage of the ES test over the
KS test: An assumption of the KS test is that the data are drawn from a continuous
distribution. Contrary to that, both continuous and discrete data may be used for the
ES test. This also holds true for the MW test.

In the following, the rationale of the ES test is described. We next explain the syntax
of the Stata implementation. Then we apply the tests to two examples and compare
the results. Finally, we close with some short conclusions.

2 The ES test

In this section, we give a brief outline of the ES test and concentrate on the important
relations and functions. Hereby, we limit our remarks to a description of the procedure
and leave out details on proofs and derivations. The interested reader can find these
details in the original paper by Epps and Singleton (1986).

The p-value of the ES test gives the probability of falsely rejecting H0 that both
samples have been drawn from the same population. It tests for dissimilarities by
comparing the empirical characteristic functions, φ1(t) and φ2(t), of the two samples
instead of the observed distributions, F1 and F2.

The empirical characteristic function is the Fourier transform of the observed distri-
bution function. The characteristic function of a distribution can be used to conveniently
derive its moments and thus contains more information than just one measure, like the
mean, the median, or the variance. However, this also holds true for the probability
density. Additionally, the use of the probability density is more intuitive than the use
of the characteristic function. Epps (1993) describes the geometrical representation of
the characteristic function as the center of mass of a distribution wrapped around the
unit circle in the complex plane. These caveats raise doubts on the necessity of applying
them: Why should one use the empirical characteristic function for statistical tests?

One advantage of the characteristic function is that it can be used as a representa-
tion of distributions whose probability densities cannot be specified. One example is the
family of alpha-stable distributions introduced by Paul Lévy, where only three distri-
butions (Gaussian, Cauchy, and Lévy) in closed form for densities are known. Typical
applications for distributions whose forms are not closed are models with returns from
stock markets (Epps 1993; Borak, Härdle, and Weron 2005).

Another advantage, and more relevant here, is that the characteristic function is
completely defined for discrete and continuous data, while the distribution function is
completely defined only for continuous data. For discrete data, the distribution function
is defined only in certain points.
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An important prerequisite for the application of the test is that all observations are
independent, both within and across samples. The null hypothesis of the test states

H0 : φ1(t) = φ2(t),with −∞ < t < ∞
The characteristic function is defined as φk(t) =

∫ ∞

−∞
eitxdFnk

(x), where t is a real

number and i =
√
−1. For a sample, k, with a size of nk, with Xkm denoting the mth

observation in sample k, and a distribution function Fnk
(x), the empirical characteristic

function is defined as

φnk
(t) =

∫ ∞

−∞

eitxdFnk
(x) = n−1

k

nk∑

m=1

eitXkm

To make use of the characteristic function for the ES test, a set of parameters
t1, t2, . . . , tJ has to be chosen. For the sake of applicability, these parameters need to be
calibrated to provide the test with a sufficient power against a broad class of alternatives.
Epps and Singleton (1986) did simulations with nine different families of distributions2

in 30 samples altogether. They found that with t1 = 0.4 and t2 = 0.8 (J = 2), the test
performed optimally, conditional on their sample of 30 comparisons. In the following,
we will briefly summarize the proceedings as described by Epps and Singleton (1986).
For a more exhaustive description of the calibration, refer to their work.

The tj need to be standardized with an estimate of scale σ̂—Epps and Singleton
(1986) claim that a sufficiently good scale measure for σ̂ is the semi-interquartile range.
As a consequence, the test is carried out with t̃j = tj/σ̂, j = 1, 2.

For each Xkm, a 4 × 1 vector g(Xkm) is created:

g(Xkm) = (cos t1Xkm, sin t1Xkm, cos t2Xkm, sin t2Xkm)′

Let gk contain the real and imaginary parts of the characteristic function of the
sample for both t1 and t2:

gk = n−1
k

nk∑

m=1

g(Xkm)

Let G2 = g1 − g2 be the difference between both vectors. If H0 was true,
√

n1 + n2G2

would be distributed asymptotically as multivariate N(~0,Ω). Epps and Singleton derive
an estimator for the covariance matrix Ω. Let νk = nk/(n1 +n2) be the share of sample
k in the combined sample and

Ŝk =
nk − 1

nk
cov{g(Xkm)}

be the sample covariance matrix of sample k. A sufficient estimator for Ω would then
be

Ω̂ =
1

ν1
Ŝ1 +

1

ν2
Ŝ2

2. They chose normal, uniform, Cauchy, Laplace, symmetric stable, gamma, Poisson, binomial, and
negative binomial distributions.
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The test statistic of the ES test is defined as W2 = (n1 + n2) · G′
2 · Ω̂+ · G2 with Ω̂+

being the generalized inverse of Ω̂. W2 is distributed asymptotically as chi-squared
with r degrees of freedom, where r denotes the rank of Ω̂+. This is how the p-level
of the test can be computed. Roughly spoken, W2 is a measure for the statistical
distance between the empirical characteristic functions of both samples standardized by
the variance–covariance matrices, with the characteristic functions being descriptors for
the distributions underlying the two samples in question.

If the sample size of both observations is small, Epps and Singleton suggest to use a
small-sample correction factor, Ĉ(n1, n2). They conducted simulations and concluded
that W2 can be excessive for small nk. Hence, if each one of the two samples includes
less than 25 observations, a factor of

Ĉ(n1, n2) =
{

1 + (n1 + n2)
−0.45

+ 10.1
(
n−1.7

1 + n−1.7
2

)}−1

should be applied on the test statistic W2. The idea behind Ĉ was to find a transfor-
mation T (W2;n1, n2) = C(n1, n2) · W2 fulfilling sup P{T (W2;n1, n2) ≥ χ2

α} ≤ α, with
χ2

α being the 1−α percentile of the χ2 distribution with four degrees of freedom. Epps
and Singleton estimated the highest value of C(n1, n2) in 1,000-trial simulations with

different α’s and sample sizes. The parameters of the correction factor Ĉ were estimated
to minimize the error C(n1, n2) − Ĉ(n1, n2).

Epps and Singleton compared their test with the Anderson–Darling, the Cramér–
von Mises, and the KS tests by means of computational simulations and came to the
following conclusions:

• If discrete data are used, apply the ES test.

• If continuous data are used, the KS test usually has a lower power than the ES

test.

• Sometimes, the Anderson–Darling and the Cramér–von Mises tests can have a
higher power than the ES test.

3 The escftest command

3.1 Description

We include with this article a Stata implementation of the ES test in the program
escftest. After installation, the new commands escftest and help escftest are
available. In the algorithm described above, both matrix and vector operations are
used. We used a Mata function in the code to accomplish these calculations. The
reader should be aware that Mata was introduced to the Stata software package in
version 9, so the command will refuse to work in versions earlier than 9.
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3.2 Syntax

The syntax of the command to execute the ES characteristic function test is

escftest varname
[
if

] [
in

]
, group(groupvar)

[
t1(#) t2(#)

]

varname specifies the variable to test.

3.3 Options

group(groupvar) is required. It specifies the grouping variable. There must be exactly
two different groups in the specified sample.

t1(#) specifies the parameter t1 as defined by Epps and Singleton (1986). In this
paper, details on this parameter are given in section 2. If omitted, the default is
t1(0.4). It should not be necessary to specify t1().

t2(#) specifies the parameter t2 as defined by Epps and Singleton (1986). In this
paper, details on this parameter are given in section 2. If omitted, the default is
t2(0.8). It should not be necessary to specify t2().

3.4 Saved results

Normally, it should not be necessary to modify t1() or t2(). These parameters should
be modified only if one wants to calibrate the test for a specific task. escftest saves
some of the results of the performed test in r():

Scalars
r(crit val 1) the critical value for the test statistic W2 at a significance level of 0.01
r(crit val 5) the critical value for the test statistic W2 at a significance level of 0.05
r(crit val 10) the critical value for the test statistic W2 at a significance level of 0.1
r(p val) the p-value associated with the actual test statistic W2

r(correction) the small-sample correction factor, C (if applied)
r(t1) the value used for t1 in the empirical characteristic function
r(t2) the value used for t2 in the empirical characteristic function

Macros
r(group1) value of the grouping variable for the first group
r(group2) value of the grouping variable for the second group

4 Some applications

In this section, we compute two examples with the tests mentioned above. The first ap-
plication refers to the numerical example from Epps and Singleton (1986); the data are
taken from a study by Delse and Feather (1968). In this study, the ability of two groups
to control salivation is compared; one group receives a biofeedback stimulus and the
other group does not. The second example is taken from the field of experimental eco-
nomics and applies an intercultural methodology introduced by Goerg and Walkowitz
(2008) on Chinese and Germans.
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First, we take a glance at the example described by Delse and Feather (1968). They
investigate the effect of letting subjects hear a salivation signal and try to control their
salivation. For the study, 20 subjects were equally distributed in two groups. Each
subject was told to try to increase his salivation rate when observing a light signal
on the left side and to decrease it when observing a light signal on the right side. In
the experiment, one of the two groups received a biofeedback stimulus in terms of a
tone (1,000 cycles per second, 0.2 seconds) for each saliva drop collected by a special
apparatus. The other group did not receive such feedback. The data collected are
shown in the table in figure 1. Each observation represents the difference between the
mean number of saliva drops over 13 increase signals and the mean number of drops
over 13 decrease signals. The data are taken from Hollander and Wolfe (1999, 180).3

The quantile–quantile plot in figure 1 already reveals that the data of the two groups
are not identically distributed.

Biofeedback Control
group group
-1.15 -0.35
-0.15 2.55
2.48 1.73
3.25 0.73
3.71 0.35
4.29 2.69
5.00 0.46
7.74 -0.94
8.38 -0.37
8.60 12.07
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Figure 1. Values and quantile–quantile plot of the study by (Delse and Feather 1968)

Before taking a look at a comparison of the results of the ES test with the results
of the KS test, we would like to mention that the numerical example from section 5 of
Epps and Singleton (1986) contains an error that is either a simple typing error or a
programming error: On page 202, the scale measure σ̂ for standardizing tj is stated to
be 1.95. This is not correct. If one calculates σ̂ by hand, it becomes clear that this
value should be 2.05. Christian Rojas,4 who did some research on the ES test, arrived
at the same conclusion. Nevertheless, the result of the numerical example is correct.

The variable salivationDF gives the participant’s mean change rate of salivation
from the Delse and Feather study. The variable groupDF defines the two subject groups
in the study: group one with the biofeedback stimulus and group two without it. Both
groups consist of 10 participants. Let’s take a look at the test results:

3. Epps and Singleton take the data from an earlier edition of the same book.
4. See http://www.umass.edu/resec/faculty/rojas/index.shtml.
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. escftest salivationDF, group(groupDF)

Epps-Singleton Two-Sample Empirical Characteristic Function test

Sample sizes: groupDF = 1 10
groupDF = 2 10
total 20

t1 0.400
t2 0.800

Critical value for W2 at 10% 7.779
5% 9.488
1% 13.277

Test statistic W2 15.141

Ho: distributions are identical
P-value 0.00442

Note: a small sample correction factor of C(10,10) = 0.60140 has been applied
to W2.

The ES test gives the necessary values of the test statistic W2 for significance at 10%,
5%, and 1%. In this example, the test statistic W2 = 15.141 totals to a value much
higher than the necessary 13.277 for significance at the 1% level: the p-level is at 0.44%.
A small-sample correction factor is applied because both observations are smaller than
25.

. ksmirnov salivationDF, by(groupDF) exact

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group D P-value Exact

1: 0.1000 0.905
2: -0.6000 0.027
Combined K-S: 0.6000 0.055 0.035

Because of the small sample size, we apply ksmirnov, exact. The KS test gives
the p-value for the one-sided comparison, once with a smaller group 1 and once with a
smaller group 2. The combined value gives the exact p-value for the two-sided compari-
son. H0 is rejected at a level of 5.5%. This is a much weaker significance level than the
one for the ES test.

The second example is from the field of experimental economics.5 A popular research
question in this field is the comparison of economic behavior across different populations
and decision conditions. Typical characteristics of data obtained by economic exper-
iments are relatively small sample sizes and often the discreteness of attributes. The
last point forbids the application of the KS test. Thus the question of whether behavior
between subject groups differs and by what means is normally determined by the MW

test. In contrast to the ES test, the MW test has a directional alternative hypothesis,
H1, which is that one sample is stochastically larger than the other. On one hand, if
significant results are obtained by the MW test, they include more information than re-
sults from the ES test. On the other hand, if no sample is stochastically larger, the MW

test finds no differences. The following example, where the KS test is not applicable,

5. In contrast to experiments in psychology, participants in experiments by economists receive a payoff
that is determined by the decisions made in the experiment. This is done to ensure monetary
incentives, which economists are interested in.
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illustrates this limit of the MW test and the advantage of the ES test. The features of
data gathered by economic experiments, described above, make the ES test a valuable
tool for this research area where it is casually applied (for example, Henrich [2000],
Eckel and Grossman [1998], and Hoffman, McCabe, and Smith [1996]).

In the experiment by Goerg and Walkowitz (2008), the cooperative behavior of par-
ticipants from different countries is compared. Participants received an initial endow-
ment of 10 Talers.6 Two matched participants had to decide simultaneously and anony-
mously whether to send a part of their initial endowments to the matched player. The
transfer amount had to be an integer between 0 and 10. This transferred amount reached
the matched player doubled. The total payoff for the participant was his or her initial
endowment minus the amount sent to the other player plus the doubled amount sent
from the other player.

A participant who tries to maximize his own payoff would transfer nothing and
hope that the matched player would send something to him. A player who wants to
maximize the collective payoff would send everything and expect the matched player
to transfer everything, too. Thus transferring nothing is understood as no cooperation,
transferring something is understood as gradual cooperation, and transferring every-
thing is understood as full cooperation. The method is introduced in more detail in
Goerg and Walkowitz (2008), where it is applied on participants from Israel and Pales-
tine.

The new and yet unpublished data that is discussed here contains the choices of
20 participants in China and 20 participants in Germany. The variable cooperation

contains the transferred amount between 0 and 10, and the variable country defines
the two groups.

6. A fictional currency used in the experiment, with a fixed exchange rate to Euros.
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Figure 2. Cooperation in China and Germany

The quantile–quantile plot in figure 2 reveals differences between the two samples.
Recall that the participants could choose only integer numbers as transfer amounts.
The discreteness of the observed attribute rules out the application of the KS test to
the data. We will search for quantitative support of this qualitative result by applying
the MW test and the ES test. Let’s start with the MW test:

. ranksum cooperation, by(country)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

country obs rank sum expected

C 20 441.5 410
G 20 378.5 410

combined 40 820 820

unadjusted variance 1366.67
adjustment for ties -28.72

adjusted variance 1337.95

Ho: cooper~n(country==C) = cooper~n(country==G)
z = 0.861

Prob > |z| = 0.3891

The two-sided rank-sum test reveals no significant difference (p = 0.3891) between
the behavior in the two countries. The differences revealed by the quantile–quantile
plot are of a kind that the MW test is not capable of showing. In contrast to this, the
ES test detects more types of deviations than does the MW test. Thus the ES test leads
to a different result:
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. escftest cooperation, group(country)

Epps-Singleton Two-Sample Empirical Characteristic Function test

Sample sizes: country = C 20
country = G 20
total 40

t1 0.400
t2 0.800

Critical value for W2 at 10% 7.779
5% 9.488
1% 13.277

Test statistic W2 8.900

Ho: distributions are identical
P-value 0.06364

Note: a small sample correction factor of C(20,20) = 0.76092 has been applied
to W2.

The ES test finds a significant difference between the distributions of behavior in
the two countries, with a p-value of 0.0636. Obviously, the distribution of cooperative
behavior in the two populations (participants in Germany and participants in China)
differs. In both countries, the experimental conditions were kept identical regarding
stakes, incentives, and distributions of demographic attributes among the participants.
Thus the observed differences are most likely implied by the different cultural back-
grounds.

The rank-sum test could not detect differences between participants from the two
countries. This example impressively demonstrates the importance of the ES test for
situations where discrete data are investigated, and these situations frequently occur in
the field of experimental economics. While the MW test captures only central tendencies,
the ES test can capture distributional characteristics.

5 Conclusions

In this article, we briefly described a powerful alternative to the Kolmogorov–Smirnov
two-sample test and a complement to the Wilcoxon–Mann–Whitney rank-sum test,
namely, the Epps–Singleton characteristic function test. We explained the use of the
Stata implementation and applied the tests on two examples. The first example com-
pared the p-levels of the KS test with those of the ES test and showed that the p-level
of the ES test is far better. The second example showed a situation where the KS test
cannot be applied and the MW test does not lead to significant results.

We provide the community with a Stata implementation of the ES test and hope that
it might be of use. There is still room for future work; neither the Cramér–von Mises
nor the Anderson–Darling two-sample test has been introduced to Stata so far (the
Anderson–Darling goodness-of-fit test has already been adopted to Stata by Royston
[1996]).
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Abstract. Multiple imputation of missing data continues to be a topic of con-
siderable interest and importance to applied researchers. In this article, the ice

package for multiple imputation by chained equations (also known as fully con-
ditional specification) is further updated. Special attention is paid to categorical
variables. The relationship between ice and the new multiple-imputation system
in Stata 11 is clarified.
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1 Introduction
Royston (2004) introduced mvis, an implementation for Stata of multiple imputation
by chained equations (MICE), a method of multiple multivariate imputation of missing
values under missing-at-random (MAR) assumptions. The name of the main command
was changed to ice (imputation by chained equations) in Royston (2005a). Two updates
of ice have followed (Royston 2005b, 2007). This article presents a further update; the
focus is on categorical variables. The main features are a considerable simplification
of how imputation models for categorical variables are specified and revision of the
conditional() option.

The ice system comprises three ado-files: ice, ice , and uvis. Previous compo-
nents micombine, mijoin, misplit, and ice reformat are out of date and have been
removed. micombine has been superseded by a more comprehensive command, mim

(Carlin, Galati, and Royston 2008), itself recently updated with new features (Royston,
Carlin, and White 2009).

Before describing the new features, it is important to clarify the impact of the
Stata 11 multiple-imputation system on ice.

2 ice, uvis, and the Stata 11 multiple-imputation system
The ice program was written for Stata 9 and above to perform imputation via chained
equations (van Buuren, Boshuizen, and Knook 1999). On 27 July 2009, Stata 11 was
released, bearing a major new feature: the mi system for multiple imputation and esti-

c© 2009 StataCorp LP st0067 4
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mation of models with multiply imputed data. The system comprises a new database ar-
chitecture for imputed datasets; utilities for manipulating, checking, and validating such
datasets; a sequence of commands for doing imputation, mi impute; and a command
for combining estimation results using Rubin’s rules, mi estimate; see the Stata 11

Multiple-Imputation Reference Manual (StataCorp 2009) for details. Many (but not
all) of the univariate imputation models available in uvis are replicated in new com-
mands of the form mi impute XXX, where XXX is a keyword, such as regress for lin-
ear regression. Multivariate imputation in Stata 11 can be performed using mi impute

monotone when the missingness pattern is monotone and using mi impute mvn when
the missingness pattern is arbitrary. mi impute monotone implements a noniterative
imputation method based on a sequence of independent univariate conditional specifi-
cations. It is similar to the implementation of option monotone of ice. mi impute mvn

performs multivariate imputation assuming that the data have a multivariate normal
distribution. It implements the NORM method of Schafer (1997)—an iterative Markov
chain Monte Carlo method (data augmentation) based on multivariate normality. ice

implements an alternative iterative multivariate imputation method based on a sequence
of univariate full conditional specifications, also known as imputation via chained equa-
tions. Thus ice is not replicated in Stata 11 and is still needed for performing multiple
imputation by chained equations for data with arbitrary patterns of missingness.

The mi import ice and mi export ice commands in Stata 11 make it easy to
transport data between the existing ice data format and the official mi data format
introduced in Stata 11. An intermediate step in integrating ice more completely into
Stata 11 is a program called mi ice. The files can be installed from my web page
(net from http://www.homepages.ucl.ac.uk/~ucakjpr/stata/) under the heading
mi ice. The next step is the development of a full-featured new command for Stata 11,
likely to be called mi impute ice. Because in many people’s eyes the flexibility of fully
conditional specification embedded in the MICE algorithm offers several advantages over
the multivariate normal approach, I expect ice and its sequels to continue to be used
and useful in Stata 11.

3 Syntax

ice mainvarlist
[
if

] [
in

] [
weight

] [
, boot

[
(varlist)

]
by(varlist) cc(varlist)

clear cmd(cmdlist) conditional(condlist) cycles(#) dropmissing dryrun

eq(eqlist) eqdrop(eqdroplist) genmiss(string) id(newvar) interval(intlist)

m(#) match
[
(varlist)

]
monotone noconstant nopp noshoweq noverbose

nowarning on(varlist) orderasis passive(passivelist) persist

restrict(
[
varname

] [
if

]
) saving(filename

[
, replace

]
) seed(#)

substitute(sublist) trace(trace filename)
]

where a typical element of mainvarlist is
[
i. | m. | o.

]
varname.
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uvis regression cmd {yvar | llvar ulvar} xvarlist
[
if

] [
in

] [
weight

]
,

gen(newvar)
[
boot match by(varlist) noconstant nopp noverbose replace

restrict(
[
varname

] [
if

]
) seed(#)

]

where regression cmd may be intreg, logistic, logit, mlogit, ologit, nbreg, or
regress. All weight types supported by regression cmd are allowed. llvar and ulvar

are required with uvis intreg. Variables imputed using nbreg must be nonnegative
but are not restricted to integer values.

4 What is new?

The principal changes to ice (version 1.7.3) and uvis (version 1.5.5) compared with
the December 2007 release (Royston 2007) (versions 1.4.4 and 1.2.7, respectively) are
as follows:

1. ice and uvis now require Stata 10.1. (Strictly speaking, only the new nega-
tive binomial regression option requires Stata 10.1; all other features work under
Stata 9.2 or higher.)

2. ice understands an abbreviated syntax for multilevel categorical variables to be
imputed using ologit or mlogit. This important feature is described in detail
below.

3. Negative binomial regression is available via the cmd(varlist: nbreg) option in
ice, or via uvis nbreg, to impute count or count-like data. Typically, such
data a) are integer-valued, b) are nonnegative, and c) have variance exceeding the
mean. Noninteger variables are allowed, although their missing values are imputed
as integers. Negative values are disallowed.

4. The syntax and operation of the conditional() option of ice have changed
substantially (as described below).

5. A by() option has been added to ice and uvis to support imputation in inde-
pendent subsets of the data (as described below).

6. A restrict() option has been added to ice and uvis to allow one to fit models
on a specified subsample but impute missing data for the entire estimation sample
(as described below).

7. A clear option has been added to ice to allow the imputed data to reside in
memory without (yet) having been (manually) saved to a file using Stata’s save

command.

8. An eqdrop() option has been added to ice to delete variables from prediction
equations.

9. A persist option has been added to ice to ignore errors from uvis when imputing
a “difficult” variable.
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5 Options for ice and uvis

Only new or changed options are described.

5.1 Options for ice

clear clears the original data from memory and loads the imputed dataset. Unless the
saving() option is also specified, the data in memory are not permanently saved;
this must then be done manually using the save or the saveold command.

conditional(condlist) invokes conditional imputation. Each item of condlist has the
form varlist: if condition. Items are separated by a backslash (\). Members of
varlist are imputed only for the subset of observations for which if condition is
true (i.e., condition evaluates to a nonzero quantity). Observations on all members
of varlist for which if condition is false (i.e., condition evaluates to zero) are left
unchanged. condition must be a Stata expression constructed so that if condition

is meaningful and valid for the current dataset. Note that variables appearing in
condition may be members of mainvarlist or merely variables in the dataset. This
is the only situation in which variables that do not appear in mainvarlist may be
used in an ice command. Examples of its use are given in the help file.

eqdrop(eqdroplist) deletes variables from prediction equations. The syntax of eq-

droplist is varname1: varlist1
[
, varname2: varlist2 . . .

]
, where each varname#

(or varlist#) is a member (or subset) of mainvarlist. One can only remove predic-
tors from equations for variables with missing values (although trying to remove
predictors from nonexistent equations is not a fatal error; an information message is
issued). Variable names prefixed by i. are allowed, provided that the names were
prefixed by i., m., or o. in mainvarlist. They are translated to the corresponding
dummy variables created by xi:.

noverbose suppresses the display of the imputation number (as #) and cycle number
within imputations (as .), which show the progress of the imputations.

persist causes ice to ignore errors raised by uvis when trying to impute a “difficult”
variable or impute with a model that is difficult to fit to the data at hand. Trying to
impute a difficult variable by using the ologit or mlogit command is the most com-
mon cause of failure. By default, ice stops with an error message. With persist,
ice continues to the next variable to be imputed, not updating the variable that
raised an error. Often, by chance, the same variable is successfully updated in a
subsequent cycle, and no damage is done to the imputation process.

If the error for a given variable appears in every cycle, you should consider changing
the prediction equation for that variable, because its imputed values are unlikely to
be appropriate.

restrict(
[
varname

] [
if

]
) specifies that imputation models be computed using the

subsample identified by varname and if. The subsample is defined by the observa-
tions for which varname!=0 that also meet the if conditions. Typically, varname=1
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defines the subsample and varname=0 indicates observations not belonging to the
subsample. For observations whose subsample status is uncertain, varname should
be set to a missing value; such observations are dropped from the subsample. By
default, ice fits imputation models and imputes missing values using the sample of
observations identified in the

[
if

]
and

[
in

]
expressions. The restrict() option

identifies a subset of this sample to be used for model estimation. Imputation is
restricted to the sample identified in the

[
if

]
and

[
in

]
expressions. Thus predic-

tions and their associated imputations are made “out of sample” with respect to the
subsample defined by restrict(). Examples of its use are given in the help file.

5.2 Options for uvis

noverbose suppresses nonerror messages while uvis is running.

restrict(
[
varname

] [
if

]
); see the equivalent option for ice.

6 Simplified syntax for imputing multilevel categorical
variables

6.1 Handling multilevel categorical variables

Experience and common sense suggest that correctly handling a multilevel categorical
variable, say, x, in ice presents problems for users, for three reasons: 1) the user must
decide on and specify an imputation model for predicting x, choosing between mlogit for
unordered variables (the default) and ologit for ordered variables; 2) dummy variables
corresponding to the levels of x need to be “passively” imputed (i.e., reconstructed
from the imputed values of x) following imputation of x; and 3) the dummy variables
need to substitute for x in equations for other variables in which x is a predictor.
ice comprehensively handles these three aspects through the cmd(), passive(), and
substitute() options, respectively. Consider the following example, which uses data
from a case–control study in leprosy.

Between 1980–1984, a population of about 112,000 people living in Northern Malawi
were screened for leprosy (Fine et al. 1986). New cases of leprosy in initially uninfected
people were identified during a follow-up period of five years (Pönnighaus et al. 1992).
For illustrative purposes, we use data from a substudy in which controls without leprosy
at baseline were selected at random from the screened population. The aim is to assess
the effect of BCG vaccination (bcg) on the incidence of leprosy. Covariates are age, sex,
house, and school.
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. use lep
(1:4 unmatched leprosy and bcg)

. tabulate school, generate(s)

Schooling Freq. Percent Cum.

none 282 22.19 22.19
1-5yr primary 606 47.68 69.87
6-8yr primary 350 27.54 97.40

secondary/tertiary 33 2.60 100.00

Total 1,271 100.00

. tabulate house, generate(h)

Housing Freq. Percent Cum.

burnt brick 240 19.25 19.25
sun-dried bricks or pounded mud 295 23.66 42.90

wattle and daub 679 54.45 97.35
temporary shelter 33 2.65 100.00

Total 1,247 100.00

. ice d age sex bcg school s2 s3 s4 house h2 h3 h4, clear m(5)
> substitute(school:s2 s3 s4, house:h2 h3 h4) passive(s2:school==1 \
> s3:school==2 \ s4:school==3 \ h2:house==1 \ h3:house==2 \ h4:house==3)
> cmd(school:ologit, house:mlogit)

#missing
values Freq. Percent Cum.

0 1,186 86.57 86.57
4 146 10.66 97.23
8 38 2.77 100.00

Total 1,370 100.00

Variable Command Prediction equation

d [No missing data in estimation sample]
age [No missing data in estimation sample]
sex [No missing data in estimation sample]
bcg [No missing data in estimation sample]

school ologit d age sex bcg h2 h3 h4
s2 [Passively imputed from school==1]
s3 [Passively imputed from school==2]
s4 [Passively imputed from school==3]

house mlogit d age sex bcg s2 s3 s4
h2 [Passively imputed from house==1]
h3 [Passively imputed from house==2]
h4 [Passively imputed from house==3]

Imputing ..........1..........2..........3..........4..........5
[note: imputed dataset now loaded in memory]

Warning: imputed dataset has not (yet) been saved to a file

The variables school and house are categorical, each having four levels. school is
the number of years of schooling and is ordinal, whereas house is the type of dwelling
and is unordered. Hence school may be modeled by using ologit, and house may be
modeled by using mlogit.
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The specification of the ice command involves creating the dummy variables s2,
s3, and s4 for school and h2, h3, and h4 for house, and using the passive() and
substitute() options to manage the two sets of three dummy variables. The setup
takes some effort and looks quite complicated, even in a simple example such as the
present one. With more such variables (and ice specifications can have many), the
complexity and potential for making errors increase considerably.

6.2 The m. and o. prefixes

Now consider the following, which is an identical setup but uses a new, more streamlined
syntax:

. use lep, clear
(1:4 unmatched leprosy and bcg)

. ice d age sex bcg o.school m.house, clear m(5)

=> xi: ice d age sex bcg school i.school house i.house, cmd(house:mlogit,
> school:ologit) substitute(school:i.school, house:i.house) clear m(5)

i.school _Ischool_0-3 (naturally coded; _Ischool_0 omitted)
i.house _Ihouse_0-3 (naturally coded; _Ihouse_0 omitted)

#missing
values Freq. Percent Cum.

0 1,186 86.57 86.57
1 146 10.66 97.23
2 38 2.77 100.00

Total 1,370 100.00

Variable Command Prediction equation

d [No missing data in estimation sample]
age [No missing data in estimation sample]
sex [No missing data in estimation sample]
bcg [No missing data in estimation sample]

school ologit d age sex bcg _Ihouse_1 _Ihouse_2 _Ihouse_3
_Ischool_1 [Passively imputed from (school==1)]
_Ischool_2 [Passively imputed from (school==2)]
_Ischool_3 [Passively imputed from (school==3)]

house mlogit d age sex bcg _Ischool_1 _Ischool_2 _Ischool_3
_Ihouse_1 [Passively imputed from (house==1)]
_Ihouse_2 [Passively imputed from (house==2)]
_Ihouse_3 [Passively imputed from (house==3)]

Imputing ..........1..........2..........3..........4..........5
[note: imputed dataset now loaded in memory]

Warning: imputed dataset has not (yet) been saved to a file

ice accepts o.school and m.house as a sufficient specification of how to model
these two variables. The program does the necessary work of setting up the required
passive() and substitute() options, creating dummy variables and defining sensible
prediction equations. ice invokes Stata’s xi: command to produce the variables labeled
in standard fashion, Ischool 1, etc. The “expanded” ice command is displayed before
the tables of missing values and prediction equations are presented.
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Now suppose that we wanted the prediction equation for school to be d age

Ihouse 1 Ihouse 2 Ihouse 3 rather than the default equation, which also includes
sex bcg. To specify this, we use the i. prefix within the eq() option for school to
signify the I* variables for house:

. ice d age sex bcg o.school m.house, eq(school: d age i.house) dryrun

=> xi: ice d age sex bcg school i.school house i.house, cmd(house:mlogit,
> school:ologit) substitute(school:i.school, house:i.house) eq(school: d age
> i.house) dryrun

(output omitted )

Variable Command Prediction equation

d [No missing data in estimation sample]
age [No missing data in estimation sample]
sex [No missing data in estimation sample]
bcg [No missing data in estimation sample]

school ologit d age _Ihouse_1 _Ihouse_2 _Ihouse_3
_Ischool_1 [Passively imputed from (school==1)]
_Ischool_2 [Passively imputed from (school==2)]
_Ischool_3 [Passively imputed from (school==3)]

house mlogit d age sex bcg _Ischool_1 _Ischool_2 _Ischool_3
_Ihouse_1 [Passively imputed from (house==1)]
_Ihouse_2 [Passively imputed from (house==2)]
_Ihouse_3 [Passively imputed from (house==3)]

End of dry run. No imputations were done, no files were created.

Finally, an additional advantage of the m. and o. syntax is that the number of
missing values is counted correctly. In the original syntax, missing values are multi-
ply counted due to inclusion of the dummy variables with the “parent” variables in
mainvarlist.

6.3 The i. prefix

The other new feature is the i. prefix, which simply applies xi: to the variable in
question. (Note: Do not confuse the i. prefix in ice with the same syntax in Stata 11,
which indicates a factor variable. At this point, ice does not support factor variables;
it may do so in the future.) It is important to emphasize that for the i. prefix to work
correctly with a multilevel categorical variable, the latter must have no missing data in

the estimation sample, that is, it must be complete except when all other variables in
mainvarlist have missing values. This condition is checked by ice and an error message
is issued if it is violated. The i. prefix automatically handles the resulting dummy
variables in the correct manner, that is, they become predictors for other variables but
are not themselves imputed (because they are assumed to have no missing data). If a
categorical variable does have missing data, either the m. or the o. prefix must be used
to invoke the machinery needed to create a valid set of imputation models.

To clarify further, consider the following example with the leprosy data:
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. use lep, clear
(1:4 unmatched leprosy and bcg)

. ice age sex bcg i.school, dryrun

=> xi: ice age sex bcg i.school, dryrun

i.school _Ischool_0-3 (naturally coded; _Ischool_0 omitted)

#missing
values Freq. Percent Cum.

0 1,271 92.77 92.77
1 99 7.23 100.00

Total 1,370 100.00

99 missing values of variable school found in the estimation sample

variables with an i. prefix must be complete in the estimation sample
you can use an m. or o. prefix to impute incomplete variables of this type

1 specification error(s) found
r(198);

Using i.school invokes xi: as expected. However, because we have not specified
what is to happen to the dummy variables Ischool 1, Ischool 2, and Ischool 3,
and because they each have 99 missing values, we find that each of them is independently
predicted from the other two dummy variables and age, sex, and bcg. This is clearly
incorrect. The correct solution is either ice age sex bcg m.school or ice age sex

bcg o.school, depending on how school is to be modeled.

7 Conditional imputation—the conditional() option

Consider an (artificial) dataset including the variables age, female, and pregnant,
where age is continuous, approximately normally distributed and has missing values;
female is binary (1 for females, 0 for males) and is complete; and pregnant is binary
(1 for pregnant, 0 for not pregnant) and also has missing values. Such a dataset is
supplied in pregnant.dta. Suppose that the probability of being pregnant is related to
age. Because males cannot be pregnant, we do not wish to impute pregnancy in males;
we should therefore impute missing values of pregnant using age in females only:
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. use pregnant, clear
(Artificial dataset on pregnancy and age)

. ice age pregnant female, conditional(pregnant: if female==1) dryrun

#missing
values Freq. Percent Cum.

0 388 77.60 77.60
1 110 22.00 99.60
2 2 0.40 100.00

Total 500 100.00

Variable Command Prediction equation

age regress pregnant female
pregnant logit age if female==1

female [No missing data in estimation sample]

End of dry run. No imputations were done, no files were created.

The prediction equation for age is pregnant female, whereas the equation for pregnant
is just age of the females. It is important here that the values of pregnant are cor-
rectly defined as 0 for males, even though imputation of pregnant is not performed
for female==0. If pregnant were set to, say, −1 for males, then ice would see three
distinct values of pregnant. It would try to impute pregnant using mlogit rather than
logit, which would cause an error.

More than one conditional imputation can occur in the same run. Suppose, for
example, that the dataset included a variable with missing values called fertile, giving
the result of a female fertility test and coded 1 = fertile, 0 = infertile. In ice, one might
specify this case as

ice age pregnant female fertile, ///
conditional(pregnant: if female==1 & fertile==1 \ fertile: if female==1) dryrun

to reflect that only fertile females can become pregnant and only females have a fertility
test. If males had also had a fertility test, the phrase fertile: if female==1 would
have been omitted.

8 Out-of-sample imputation—the restrict() option

The restrict() option is designed for situations in which one wishes to fit imputation
equations to a subset of the observations but make imputations across the entire dataset.
An example is a “validation study” in which a primary dataset is used to determine
and estimate a multivariable model of some kind and a secondary dataset is available to
test the accuracy of the model. Both the primary and the secondary datasets may have
missing values. The combined (primary + secondary) dataset would typically include a
variable, say, primary, coded as 1 for the primary and 0 for the secondary dataset. A
schematic ice run to impute missing values out of sample in the secondary dataset is

ice mainvarlist, restrict(primary) <other stuff> ...
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The imputation models would be estimated on the subset primary != 0, and multiple
imputation of the subset consisting of all nonmissing values of primary would be done.
See the ice help file for further comments on this option.

9 Imputation in independent subsets—the by() option

Using by(varlist) performs multiple imputation separately for all combinations of the
variables in varlist. Observations with missing values for any members of varlist are
excluded.

An application of by() is in randomized trials, where interactions as yet uniden-
tified between treatment and patient characteristics (covariates) may be present. If
imputation is not done separately for each treatment group, estimates of interactions
with treatment in the analysis model are biased toward zero. The by() approach may
be useful more generally for coping with interactions with a categorical variable.

Common sense must be applied to the by() option. For example, if by(varlist)

subdivides the dataset too finely, the imputation models may become unstable and
imprecise, compromising the quality of the imputations.

10 Conclusion

Development of ice continues as new features are requested by users or considered by
the author to be worthwhile. Closer integration with Stata 11 mi will follow in due
course. The syntax for categorical variables should prove particularly helpful for users
and for teachers of multiple imputation in Stata.
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Abstract. Box plots have been a standard statistical graph since John W. Tukey
and his colleagues and students publicized them energetically in the 1970s. In
Stata, graph box and graph hbox are commands available to draw box plots, but
sometimes neither is sufficiently flexible for drawing some variations on standard
box plot designs. This column explains how to use egen to calculate the statistical
ingredients needed for box plots and twoway to re-create the plots themselves. That
then allows variations such as adding means, connecting medians, or showing all
data points beyond certain quantiles.
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1 Box plots

1.1 Origins

Box plots were so named by John W. Tukey and were publicized energetically within
statistics by him, his colleagues, and his students from the 1970s on (e.g., Tukey [1972,
1977]; Velleman and Hoaglin [1981]; and Hoaglin, Mosteller, and Tukey [1983]). Box
plots spread beyond statistics into several quantitative sciences through their own lit-
erature (e.g., Kleiner and Graedel [1980] and Cox and Jones [1981]). The publicity was
so successful that the box plot is now widely regarded as a standard statistical graph. It
appears in most introductory statistical texts; indeed, the exceptions to this rule (e.g.,
Freedman, Pisani, and Purves [2007]) are more striking than the examples. Further,
the box plot is often assumed not to need explanation beyond such texts.

Box plots had several under-appreciated precursors under different names, including
range bars (Spear 1952, 1969) and dispersion diagrams in geography and climatology
(e.g., Crowe [1933] and Monkhouse and Wilkinson [1971]). Despite this earlier history,
my guess is that box plots would not now be nearly so popular without Tukey’s rein-
vention and propaganda.

1.2 Purpose

Stata users wishing to see box plots can call upon graph box or graph hbox. The
manual entry [G] graph box explains several ways of tuning that command. Mitchell
(2008) gives many examples of possible results and the code to get them. This column

c© 2009 StataCorp LP gr0039
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focuses on showing what to do whenever you want some variation on the standard design
that cannot be met with graph box or graph hbox. To show that, we must understand
how to re-create box plots using graph twoway. It is very much a case of reculer pour

mieux sauter.

1.3 Structure

Let us first remind ourselves of the structure of a box plot by using the life expectancy
data shipped with Stata. We will compare life expectancy in 1998 for three groups of
countries: in Europe and Central Asia, North America, and South America (figure 1).
We use graph box. Here and subsequently we will spell out a preference for horizontal
axis labels.

. sysuse lifeexp

. label var lexp "Life expectancy (years)"

. graph box lexp, over(region) yla(, ang(h))

55

60

65

70

75

80

L
if
e
 e

x
p
e
c
ta

n
c
y
 (

y
e
a
rs

)

Eur & C.Asia N.A. S.A.

Figure 1. Box plots of life expectancy in 1998 for various countries in three regions

The main ingredient of a box plot is the eponymous box, used to indicate the lower
and upper quartiles of the variable or group being plotted against a magnitude scale.
The median is represented by a line subdividing the box, or, alternatively, by a point
symbol. The length of the box thus represents the interquartile range (IQR). Tukey
used a variety of alternative terms for both the quartiles (hinges, fourths, etc.) and
their difference, the range or spread between them, but most such terms were adopted
only locally or briefly and have long since faded away. It seems simpler now to revert
to the classical terms of quartiles and IQR. Whatever the terminology, recall that nu-
merous slightly different calculation rules exist for quartiles and quantiles or percentiles
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generally (Frigge, Hoaglin, and Iglewicz 1989; Hyndman and Fan 1996). The different
rules explain some of the differences in box plots from different software, but otherwise
are not of great interest. Stata’s rule is set out in [R] summarize. Among other details,
note that any practical rule must extend to data with weights assigned.

Box plots differ in what else may be shown outside the box. graph box and graph

hbox by default follow what is perhaps the most common recipe (Tukey 1977):

1. Lines, often called whiskers, are drawn to span all data points within 1.5 IQR of
the nearer quartile. That is, one whisker extends to include all data points within
1.5 IQR of the upper quartile and stops at the largest such value, while the other
whisker extends to include all data within 1.5 IQR of the lower quartile and stops
at the smallest such value. Tukey called the outer limits of the whiskers adjacent

values. The whiskers also explain his alternative term, box-and-whiskers plots.
Note that either whisker could be of zero length. In practice, that will occur only
with very small datasets or heavily tied data.

2. Any data points beyond the whiskers are shown individually and often labeled
informatively.

De Veaux, Velleman, and Bock (2008, 81) record Tukey’s laconic reply when asked
the reason for 1.5: 1 would be too small and 2 would be too large. Evidently, the
choice of multiplier gives an informal but objective rule for outlier identification. Any
choice is a compromise between revealing too much (flagging data points that are of
neither statistical nor scientific concern) and revealing too little (missing data points
that require thought or action). Dümbgen and Riedwyl (2007) recently discovered a
clever way of justifying 1.5, but experience that it often works quite well is a more
compelling basis for the rule.

This kind of box plot, and indeed most other kinds, thus conveys information about
level (median); spread (interquartile range and range are both represented directly);
symmetry or asymmetry about the median both within and beyond the central half of
the data; and, on its own definition, possible outliers. It is thus a fairly information-rich
graphical reduction of key quantiles (or of order statistics, if you prefer).

That may be the most common recipe, but many others have been entertained.
McGill, Tukey, and Larsen (1978) suggested two refinements: varying the width of
boxes to indicate group sizes and notching boxes to indicate approximate confidence
intervals. Harris (1999, 57) even reported that some box plots are based at least in part
on mean and standard deviation. It is natural to hope that different conventions are
all explained clearly for the benefit of readers, but unfortunately, that is often not the
case. For example, several authors in the collection edited by Chen, Härdle, and Unwin
(2008) use differing varieties of box plots, but the differences are typically unexplained.

However, many variations encountered appear to be essentially cosmetic. In par-
ticular, box plots may be horizontal as well as vertical. There can be a small struggle
between the convention of showing response or outcome variables increasing vertically
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and the desire that text labels explaining variables or groups can be spelled out fully and
legibly. Whatever the reasoning, Stata users can reach for graph hbox if they prefer
horizontal alignment. As a matter of careful and conscious design, the change between
typing box and hbox is the only change that need be made. Contrary to mathematical
custom, the y axis of box plots in Stata is considered to be whichever axis the response
is plotted against. (graph bar and graph hbar are related in exactly the same way.)

1.4 Utility

Box plots can be very useful, particularly for comparison, especially if the number of
variables or groups is nearer 20 or 200 rather than 2. But if you have just a few variables
or groups, you have enough space for the greater detail of (say) histograms, dot plots,
density traces, or quantile or distribution plots. And because they are reductions of
the data, box plots may be uninformative about key details. They tend to perform
poorly whenever data are highly skewed—which in many fields is overwhelmingly usual.
Naturally, one simple answer to skewness is to transform data. If box plots of a variable
are highly asymmetric, then roots or logs or reciprocals are likely to improve matters
considerably.

There are deeper problems yet. What is so special about quartiles, in particular?
Medians have a clear statistical role as defining midpoints on distribution functions, and
they are natural and resistant summaries for (approximately) symmetric distributions.
Quartiles take the median idea one step further by being medians of each half of the
distribution, but beyond that, their role is much less evident. Simplicity of definition
and familiarity from early teaching do not add up to a statistically natural role. In any
case, if half the data lie inside the boxes, then half too lie outside the boxes, yet that
half—often statistically or scientifically the more important half—is represented in a
mostly generalized way within box plots.

So, other quantiles besides quartiles may well be as or more worthy of display. That
argument leads ultimately to displaying all quantiles, a tactic discussed in other issues
of the Stata Journal (Cox 2005, 2007).

With a nod of gratitude for an example given by Wainer (1990, 345), figure 2 points
out one further weakness of box plots.

(Continued on next page)
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Figure 2. An innocent-looking box plot with a surprise wrapped inside

Asked what can be inferred about the distribution from this plot, even very expe-
rienced data analysts typically mutter something about a short-tailed symmetric uni-
modal distribution. But the box plot clearly implies that the average density in the tails
is much greater than that in the middle, so the best inference should be something like
a U-shaped distribution. My guess is that although respondents are all familiar with
the main idea of box plots, they are being misled by the subdued representation of the
tails. Guessing apart, no detailed histogram, density trace, or quantile plot would be
guilty of such ambiguity. More generally, box plots inevitably gloss over bimodality or
multimodality or granularity of distribution.

To reveal the small surprise, figure 2 is based on a set of quantiles from a beta
distribution:

. generate y = invibeta(0.6, 0.6, (_n - 0.5) / _N)

With these parameter values, the distribution is indeed U-shaped, as the histogram
in figure 3 shows more clearly.
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. histogram y, width(0.1) start(0) horizontal yla(, ang(h))
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Figure 3. The distribution underlying the innocent-looking box plot: a U-shaped beta
distribution

2 Using twoway to create box plots

2.1 Ingredients

To re-create a box plot from scratch given some data, we need to calculate the basic
summary statistics. Here the egen command is your friend, particularly because its
by() option allows recording of results for two or more groups. The by() option is
undocumented in favor of doing things with by varlist:, but it is supported for those egen
functions of concern to us here. Either way, using by: as prefix is exactly equivalent.
See the online help or [D] egen for more details on that command. A tutorial discussing
egen is available in Cox (2002).

The median and quartiles are easiest:

. egen median = median(lexp), by(region)

. egen upq = pctile(lexp), p(75) by(region)

. egen loq = pctile(lexp), p(25) by(region)

We could now get the IQR by subtraction, upq - loq, which would be more efficient,
but we will mention that it has its own egen function.

. egen iqr = iqr(lexp), by(region)
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In fact, we do not strictly need the IQR, as will become clear shortly, but if you like
box plots, you might as well know ways of getting the IQR easily into a variable.

The upper and lower limits of the whiskers require a little more thought. Here is
one way to get them. The upper limit is the largest value not greater than upq + 1.5

* iqr. That can be calculated in one line:

. egen upper = max(min(lexp, upq + 1.5 * iqr)), by(region)

That one line could bear some deconstruction, however. The outer max() is an egen

function, as the context implies. The inner min() is emphatically not another egen

function, as might be guessed: it is just the standard Stata function min(). Why is
that allowed here? Because the syntax of egen allows here an arbitrary expression,
indicated in the syntax diagram by exp. Often that expression is just one variable
name, but it could be more complicated. Here the entire expression is min(lexp,

upq + 1.5 * iqr). The expression could have been min(lexp, upq + 1.5 * (upq -

loq)), showing that the IQR variable is indeed redundant.

As before, the by(region) option ensures that maximums for the expression supplied
are calculated separately for each region.

For lower limits of whiskers, we can use the same tactic, except for swapping mini-
mum and maximum:

. egen lower = min(max(lexp, loq - 1.5 * iqr)), by(region)

We now have in hand all the ingredients we need. But one basic point needs empha-
sis. By construction, the values for the median, quartiles, and upper and lower limits
of the whiskers are repeated for each distinct value of region. If instead of comparing
groups we were comparing variables, then values would be repeated for each observation.
Unless we do nothing further, the graphical consequence will be repeated plotting of
the same information, which could be time-consuming and which leads to unnecessarily
bloated graph files. It would be important to do something about that in any program
with pretensions to efficiency, but for our purposes, we will set this detail aside, beyond
noting that collapse and egen, tag() offer some solutions.

2.2 Assembly

Let us jump immediately to a tolerable mock-up of a box plot and then talk through
all the details. Let me also stress that even Stata graph experts never write down code
just like this, unless they happen to have solved the problem a few minutes earlier and
have excellent memory. To get here requires much experiment and consultation of the
help. Figure 4 shows the result.
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. twoway rbar med upq region, pstyle(p1) blc(gs15) bfc(gs8) barw(0.35) ||
> rbar med loq region, pstyle(p1) blc(gs15) bfc(gs8) barw(0.35) ||
> rspike upq upper region, pstyle(p1) ||
> rspike loq lower region, pstyle(p1) ||
> rcap upper upper region, pstyle(p1) msize(*2) ||
> rcap lower lower region, pstyle(p1) msize(*2) ||
> scatter lexp region if !inrange(lexp, lower, upper), ms(Oh) mla(country)
> legend(off)
> xla(1 �" "Europe and" "Central Asia" "� 2 "North America" 3 "South America",
> noticks) yla(, ang(h)) ytitle(Life expectancy (years)) xtitle("")
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Figure 4. Box plots of life expectancy in 1998 for various countries in three regions, but
constructed entirely using twoway

Now the commentary:

1. The details may look scary in total, but note first the strategy, which is divide
and conquer. Different parts of twoway are enlisted to draw different parts of
the graph. Similarly, divide and conquer is the strategy to understand the code.
There is clearly no need to try to reproduce all the details produced by graph

box if you prefer something different.

2. region is a numeric variable, so we can plot against it. Its values are 1, 2, and
3, and value labels are attached, so it is already in good condition for graphics.
If you had a variable that was not in good condition, say, because it was a string
variable or a numeric variable that needed tidying up, then creating a new variable
with egen, group() with its label option is the best way to proceed. encode is
an alternative for string variables.

3. pstyle(p1) is a simple trick to enforce general consistency of style. You can then
depart from whatever results in your preferred directions.
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4. The boxes are drawn with twoway rbar, one from the median to the upper
quartile and one from the median to the lower quartile. A light outline color,
blcolor(gs15), is sufficient to indicate where the medians are. I chose as a
matter of personal taste a lighter color for the bar fill than the default in the
sj scheme. Light color for fill and dark color for outline are equally acceptable
statistically, and perhaps preferable aesthetically. barwidth(0.35) reflects my
personal taste: I regard the default boxes of graph box as a little fat. If the
values of the categorical variable did not differ by 1, a quite different bar width
would be needed.

5. The whiskers are drawn with twoway rspike, one from the lower quartile to the
lower end of the whiskers, and one from the upper quartile to their upper end.

6. The whiskers are capped using twoway rcap. Note that there is no typo in rcap

upper upper region or rcap lower lower region. The code was not rcap

upq upper region or rcap loq lower region to ensure that no caps are visible
interfering with the box. The marker size is twice default, but even so is much
less than the default of graph box, to say nothing of what can be obtained using
its capsize() option.

7. Clearly, the caps could be omitted if so desired, simply by omitting the calls to
twoway rcap. Why does the standard box plot design include them? It seems
to be an admission of weakness, namely, that the whiskers might be overlooked if
the graph did not emphasize where they end.

8. Data points beyond the whiskers are shown using scatter. Hollow circles given
by ms(Oh) are a personal choice as suitably prominent yet tolerating overlap well
(think of the overlapping rings of the Olympic symbol). Note the simple logic:
points within the range of the boxes and whiskers are inrange(lexp, lower,

upper) and so points beyond them are the logical complement, obtained by nega-
tion, !. See Cox (2006) for more on inrange() if so desired. Putting this into
words as “not in range” is a simple way of underlining what is being done.

9. Such data points are labeled using marker labels, mla(country). In this case,
defaults work fine. In other cases, we might want to tune marker label size or
other properties, as later examples will make clear.

10. All the different twoway calls produce a complicated legend, which we just sup-
press. So many different variables are being portrayed, from twoway’s point of
view, that we have to add our own y-axis title.

11. In this particular case, the value labels attached to region are over-abbreviated,
so we step in and provide our own. I agree with the designer of graph box that
axis ticks serve no useful purpose when distinct categories are being shown. The
default xtitle() would be the variable name region, which also is dispensable
here. (In other contexts, I routinely suppress variable names indicating date or
year when axis labels such as 1990 or 2000 make abundantly clear what is being
shown.)
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2.3 Horizontal

Clearly, we need to know how to produce horizontal box plots too. Here is a first stab,
with the result in figure 5:

. twoway rbar med upq region, horiz pstyle(p1) blc(gs15) bfc(gs8) barw(0.35) ||
> rbar med loq region, horiz pstyle(p1) blc(gs15) bfc(gs8) barw(0.35) ||
> rspike upq upper region, horiz pstyle(p1) ||
> rspike loq lower region, horiz pstyle(p1) ||
> rcap upper upper region, horiz pstyle(p1) msize(*2) ||
> rcap lower lower region, horiz pstyle(p1) msize(*2) ||
> scatter region lexp if !inrange(lexp, lower, upper), mla(country) legend(off)
> yla(1 �" "Europe and" "Central Asia" "� 2 "North America" 3 "South America",
> ang(h) noticks) xtitle(Life expectancy (years)) ytitle("")

Haiti
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South America

55 60 65 70 75 80
Life expectancy (years)

Figure 5. Horizontal box plots of life expectancy in 1998 for various countries in three
regions, but constructed entirely using twoway

The necessary changes are to add the horizontal option to calls to rbar, rspike,
and rcap and to swap y and x within the call to scatter (variables are swapped, x
options become y options, and vice versa).

The result is most of the way to where we want to be. The marker labels would be
better lifted clear of the whiskers. The x axis also needs to be lengthened a little to
give enough space for the text Haiti. A little experiment shows that the extra options
xsc(r(53,.)), mlabpos(12), and mlabgap(1.5) give those improvements; see figure 6.

(Continued on next page)
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. twoway rbar med upq region, horiz pstyle(p1) blc(gs15) bfc(gs8) barw(0.35) ||
> rbar med loq region, horiz pstyle(p1) blc(gs15) bfc(gs8) barw(0.35) ||
> rspike upq upper region, horiz pstyle(p1) ||
> rspike loq lower region, horiz pstyle(p1) ||
> rcap upper upper region, horiz pstyle(p1) msize(*2) ||
> rcap lower lower region, horiz pstyle(p1) msize(*2) ||
> scatter region lexp if !inrange(lexp, lower, upper), mla(country)
> mlabpos(12) mlabgap(1.5) xsc(r(53, .)) legend(off)
> yla(1 �" "Europe and" "Central Asia" "� 2 "North America" 3 "South America",
> ang(h) noticks) xtitle(Life expectancy (years)) ytitle("") ;
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South America

55 60 65 70 75 80
Life expectancy (years)

Figure 6. Horizontal box plots of life expectancy in 1998 for various countries in three
regions, with improved positioning of marker labels for outliers

3 Moving beyond standard designs

Provided that you are broadly familiar with how twoway works, you should now have a
sense that a small new world is open before you, in which you can add to, subtract from,
or otherwise vary box plot designs exactly as you wish. If you do this repeatedly, you
will want to encapsulate code for favored designs in a do-file or program. Explaining
that further would take us beyond the main story, but both the User’s Guide and Baum
(2009) are excellent sources of advice and examples.

3.1 Adding means

One common request, on Statalist and elsewhere, is to add means to box plots. For
this, you need an extra variable containing means. egen is again convenient:

. egen mean = mean(lexp), by(region)
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We need to add a scatter call to the code above:

scatter region mean, ms(Dh) msize(*2) ||

A simple but crucial detail is plotting the means after, and therefore on top of, the
boxes. Usually, although not inevitably, means will lie between the quartiles, and so
their symbols would disappear under the boxes otherwise. Figure 7 shows the result.

Haiti

Bolivia

Europe and
Central Asia

North America

South America

55 60 65 70 75 80
Life expectancy (years)

Figure 7. Horizontal box plots of life expectancy in 1998 for various countries in three
regions; diamond symbols indicate means

3.2 Connecting medians

Another common request is connecting medians. One context for this could be that the
box plots indicate variation within time periods. The connected medians thus would
emphasize variation between time periods. This request is met as previously, by adding
another twoway call such as

line median timevar, lw(*2)

or

line timevar median, lw(*2)

depending on whether plots are vertical or horizontal. Emphasis is added if and as
desired, here by doubling line width. As before, plot connecting lines after, and so on
top of, boxes.
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3.3 Unequal spacing

Nothing in the twoway route to box plots commits you to equal spacing of box plots.
Unequal spacing is perfectly possible: you just specify the positions of the box plots.
Binning of responses or residuals in unequal intervals of a covariate is one large class of
possible examples.

3.4 Variable width

If there were a desire for boxes of variable width, that could be met by repeated calls to
twoway rbar with differing barwidth() options. barwidth() requires a single number
as argument, and does not accept a numeric variable indicating width.

3.5 Percentile-based whiskers

Let us now imagine a different design in which whiskers are drawn out to 10% and 90%
points. Cleveland (1985) showed such box plots. They have three advantages over the
standard design. First, the definition of whiskers is of the same kind as the definition
of boxes. Second, almost always, we see some detail in the tails. The exceptions when
there is heavy tying in one or the other tail are also discernible. Third, to a very good
approximation, drawing such box plots commutes with any monotonic transformation
so that, for example, the box plot of a logged variable is the log of the box plot of the
variable on the original scale. Some minor inaccuracy may arise in practice because
quantiles may be calculated as the average of two order statistics: see the FAQ at
http://www.stata.com/support/faqs/graphics/boxandlog.html for more on this thorny
little detail.

Evidently, the choice of 10% and 90% is in no sense compulsory: other values may
suit some purposes better.

We will also ensure that all points outside the whiskers are labeled. Because we are
in complete control, we will go back to vertical, reverse box coloring and drop those
whisker caps that we do not much like.

We know how to get further percentiles:

. egen p10 = pctile(lexp), p(10) by(region)

. egen p90 = pctile(lexp), p(90) by(region)

There are no new tricks needed for the graph, or so we might think; see figure 8.

. twoway rbar med upq region, pstyle(p1) bfc(gs15) blc(gs8) barw(0.35) ||
> rbar med loq region, pstyle(p1) bfc(gs15) blc(gs8) barw(0.35) ||
> rspike upq p90 region, pstyle(p1) ||
> rspike loq p10 region, pstyle(p1) ||
> scatter lexp region if !inrange(lexp, p10, p90), ms(Oh) mla(country)
> mlabgap(1.5) legend(off)
> xla(1 �" "Europe and" "Central Asia" "� 2 "North America" 3 "South America",
> noticks) yla(, ang(h)) ytitle(Life expectancy (years)) xtitle("")
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Figure 8. Box plots of life expectancy in 1998 for various countries in three regions;
whiskers extend to 10% and 90% points of the distribution

A little mess of marker labels turns out to arise because Austria, Sweden, and
Switzerland tie at 79 years. Some experimenting indicates that we can just rotate two
of those labels away from the default position. Figure 9 is the improved graph.

. gen pos = cond(country == "Austria", 1, cond(country == "Sweden", 4, 3))

. twoway rbar med upq region, pstyle(p1) bfc(gs15) blc(gs8) barw(0.35) ||
> rbar med loq region, pstyle(p1) bfc(gs15) blc(gs8) barw(0.35) ||
> rspike upq p90 region, pstyle(p1) ||
> rspike loq p10 region, pstyle(p1) ||
> scatter lexp region if !inrange(lexp, p10, p90), ms(Oh) mla(country)
> mlabgap(1.5) legend(off) mlabvpos(pos)
> xla(1 �" "Europe and" "Central Asia" "� 2 "North America" 3 "South America",
> noticks) yla(, ang(h)) ytitle(Life expectancy (years)) xtitle("")

(Continued on next page)
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Figure 9. Box plots of life expectancy in 1998 for various countries in three regions;
whiskers extend to 10% and 90% points of each distribution; marker labels for Austria
and Sweden have been moved to avoid overlap

3.6 Other data structures

So far, we have considered only the case of one response variable, subdivided by groups
of a categorical variable. Box plots are often needed for other data structures. We need
to see that they are also within reach given a little technique.

Another dataset shipped with Stata contains temperature data for 956 cities in the
United States, including variables tempjan and tempjuly indicating mean monthly
temperatures for January and July. The cities are classified coarsely by region and
more finely by division. We will produce box plots of the Cleveland (1985) kind
for the two temperature responses tempjan and tempjuly, subdivided by division and
month.

We could just superimpose box plots for tempjan and tempjuly, but a reshape of
the data makes matters easier thereafter. reshape requires a unique identifier, so we
put the observation number into a new variable to act as a pacifier. The identifier will
play no role thereafter in our graphics. See the online help or [D] reshape if you need
more discussion.

. sysuse citytemp, clear

. gen id = _n

. reshape long temp, i(id) string j(month)

The new string variable month takes on two values, jan and july. The summary
statistics come from egen. The extra twist that we need to distinguish both division

and month is easily satisfied:
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. egen median = median(temp), by(division month)

. egen loq = pctile(temp), p(25) by(division month)

. egen upq = pctile(temp), p(75) by(division month)

. egen p10 = pctile(temp), p(10) by(division month)

. egen p90 = pctile(temp), p(90) by(division month)

division is an integer variable with values from 1 to 9 and value labels attached.
To show box plots for January and July side by side, we just need a position variable
in which months are offset. Cui (2007) gives further discussion of this simple trick. We
still want to use the value labels of division, so we assign them to the new variable.

. gen division2 = division + cond(month == "jan", -0.2, 0.2)

. label val division2 division

The code is now very similar to previous examples. Figure 10 gives the result.

. twoway rbar median upq division2, bfc(gs15) blc(gs8) barw(0.35) ||
> rbar median loq division2, bfc(gs15) blc(gs8) barw(0.35) ||
> rspike loq p10 division2 ||
> rspike upq p90 division2 ||
> scatter temp division2 if !inrange(temp, p10, p90), ms(o) legend(off)
> xaxis(1 2) xla(1/9, valuelabel noticks grid axis(1))
> xla(1/9, valuelabel noticks axis(2)) xtitle("", axis(1)) xtitle("", axis(2))
> yaxis(1 2) yla(14(18)86, ang(h) axis(2))
> yla(14 "-10" 32 "0" 50 "10" 68 "20" 86 "30", ang(h) axis(1))
> ytitle(mean temperature ({c 176}F), axis(2))
> ytitle(mean temperature ({c 176}C), axis(1))
> ysc(titlegap(0) axis(1)) ysc(titlegap(0) axis(2))
> plotregion(lstyle(p1))
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Figure 10. Box plots of mean temperatures in January (left plot in each group) and July
(right plot in each group) for various places in divisions of the United States; whiskers
extend to 10% and 90% points of each distribution
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Here we know that each division will take up less space than in previous graphs, so
we bump up the marker symbol to ms(o) so that they remain visible.

We also add a few twoway flourishes. Horizontal axis labels at the top as well as
the bottom of the graph ease look-up of division labels. 0◦F is of less importance than
32◦F as a reference temperature. We also align equivalent temperatures on Fahrenheit
and Celsius scales. Note the trick to get the degree symbol (Cox 2004).

Incidentally, when we look at the box plot to learn something about the data, we see
that the upper tail of Mid-Atlantic July temperatures is curiously truncated. Inspection
of the data shows that 20 places are all given a mean July temperature of 76.8◦F. This
is the highest temperature observed for that division but is also the 90% point, because
those 20 are more than 10% of the places in the division. Thus no places are plotted as
having a higher temperature than the 90% point. Hence the graph is correct in terms
of the data, but the graph has also told us something new about the data, which is as
it should be. People more familiar with how the U.S. Census reports temperature data
may be able to throw more light on this little mystery.

3.7 Convenience and efficiency

The stress in this column has been on getting results conveniently using standard com-
mands. It is nevertheless proper to repeat a note of caution sounded earlier. The
commands used here are not the most efficient way to get box plots, nor will the graph
files produced be as lean as they could be. For small or moderate datasets, you would
have to strain to notice that, but otherwise you might be bitten. Industrial-strength
alternatives to these commands would need to work at lower levels to optimize speed
and storage, by replacing calls to egen with direct calls to summarize and by ensuring
that the information defining box plot ingredients is not duplicated unnecessarily.

4 Conclusion

graph box and graph hbox are very useful commands, but they only do what they
claim to do. This column has shown an alternative way to create, and then to vary,
box plots, using egen for calculations and twoway for graphics. Once the problem is
broken down into components, it can be solved without any programming. That then
gives researchers scope for whatever variants of box plots are likely to prove interesting
and useful. Cleveland’s 1985 variant seems especially worthy of further consideration.

5 Errata to previous column

Marcel Zwahlen helpfully pointed out an inconsistency between an equation on p. 308
and the corresponding Mata code on p. 309 within the previous column (Cox 2009).
The equation was incorrect.
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K =
N2 − ∑I

i=1 n2
i∑I

i=1 ni − Nqi

should have been

K =
N2 − ∑I

i=1 n2
i∑I

i=1(ni − Nqi)2
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Stata tip 77: (Re)using macros in multiple do-files
Jeph Herrin
Yale School of Medicine
Yale University
New Haven, CT
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Local and global macros provide an extremely useful way to define (for example)
groups of values or variable names that can be (re)used in data management and anal-
ysis. For example, you may want to fit many different models using a given subset, or
several different subsets, of independent variables. So you might define

. local indvars1 "var1 var2"

. local indvars2 "var1 var2 var3 var4"

Thereafter, subsequent models can be easily specified with reference to the same sets
of variables:

. logit y �indvars1�

. regress y �indvars1�

. logit y �indvars2�

. regress y �indvars2�
However, users often like to define macros that can be referenced within several do-

files. One way to have macros persist across do-files is to use globals, but globals should
generally be reserved for macros that truly are wanted to be available in all contexts.
An alternative is to borrow from other programming environments the use of “header”
files, which contain preamble code that can be included at the top (or head) of each file
of code to make common definitions.

For this purpose, Stata offers the include command, which is similar to run except
that all local macro definitions are retained. See the manual entry [P] include for
complete details. In the above example, we could have a file called locals.do:

begin locals.do

local indvars1 "var1 var2"
local indvars2 "var1 var2 var3 var4"

end locals.do

Then, in any file in which we would like to use these local macros, we can simply
type

include locals.do

and thereafter refer to indvars1, indvars2, etc. If we subsequently want to modify the
independent variables in our lists, we need only edit the locals.do file. The changes
are automatically carried into other do-files that include that locals.do file.

c© 2009 StataCorp LP pr0047
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This very useful feature can also be used to define directory paths and other pro-
gramming data that we want to be available in local macros to all our do-files. For
instance, a useful definition is

local today=string(date("�c(current_date)�","DMY"),"%tdCCYY.NN.DD")
which creates a string containing the current date in a lexically ordered format. Includ-
ing this in a header file, and thence in all do-files, gives a standard way of adding a
sortable date suffix to all saved files. You may include more than one file, as well as
nesting includes, so that each project can include a project.do file that not only de-
fines project-specific macros but also includes a master.do, which defines more general
macros.

In summary, the use of include to call a file containing macro definitions allows
one instance of those local (or global) macros to be made easily available to multiple
do-files.
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Stata tip 78: Going gray gracefully: Highlighting subsets

and downplaying substrates
Nicholas J. Cox
Department of Geography
Durham University
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n.j.cox@durham.ac.uk

In graphics, as in life, going gray is often forced upon us, yet it is also occasionally a
deliberate choice. Journals may enforce publication of your graphs in black and white
whenever full-blown color is prohibited, or else prohibitively expensive. Even when
allowed, color may prove problematic for various and quite different reasons, ranging
from physiology and psychology to sociology and aesthetics. For example, many people
are red–green color-blind, while the spectral or rainbow sequence from red to violet is
not in fact perceived as a monotonic scale. Wilkinson (2005) and Ware (2008) give good
introductions to the use of color in visualization. Fortner and Meyer (1997) give a more
detailed discussion. Brewer (2005) gives many specific suggestions on color schemes,
which are as appropriate for statistical graphics as they are for cartography.

Choosing differing shades of gray is also worth consideration for positive reasons.
Expressing qualitative contrasts just with gray can be both effective and attractive. A
previous Stata tip (Cox 2005) showed how distinct values on an ordered scale could
be shown separately on scatterplots by markers of different gray-scale colors. This
tip expands the theme with further examples. Naturally, black and white themselves
qualify as extreme gray shades and may work very well. Here I will emphasize the use
of intermediate shades. Let me underline that the examples here use the sj scheme.
See [G] schemes intro for more information.

Consider the highlighting of subsets. You may want to show the distribution of a sub-
set with the distribution of the complete set as context. Unwin, Theus, and Hofmann
(2006); Chen, Härdle, and Unwin (2008); and Myatt and Johnson (2009) include sev-
eral examples of this device for various kinds of graphs.

On a histogram with a frequency scale, this can be done by laying down the dis-
tribution of the complete set first and plotting the distribution of the subset on top.
Display of the subset can never occlude the display of the complete set, because at most
all the observations in any bin belong to the subset.

For example, after reading in a dataset from the U.S. National Longitudinal Study
of Young Women in 1988,

. sysuse nlsw88

we may look at the wage distribution for college graduates compared with the complete
set. Figure 1 shows such a histogram.

c© 2009 StataCorp LP gr0040
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. twoway histogram wage, freq width(1) bcolor(gs14) blw(*.4) blcolor(black)
> || histogram wage if collgrad, yla(, ang(h)) xtitle(hourly wage (USD))
> ytitle(frequency) freq width(1) bcolor(gs6) blw(*.4) blcolor(black) legend(off)
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Figure 1. Wage distribution. College graduates are highlighted.

See [G] graph twoway histogram if you desire more detail on the command. The
important detail here is spelling out that you want the same binning for comparability,
as specified by width() and—if necessary—start(). Otherwise, the choices are matters
of taste. For a written report, the legend is arguably dispensable, because what is being
highlighted can be explained in the caption that you write within your word processor
or text editor, as in this tip. For a talk, the need to make a graph self-explanatory
might indicate otherwise.

The same distinction between complete set as backdrop and subset as highlight can
be used in other plots. We will look at a scatterplot of wage against educational grade
completed. Grade is discrete, but wage is not. We will do our own jittering of grade
(only) by adding uniform noise beforehand, if only because that ensures consistency
between graphs, and we plot wage on a logarithmic scale. Figure 2 shows a scatterplot
with college graduates highlighted once again.

. generate grade2 = grade + .5 * (runiform() - .5)

. label var grade2 "�: var label grade�"

. scatter wage grade2, ms(Oh) mc(gs10) ysc(log)
> || scatter wage grade2 if collgrad, legend(off) ms(O) mc(gs2) ysc(log)
> ytitle(hourly wage (USD)) xla(0 4/18) yla(40 20 10 5 2, ang(h))
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Figure 2. Wage and grade. College graduates are highlighted. Grade is jittered to give
a better impression of variation.

Note that the ‘: ’ construct inserts a variable label on the fly; see [P] macro

for more details. Hollow and filled marker symbols, such as Oh and O, are helpfully
complementary.

Sometimes we want to highlight an exploratory smooth or a fitted model pre-
diction and correspondingly downplay the substrate of the data. With this dataset,
noneconomists can join economists in being unsurprised at the great variability of wage
within grade. All are likely to be much more interested in the average relationship. Nev-
ertheless, suppressing the data on a graph would often be excessive, if not dishonest.
Let us first smooth on a logarithmic scale using restricted cubic splines, experimenting
only with default choices; [R] mkspline includes details and references. Note that the
smooth is calculated for the unjittered grades.

. gen lnwage = ln(wage)

. mkspline spline = grade, cubic

. regress lnwage spline?

. predict smooth

Figure 3 shows a scatterplot with overlaid smooth. We have to do a little work to
get y-axis labels in dollars. See Cox (2008) for further discussion. The logic, however,
is easy: we just need to spell out which axis labels we want and where to put them.
With this scheme, Stata automatically makes the scatterplot lighter than black, but it
seems that we can fairly go further.

. scatter lnwage grade2, || mspline smooth grade, xla(0 4/18)
> legend(off) ytitle(hourly wage (USD))
> yla(�= ln(40)� "40" �=ln(20)� "20" �=ln(10)� "10" �=ln(5)� "5" �=ln(2)� "2",
> ang(h))
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Figure 3. Restricted cubic spline smooth of wage versus grade on a logarithmic scale.
Grade is jittered to give a better impression of variation in data.

Figure 4 shows the data points using a lighter gray and increases the width of the
smooth. The result is likely to be closer to the researcher’s message.

. scatter lnwage grade2, mcolor(gs10) || mspline smooth grade, lw(*3) lp(solid)
> xla(0 4/18) legend(off) ytitle(hourly wage (USD))
> yla(�= ln(40)� "40" �=ln(20)� "20" �=ln(10)� "10" �=ln(5)� "5" �=ln(2)� "2",
> ang(h))
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Figure 4. Restricted cubic spline smooth of wage on a logarithmic scale. Grade is jittered
to give a better impression of variation in data. Note how the data are downplayed and
the smooth highlighted compared with figure 3.
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The ideas here can be taken in various further directions. Gray scale can be good
for showing the scaffolding of the graph (axes, grids, and so forth) in a subdued but
still discernible manner. Highlighting subsets can be extended to show three or more
subsets. For example, to show a frequency-based histogram of three subsets, lay down
the total distribution of all, followed by the total of two, followed by that of one, so that
occlusion produces the desired effect. Alternatively, use graph bar or graph hbar to
produce stacked or subdivided bars, introducing as much or as little histogram style as
desired.
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Stata tip 79: Optional arguments to options

Nicholas J. Cox
Department of Geography
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Durham, UK

n.j.cox@durham.ac.uk

Programmers occasionally would like an option for a program to come in two flavors:
a simple or default option, with no arguments, and a more complicated but more flexible
alternative, with arguments. For example, the simple option might call up a graph with
programmer-chosen defaults, while the complicated option might pass graph options to
the graph command in question, signaling variations from those defaults.

With a simple trick, you can implement two options that appear to the user to be
this single option that is either simple or complicated. Following age-old programmer
jargon, let us imagine an option that can be foobar or foobar(arguments).

Step 1: Declare to syntax that there are two options, say, foobar and FOOBAR2(), and
the latter is precisely, say, FOOBAR2(string). The outburst of uppercase letters
indicates to syntax that the latter can be abbreviated foobar(). You can also
indicate names that can be abbreviated more, say, FOObar and FOObar2(string).

Step 2: Process input within your program. For example,

if "�foobar��foobar2�" != ""

is a test of whether either option has been called. If foobar2() has been called,
then the local macro foobar2 will be defined and can be treated further. If the
argument to foobar2() might itself contain quotation marks, then compound
double quotes, ‘" "’, are in order.

Step 3: In documentation for the user, you need not mention the two options but may
merely declare that the syntax is that an argument is optional, e.g.,
foobar

[
(string)

]
.

If curious users find out by looking at the code that the option with arguments is re-
ally foobar2(), no harm is done. They would be partway to working out, independently
of this tip, how the optional options are coded. Browsing code and borrowing tricks
that you want to use yourself remains one of the best ways to grow as a programmer.
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