

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal (2009)
9, Number 3, pp. 466–477

Multiple imputation of missing values: Further

update of ice, with an emphasis on categorical

variables

Patrick Royston
Hub for Trials Methodology Research

MRC Clinical Trials Unit and University College London
London, UK

pr@ctu.mrc.ac.uk

Abstract. Multiple imputation of missing data continues to be a topic of con-
siderable interest and importance to applied researchers. In this article, the ice

package for multiple imputation by chained equations (also known as fully con-
ditional specification) is further updated. Special attention is paid to categorical
variables. The relationship between ice and the new multiple-imputation system
in Stata 11 is clarified.

Keywords: st0067 4, multiple imputation, chained equations, categorical variables,
negative binomial distribution, ice, uvis, mi

1 Introduction
Royston (2004) introduced mvis, an implementation for Stata of multiple imputation
by chained equations (MICE), a method of multiple multivariate imputation of missing
values under missing-at-random (MAR) assumptions. The name of the main command
was changed to ice (imputation by chained equations) in Royston (2005a). Two updates
of ice have followed (Royston 2005b, 2007). This article presents a further update; the
focus is on categorical variables. The main features are a considerable simplification
of how imputation models for categorical variables are specified and revision of the
conditional() option.

The ice system comprises three ado-files: ice, ice , and uvis. Previous compo-
nents micombine, mijoin, misplit, and ice reformat are out of date and have been
removed. micombine has been superseded by a more comprehensive command, mim

(Carlin, Galati, and Royston 2008), itself recently updated with new features (Royston,
Carlin, and White 2009).

Before describing the new features, it is important to clarify the impact of the
Stata 11 multiple-imputation system on ice.

2 ice, uvis, and the Stata 11 multiple-imputation system
The ice program was written for Stata 9 and above to perform imputation via chained
equations (van Buuren, Boshuizen, and Knook 1999). On 27 July 2009, Stata 11 was
released, bearing a major new feature: the mi system for multiple imputation and esti-

c© 2009 StataCorp LP st0067 4

P. Royston 467

mation of models with multiply imputed data. The system comprises a new database ar-
chitecture for imputed datasets; utilities for manipulating, checking, and validating such
datasets; a sequence of commands for doing imputation, mi impute; and a command
for combining estimation results using Rubin’s rules, mi estimate; see the Stata 11

Multiple-Imputation Reference Manual (StataCorp 2009) for details. Many (but not
all) of the univariate imputation models available in uvis are replicated in new com-
mands of the form mi impute XXX, where XXX is a keyword, such as regress for lin-
ear regression. Multivariate imputation in Stata 11 can be performed using mi impute

monotone when the missingness pattern is monotone and using mi impute mvn when
the missingness pattern is arbitrary. mi impute monotone implements a noniterative
imputation method based on a sequence of independent univariate conditional specifi-
cations. It is similar to the implementation of option monotone of ice. mi impute mvn

performs multivariate imputation assuming that the data have a multivariate normal
distribution. It implements the NORM method of Schafer (1997)—an iterative Markov
chain Monte Carlo method (data augmentation) based on multivariate normality. ice

implements an alternative iterative multivariate imputation method based on a sequence
of univariate full conditional specifications, also known as imputation via chained equa-
tions. Thus ice is not replicated in Stata 11 and is still needed for performing multiple
imputation by chained equations for data with arbitrary patterns of missingness.

The mi import ice and mi export ice commands in Stata 11 make it easy to
transport data between the existing ice data format and the official mi data format
introduced in Stata 11. An intermediate step in integrating ice more completely into
Stata 11 is a program called mi ice. The files can be installed from my web page
(net from http://www.homepages.ucl.ac.uk/~ucakjpr/stata/) under the heading
mi ice. The next step is the development of a full-featured new command for Stata 11,
likely to be called mi impute ice. Because in many people’s eyes the flexibility of fully
conditional specification embedded in the MICE algorithm offers several advantages over
the multivariate normal approach, I expect ice and its sequels to continue to be used
and useful in Stata 11.

3 Syntax

ice mainvarlist
[
if

] [
in

] [
weight

] [
, boot

[
(varlist)

]
by(varlist) cc(varlist)

clear cmd(cmdlist) conditional(condlist) cycles(#) dropmissing dryrun

eq(eqlist) eqdrop(eqdroplist) genmiss(string) id(newvar) interval(intlist)

m(#) match
[
(varlist)

]
monotone noconstant nopp noshoweq noverbose

nowarning on(varlist) orderasis passive(passivelist) persist

restrict(
[
varname

] [
if

]
) saving(filename

[
, replace

]
) seed(#)

substitute(sublist) trace(trace filename)
]

where a typical element of mainvarlist is
[
i. | m. | o.

]
varname.

468 Multiple imputation of missing values

uvis regression cmd {yvar | llvar ulvar} xvarlist
[
if

] [
in

] [
weight

]
,

gen(newvar)
[
boot match by(varlist) noconstant nopp noverbose replace

restrict(
[
varname

] [
if

]
) seed(#)

]

where regression cmd may be intreg, logistic, logit, mlogit, ologit, nbreg, or
regress. All weight types supported by regression cmd are allowed. llvar and ulvar

are required with uvis intreg. Variables imputed using nbreg must be nonnegative
but are not restricted to integer values.

4 What is new?

The principal changes to ice (version 1.7.3) and uvis (version 1.5.5) compared with
the December 2007 release (Royston 2007) (versions 1.4.4 and 1.2.7, respectively) are
as follows:

1. ice and uvis now require Stata 10.1. (Strictly speaking, only the new nega-
tive binomial regression option requires Stata 10.1; all other features work under
Stata 9.2 or higher.)

2. ice understands an abbreviated syntax for multilevel categorical variables to be
imputed using ologit or mlogit. This important feature is described in detail
below.

3. Negative binomial regression is available via the cmd(varlist: nbreg) option in
ice, or via uvis nbreg, to impute count or count-like data. Typically, such
data a) are integer-valued, b) are nonnegative, and c) have variance exceeding the
mean. Noninteger variables are allowed, although their missing values are imputed
as integers. Negative values are disallowed.

4. The syntax and operation of the conditional() option of ice have changed
substantially (as described below).

5. A by() option has been added to ice and uvis to support imputation in inde-
pendent subsets of the data (as described below).

6. A restrict() option has been added to ice and uvis to allow one to fit models
on a specified subsample but impute missing data for the entire estimation sample
(as described below).

7. A clear option has been added to ice to allow the imputed data to reside in
memory without (yet) having been (manually) saved to a file using Stata’s save

command.

8. An eqdrop() option has been added to ice to delete variables from prediction
equations.

9. A persist option has been added to ice to ignore errors from uvis when imputing
a “difficult” variable.

P. Royston 469

5 Options for ice and uvis

Only new or changed options are described.

5.1 Options for ice

clear clears the original data from memory and loads the imputed dataset. Unless the
saving() option is also specified, the data in memory are not permanently saved;
this must then be done manually using the save or the saveold command.

conditional(condlist) invokes conditional imputation. Each item of condlist has the
form varlist: if condition. Items are separated by a backslash (\). Members of
varlist are imputed only for the subset of observations for which if condition is
true (i.e., condition evaluates to a nonzero quantity). Observations on all members
of varlist for which if condition is false (i.e., condition evaluates to zero) are left
unchanged. condition must be a Stata expression constructed so that if condition

is meaningful and valid for the current dataset. Note that variables appearing in
condition may be members of mainvarlist or merely variables in the dataset. This
is the only situation in which variables that do not appear in mainvarlist may be
used in an ice command. Examples of its use are given in the help file.

eqdrop(eqdroplist) deletes variables from prediction equations. The syntax of eq-

droplist is varname1: varlist1
[
, varname2: varlist2 . . .

]
, where each varname#

(or varlist#) is a member (or subset) of mainvarlist. One can only remove predic-
tors from equations for variables with missing values (although trying to remove
predictors from nonexistent equations is not a fatal error; an information message is
issued). Variable names prefixed by i. are allowed, provided that the names were
prefixed by i., m., or o. in mainvarlist. They are translated to the corresponding
dummy variables created by xi:.

noverbose suppresses the display of the imputation number (as #) and cycle number
within imputations (as .), which show the progress of the imputations.

persist causes ice to ignore errors raised by uvis when trying to impute a “difficult”
variable or impute with a model that is difficult to fit to the data at hand. Trying to
impute a difficult variable by using the ologit or mlogit command is the most com-
mon cause of failure. By default, ice stops with an error message. With persist,
ice continues to the next variable to be imputed, not updating the variable that
raised an error. Often, by chance, the same variable is successfully updated in a
subsequent cycle, and no damage is done to the imputation process.

If the error for a given variable appears in every cycle, you should consider changing
the prediction equation for that variable, because its imputed values are unlikely to
be appropriate.

restrict(
[
varname

] [
if

]
) specifies that imputation models be computed using the

subsample identified by varname and if. The subsample is defined by the observa-
tions for which varname!=0 that also meet the if conditions. Typically, varname=1

470 Multiple imputation of missing values

defines the subsample and varname=0 indicates observations not belonging to the
subsample. For observations whose subsample status is uncertain, varname should
be set to a missing value; such observations are dropped from the subsample. By
default, ice fits imputation models and imputes missing values using the sample of
observations identified in the

[
if

]
and

[
in

]
expressions. The restrict() option

identifies a subset of this sample to be used for model estimation. Imputation is
restricted to the sample identified in the

[
if

]
and

[
in

]
expressions. Thus predic-

tions and their associated imputations are made “out of sample” with respect to the
subsample defined by restrict(). Examples of its use are given in the help file.

5.2 Options for uvis

noverbose suppresses nonerror messages while uvis is running.

restrict(
[
varname

] [
if

]
); see the equivalent option for ice.

6 Simplified syntax for imputing multilevel categorical
variables

6.1 Handling multilevel categorical variables

Experience and common sense suggest that correctly handling a multilevel categorical
variable, say, x, in ice presents problems for users, for three reasons: 1) the user must
decide on and specify an imputation model for predicting x, choosing between mlogit for
unordered variables (the default) and ologit for ordered variables; 2) dummy variables
corresponding to the levels of x need to be “passively” imputed (i.e., reconstructed
from the imputed values of x) following imputation of x; and 3) the dummy variables
need to substitute for x in equations for other variables in which x is a predictor.
ice comprehensively handles these three aspects through the cmd(), passive(), and
substitute() options, respectively. Consider the following example, which uses data
from a case–control study in leprosy.

Between 1980–1984, a population of about 112,000 people living in Northern Malawi
were screened for leprosy (Fine et al. 1986). New cases of leprosy in initially uninfected
people were identified during a follow-up period of five years (Pönnighaus et al. 1992).
For illustrative purposes, we use data from a substudy in which controls without leprosy
at baseline were selected at random from the screened population. The aim is to assess
the effect of BCG vaccination (bcg) on the incidence of leprosy. Covariates are age, sex,
house, and school.

P. Royston 471

. use lep
(1:4 unmatched leprosy and bcg)

. tabulate school, generate(s)

Schooling Freq. Percent Cum.

none 282 22.19 22.19
1-5yr primary 606 47.68 69.87
6-8yr primary 350 27.54 97.40

secondary/tertiary 33 2.60 100.00

Total 1,271 100.00

. tabulate house, generate(h)

Housing Freq. Percent Cum.

burnt brick 240 19.25 19.25
sun-dried bricks or pounded mud 295 23.66 42.90

wattle and daub 679 54.45 97.35
temporary shelter 33 2.65 100.00

Total 1,247 100.00

. ice d age sex bcg school s2 s3 s4 house h2 h3 h4, clear m(5)
> substitute(school:s2 s3 s4, house:h2 h3 h4) passive(s2:school==1 \
> s3:school==2 \ s4:school==3 \ h2:house==1 \ h3:house==2 \ h4:house==3)
> cmd(school:ologit, house:mlogit)

#missing
values Freq. Percent Cum.

0 1,186 86.57 86.57
4 146 10.66 97.23
8 38 2.77 100.00

Total 1,370 100.00

Variable Command Prediction equation

d [No missing data in estimation sample]
age [No missing data in estimation sample]
sex [No missing data in estimation sample]
bcg [No missing data in estimation sample]

school ologit d age sex bcg h2 h3 h4
s2 [Passively imputed from school==1]
s3 [Passively imputed from school==2]
s4 [Passively imputed from school==3]

house mlogit d age sex bcg s2 s3 s4
h2 [Passively imputed from house==1]
h3 [Passively imputed from house==2]
h4 [Passively imputed from house==3]

Imputing1..........2..........3..........4..........5
[note: imputed dataset now loaded in memory]

Warning: imputed dataset has not (yet) been saved to a file

The variables school and house are categorical, each having four levels. school is
the number of years of schooling and is ordinal, whereas house is the type of dwelling
and is unordered. Hence school may be modeled by using ologit, and house may be
modeled by using mlogit.

472 Multiple imputation of missing values

The specification of the ice command involves creating the dummy variables s2,
s3, and s4 for school and h2, h3, and h4 for house, and using the passive() and
substitute() options to manage the two sets of three dummy variables. The setup
takes some effort and looks quite complicated, even in a simple example such as the
present one. With more such variables (and ice specifications can have many), the
complexity and potential for making errors increase considerably.

6.2 The m. and o. prefixes

Now consider the following, which is an identical setup but uses a new, more streamlined
syntax:

. use lep, clear
(1:4 unmatched leprosy and bcg)

. ice d age sex bcg o.school m.house, clear m(5)

=> xi: ice d age sex bcg school i.school house i.house, cmd(house:mlogit,
> school:ologit) substitute(school:i.school, house:i.house) clear m(5)

i.school _Ischool_0-3 (naturally coded; _Ischool_0 omitted)
i.house _Ihouse_0-3 (naturally coded; _Ihouse_0 omitted)

#missing
values Freq. Percent Cum.

0 1,186 86.57 86.57
1 146 10.66 97.23
2 38 2.77 100.00

Total 1,370 100.00

Variable Command Prediction equation

d [No missing data in estimation sample]
age [No missing data in estimation sample]
sex [No missing data in estimation sample]
bcg [No missing data in estimation sample]

school ologit d age sex bcg _Ihouse_1 _Ihouse_2 _Ihouse_3
_Ischool_1 [Passively imputed from (school==1)]
_Ischool_2 [Passively imputed from (school==2)]
_Ischool_3 [Passively imputed from (school==3)]

house mlogit d age sex bcg _Ischool_1 _Ischool_2 _Ischool_3
_Ihouse_1 [Passively imputed from (house==1)]
_Ihouse_2 [Passively imputed from (house==2)]
_Ihouse_3 [Passively imputed from (house==3)]

Imputing1..........2..........3..........4..........5
[note: imputed dataset now loaded in memory]

Warning: imputed dataset has not (yet) been saved to a file

ice accepts o.school and m.house as a sufficient specification of how to model
these two variables. The program does the necessary work of setting up the required
passive() and substitute() options, creating dummy variables and defining sensible
prediction equations. ice invokes Stata’s xi: command to produce the variables labeled
in standard fashion, Ischool 1, etc. The “expanded” ice command is displayed before
the tables of missing values and prediction equations are presented.

P. Royston 473

Now suppose that we wanted the prediction equation for school to be d age

Ihouse 1 Ihouse 2 Ihouse 3 rather than the default equation, which also includes
sex bcg. To specify this, we use the i. prefix within the eq() option for school to
signify the I* variables for house:

. ice d age sex bcg o.school m.house, eq(school: d age i.house) dryrun

=> xi: ice d age sex bcg school i.school house i.house, cmd(house:mlogit,
> school:ologit) substitute(school:i.school, house:i.house) eq(school: d age
> i.house) dryrun

(output omitted)

Variable Command Prediction equation

d [No missing data in estimation sample]
age [No missing data in estimation sample]
sex [No missing data in estimation sample]
bcg [No missing data in estimation sample]

school ologit d age _Ihouse_1 _Ihouse_2 _Ihouse_3
_Ischool_1 [Passively imputed from (school==1)]
_Ischool_2 [Passively imputed from (school==2)]
_Ischool_3 [Passively imputed from (school==3)]

house mlogit d age sex bcg _Ischool_1 _Ischool_2 _Ischool_3
_Ihouse_1 [Passively imputed from (house==1)]
_Ihouse_2 [Passively imputed from (house==2)]
_Ihouse_3 [Passively imputed from (house==3)]

End of dry run. No imputations were done, no files were created.

Finally, an additional advantage of the m. and o. syntax is that the number of
missing values is counted correctly. In the original syntax, missing values are multi-
ply counted due to inclusion of the dummy variables with the “parent” variables in
mainvarlist.

6.3 The i. prefix

The other new feature is the i. prefix, which simply applies xi: to the variable in
question. (Note: Do not confuse the i. prefix in ice with the same syntax in Stata 11,
which indicates a factor variable. At this point, ice does not support factor variables;
it may do so in the future.) It is important to emphasize that for the i. prefix to work
correctly with a multilevel categorical variable, the latter must have no missing data in

the estimation sample, that is, it must be complete except when all other variables in
mainvarlist have missing values. This condition is checked by ice and an error message
is issued if it is violated. The i. prefix automatically handles the resulting dummy
variables in the correct manner, that is, they become predictors for other variables but
are not themselves imputed (because they are assumed to have no missing data). If a
categorical variable does have missing data, either the m. or the o. prefix must be used
to invoke the machinery needed to create a valid set of imputation models.

To clarify further, consider the following example with the leprosy data:

474 Multiple imputation of missing values

. use lep, clear
(1:4 unmatched leprosy and bcg)

. ice age sex bcg i.school, dryrun

=> xi: ice age sex bcg i.school, dryrun

i.school _Ischool_0-3 (naturally coded; _Ischool_0 omitted)

#missing
values Freq. Percent Cum.

0 1,271 92.77 92.77
1 99 7.23 100.00

Total 1,370 100.00

99 missing values of variable school found in the estimation sample

variables with an i. prefix must be complete in the estimation sample
you can use an m. or o. prefix to impute incomplete variables of this type

1 specification error(s) found
r(198);

Using i.school invokes xi: as expected. However, because we have not specified
what is to happen to the dummy variables Ischool 1, Ischool 2, and Ischool 3,
and because they each have 99 missing values, we find that each of them is independently
predicted from the other two dummy variables and age, sex, and bcg. This is clearly
incorrect. The correct solution is either ice age sex bcg m.school or ice age sex

bcg o.school, depending on how school is to be modeled.

7 Conditional imputation—the conditional() option

Consider an (artificial) dataset including the variables age, female, and pregnant,
where age is continuous, approximately normally distributed and has missing values;
female is binary (1 for females, 0 for males) and is complete; and pregnant is binary
(1 for pregnant, 0 for not pregnant) and also has missing values. Such a dataset is
supplied in pregnant.dta. Suppose that the probability of being pregnant is related to
age. Because males cannot be pregnant, we do not wish to impute pregnancy in males;
we should therefore impute missing values of pregnant using age in females only:

P. Royston 475

. use pregnant, clear
(Artificial dataset on pregnancy and age)

. ice age pregnant female, conditional(pregnant: if female==1) dryrun

#missing
values Freq. Percent Cum.

0 388 77.60 77.60
1 110 22.00 99.60
2 2 0.40 100.00

Total 500 100.00

Variable Command Prediction equation

age regress pregnant female
pregnant logit age if female==1

female [No missing data in estimation sample]

End of dry run. No imputations were done, no files were created.

The prediction equation for age is pregnant female, whereas the equation for pregnant
is just age of the females. It is important here that the values of pregnant are cor-
rectly defined as 0 for males, even though imputation of pregnant is not performed
for female==0. If pregnant were set to, say, −1 for males, then ice would see three
distinct values of pregnant. It would try to impute pregnant using mlogit rather than
logit, which would cause an error.

More than one conditional imputation can occur in the same run. Suppose, for
example, that the dataset included a variable with missing values called fertile, giving
the result of a female fertility test and coded 1 = fertile, 0 = infertile. In ice, one might
specify this case as

ice age pregnant female fertile, ///
conditional(pregnant: if female==1 & fertile==1 \ fertile: if female==1) dryrun

to reflect that only fertile females can become pregnant and only females have a fertility
test. If males had also had a fertility test, the phrase fertile: if female==1 would
have been omitted.

8 Out-of-sample imputation—the restrict() option

The restrict() option is designed for situations in which one wishes to fit imputation
equations to a subset of the observations but make imputations across the entire dataset.
An example is a “validation study” in which a primary dataset is used to determine
and estimate a multivariable model of some kind and a secondary dataset is available to
test the accuracy of the model. Both the primary and the secondary datasets may have
missing values. The combined (primary + secondary) dataset would typically include a
variable, say, primary, coded as 1 for the primary and 0 for the secondary dataset. A
schematic ice run to impute missing values out of sample in the secondary dataset is

ice mainvarlist, restrict(primary) <other stuff> ...

476 Multiple imputation of missing values

The imputation models would be estimated on the subset primary != 0, and multiple
imputation of the subset consisting of all nonmissing values of primary would be done.
See the ice help file for further comments on this option.

9 Imputation in independent subsets—the by() option

Using by(varlist) performs multiple imputation separately for all combinations of the
variables in varlist. Observations with missing values for any members of varlist are
excluded.

An application of by() is in randomized trials, where interactions as yet uniden-
tified between treatment and patient characteristics (covariates) may be present. If
imputation is not done separately for each treatment group, estimates of interactions
with treatment in the analysis model are biased toward zero. The by() approach may
be useful more generally for coping with interactions with a categorical variable.

Common sense must be applied to the by() option. For example, if by(varlist)

subdivides the dataset too finely, the imputation models may become unstable and
imprecise, compromising the quality of the imputations.

10 Conclusion

Development of ice continues as new features are requested by users or considered by
the author to be worthwhile. Closer integration with Stata 11 mi will follow in due
course. The syntax for categorical variables should prove particularly helpful for users
and for teachers of multiple imputation in Stata.

11 Acknowledgments

Ian White suggested and partly coded the prefix syntax for categorical variables and
the negative binomial regression command for ice and uvis. I am grateful to Dr Paul
Fine for permission to use the leprosy data and to Yulia Marchenko for remarks on the
Stata 11 mi system.

12 References

Carlin, J. B., J. C. Galati, and P. Royston. 2008. A new framework for managing and
analyzing multiply imputed data in Stata. Stata Journal 8: 49–67.

Fine, P. E. M., J. M. Pönnighaus, N. Maine, J. A. Clarkson, and L. Bliss. 1986. Pro-
tective efficacy of BCG against leprosy in northern Malawi. Lancet ii: 499–502.

Pönnighaus, J. M., P. E. M. Fine, J. A. C. Sterne, R. J. Wilson, E. Msosa, P. J. K.
Gruer, P. A. Jenkins, S. B. Lucas, G. Liomba, and L. Bliss. 1992. Efficacy of BCG

vaccine against leprosy and tuberculosis in Northern Malawi. Lancet 339: 636–639.

P. Royston 477

Royston, P. 2004. Multiple imputation of missing values. Stata Journal 4: 227–241.

———. 2005a. Multiple imputation of missing values: Update. Stata Journal 5: 188–
201.

———. 2005b. Multiple imputation of missing values: Update of ice. Stata Journal 5:
527–536.

———. 2007. Multiple imputation of missing values: Further update of ice, with an
emphasis on interval censoring. Stata Journal 7: 445–464.

Royston, P., J. B. Carlin, and I. R. White. 2009. Multiple imputation of missing values:
New features for mim. Stata Journal 9: 252–264.

Schafer, J. L. 1997. Analysis of Incomplete Multivariate Data. Boca Raton, FL: Chap-
man & Hall/CRC.

StataCorp. 2009. Stata 11 Multiple-Imputation Reference Manual. College Station, TX:
Stata Press.

van Buuren, S., H. C. Boshuizen, and D. L. Knook. 1999. Multiple imputation of missing
blood pressure covariates in survival analysis. Statistics in Medicine 18: 681–694.

About the author

Patrick Royston is a medical statistician with 30 years of experience who has a strong interest
in biostatistical methods and in statistical computing and algorithms. He now works in cancer
clinical trials and related research issues. Currently, he is focusing on problems of model
building and validation with survival data, including prognostic factor studies; on parametric
modeling of survival data; on multiple imputation of missing values; and on novel clinical trial
designs.

