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Abstract. In statistics, two-sample tests are used to determine whether two sam-
ples have been drawn from the same population. An example of such a test is the
widely used Kolmogorov–Smirnov two-sample test. There are other distribution-
free tests that might be applied in similar occasions. In this article, we describe a
two-sample omnibus test introduced by Epps and Singleton, which usually has a
greater power than the Kolmogorov–Smirnov test although it is distribution free.
The superiority of the Epps–Singleton characteristic function test is illustrated in
two examples. We compare the two tests and supplement this contribution with
a Stata implementation of the omnibus test.
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1 Introduction

In many empirical scientific fields, statistical tests are used to determine whether two
samples have been drawn from the same population. The commonly used procedure
is to test the data in question against the null hypothesis, H0, that the underlying
distributions of the two samples are equal. The Kolmogorov–Smirnov two-sample (KS)
test, the Wilcoxon–Mann–Whitney rank-sum (MW) test, and the Epps–Singleton (ES)
test are examples of this approach. Implementations of the KS and MW tests are included
in Stata. In this article, we introduce a Stata implementation of the ES test. The KS

and ES tests are able to detect differences in distributions—be it by location, scale, or
family. The MW test detects only locational shifts. The reason for this is its directional

1. Any opinions expressed in this paper are those of the authors and do not reflect the opinion of the
Bundesbank.
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alternative hypothesis, H1, which states that the underlying distribution of one sample
is stochastically larger than the underlying distribution of the other sample.

It has been shown by Epps and Singleton (1986) that the ES test is usually more
powerful than the KS test. There exists one more advantage of the ES test over the
KS test: An assumption of the KS test is that the data are drawn from a continuous
distribution. Contrary to that, both continuous and discrete data may be used for the
ES test. This also holds true for the MW test.

In the following, the rationale of the ES test is described. We next explain the syntax
of the Stata implementation. Then we apply the tests to two examples and compare
the results. Finally, we close with some short conclusions.

2 The ES test

In this section, we give a brief outline of the ES test and concentrate on the important
relations and functions. Hereby, we limit our remarks to a description of the procedure
and leave out details on proofs and derivations. The interested reader can find these
details in the original paper by Epps and Singleton (1986).

The p-value of the ES test gives the probability of falsely rejecting H0 that both
samples have been drawn from the same population. It tests for dissimilarities by
comparing the empirical characteristic functions, φ1(t) and φ2(t), of the two samples
instead of the observed distributions, F1 and F2.

The empirical characteristic function is the Fourier transform of the observed distri-
bution function. The characteristic function of a distribution can be used to conveniently
derive its moments and thus contains more information than just one measure, like the
mean, the median, or the variance. However, this also holds true for the probability
density. Additionally, the use of the probability density is more intuitive than the use
of the characteristic function. Epps (1993) describes the geometrical representation of
the characteristic function as the center of mass of a distribution wrapped around the
unit circle in the complex plane. These caveats raise doubts on the necessity of applying
them: Why should one use the empirical characteristic function for statistical tests?

One advantage of the characteristic function is that it can be used as a representa-
tion of distributions whose probability densities cannot be specified. One example is the
family of alpha-stable distributions introduced by Paul Lévy, where only three distri-
butions (Gaussian, Cauchy, and Lévy) in closed form for densities are known. Typical
applications for distributions whose forms are not closed are models with returns from
stock markets (Epps 1993; Borak, Härdle, and Weron 2005).

Another advantage, and more relevant here, is that the characteristic function is
completely defined for discrete and continuous data, while the distribution function is
completely defined only for continuous data. For discrete data, the distribution function
is defined only in certain points.
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An important prerequisite for the application of the test is that all observations are
independent, both within and across samples. The null hypothesis of the test states

H0 : φ1(t) = φ2(t),with −∞ < t < ∞
The characteristic function is defined as φk(t) =

∫ ∞

−∞
eitxdFnk

(x), where t is a real

number and i =
√
−1. For a sample, k, with a size of nk, with Xkm denoting the mth

observation in sample k, and a distribution function Fnk
(x), the empirical characteristic

function is defined as

φnk
(t) =

∫ ∞

−∞

eitxdFnk
(x) = n−1

k

nk∑

m=1

eitXkm

To make use of the characteristic function for the ES test, a set of parameters
t1, t2, . . . , tJ has to be chosen. For the sake of applicability, these parameters need to be
calibrated to provide the test with a sufficient power against a broad class of alternatives.
Epps and Singleton (1986) did simulations with nine different families of distributions2

in 30 samples altogether. They found that with t1 = 0.4 and t2 = 0.8 (J = 2), the test
performed optimally, conditional on their sample of 30 comparisons. In the following,
we will briefly summarize the proceedings as described by Epps and Singleton (1986).
For a more exhaustive description of the calibration, refer to their work.

The tj need to be standardized with an estimate of scale σ̂—Epps and Singleton
(1986) claim that a sufficiently good scale measure for σ̂ is the semi-interquartile range.
As a consequence, the test is carried out with t̃j = tj/σ̂, j = 1, 2.

For each Xkm, a 4 × 1 vector g(Xkm) is created:

g(Xkm) = (cos t1Xkm, sin t1Xkm, cos t2Xkm, sin t2Xkm)′

Let gk contain the real and imaginary parts of the characteristic function of the
sample for both t1 and t2:

gk = n−1
k

nk∑

m=1

g(Xkm)

Let G2 = g1 − g2 be the difference between both vectors. If H0 was true,
√

n1 + n2G2

would be distributed asymptotically as multivariate N(~0,Ω). Epps and Singleton derive
an estimator for the covariance matrix Ω. Let νk = nk/(n1 +n2) be the share of sample
k in the combined sample and

Ŝk =
nk − 1

nk
cov{g(Xkm)}

be the sample covariance matrix of sample k. A sufficient estimator for Ω would then
be

Ω̂ =
1

ν1
Ŝ1 +

1

ν2
Ŝ2

2. They chose normal, uniform, Cauchy, Laplace, symmetric stable, gamma, Poisson, binomial, and
negative binomial distributions.
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The test statistic of the ES test is defined as W2 = (n1 + n2) · G′
2 · Ω̂+ · G2 with Ω̂+

being the generalized inverse of Ω̂. W2 is distributed asymptotically as chi-squared
with r degrees of freedom, where r denotes the rank of Ω̂+. This is how the p-level
of the test can be computed. Roughly spoken, W2 is a measure for the statistical
distance between the empirical characteristic functions of both samples standardized by
the variance–covariance matrices, with the characteristic functions being descriptors for
the distributions underlying the two samples in question.

If the sample size of both observations is small, Epps and Singleton suggest to use a
small-sample correction factor, Ĉ(n1, n2). They conducted simulations and concluded
that W2 can be excessive for small nk. Hence, if each one of the two samples includes
less than 25 observations, a factor of

Ĉ(n1, n2) =
{

1 + (n1 + n2)
−0.45

+ 10.1
(
n−1.7

1 + n−1.7
2

)}−1

should be applied on the test statistic W2. The idea behind Ĉ was to find a transfor-
mation T (W2;n1, n2) = C(n1, n2) · W2 fulfilling sup P{T (W2;n1, n2) ≥ χ2

α} ≤ α, with
χ2

α being the 1−α percentile of the χ2 distribution with four degrees of freedom. Epps
and Singleton estimated the highest value of C(n1, n2) in 1,000-trial simulations with

different α’s and sample sizes. The parameters of the correction factor Ĉ were estimated
to minimize the error C(n1, n2) − Ĉ(n1, n2).

Epps and Singleton compared their test with the Anderson–Darling, the Cramér–
von Mises, and the KS tests by means of computational simulations and came to the
following conclusions:

• If discrete data are used, apply the ES test.

• If continuous data are used, the KS test usually has a lower power than the ES

test.

• Sometimes, the Anderson–Darling and the Cramér–von Mises tests can have a
higher power than the ES test.

3 The escftest command

3.1 Description

We include with this article a Stata implementation of the ES test in the program
escftest. After installation, the new commands escftest and help escftest are
available. In the algorithm described above, both matrix and vector operations are
used. We used a Mata function in the code to accomplish these calculations. The
reader should be aware that Mata was introduced to the Stata software package in
version 9, so the command will refuse to work in versions earlier than 9.
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3.2 Syntax

The syntax of the command to execute the ES characteristic function test is

escftest varname
[
if

] [
in

]
, group(groupvar)

[
t1(#) t2(#)

]

varname specifies the variable to test.

3.3 Options

group(groupvar) is required. It specifies the grouping variable. There must be exactly
two different groups in the specified sample.

t1(#) specifies the parameter t1 as defined by Epps and Singleton (1986). In this
paper, details on this parameter are given in section 2. If omitted, the default is
t1(0.4). It should not be necessary to specify t1().

t2(#) specifies the parameter t2 as defined by Epps and Singleton (1986). In this
paper, details on this parameter are given in section 2. If omitted, the default is
t2(0.8). It should not be necessary to specify t2().

3.4 Saved results

Normally, it should not be necessary to modify t1() or t2(). These parameters should
be modified only if one wants to calibrate the test for a specific task. escftest saves
some of the results of the performed test in r():

Scalars
r(crit val 1) the critical value for the test statistic W2 at a significance level of 0.01
r(crit val 5) the critical value for the test statistic W2 at a significance level of 0.05
r(crit val 10) the critical value for the test statistic W2 at a significance level of 0.1
r(p val) the p-value associated with the actual test statistic W2

r(correction) the small-sample correction factor, C (if applied)
r(t1) the value used for t1 in the empirical characteristic function
r(t2) the value used for t2 in the empirical characteristic function

Macros
r(group1) value of the grouping variable for the first group
r(group2) value of the grouping variable for the second group

4 Some applications

In this section, we compute two examples with the tests mentioned above. The first ap-
plication refers to the numerical example from Epps and Singleton (1986); the data are
taken from a study by Delse and Feather (1968). In this study, the ability of two groups
to control salivation is compared; one group receives a biofeedback stimulus and the
other group does not. The second example is taken from the field of experimental eco-
nomics and applies an intercultural methodology introduced by Goerg and Walkowitz
(2008) on Chinese and Germans.
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First, we take a glance at the example described by Delse and Feather (1968). They
investigate the effect of letting subjects hear a salivation signal and try to control their
salivation. For the study, 20 subjects were equally distributed in two groups. Each
subject was told to try to increase his salivation rate when observing a light signal
on the left side and to decrease it when observing a light signal on the right side. In
the experiment, one of the two groups received a biofeedback stimulus in terms of a
tone (1,000 cycles per second, 0.2 seconds) for each saliva drop collected by a special
apparatus. The other group did not receive such feedback. The data collected are
shown in the table in figure 1. Each observation represents the difference between the
mean number of saliva drops over 13 increase signals and the mean number of drops
over 13 decrease signals. The data are taken from Hollander and Wolfe (1999, 180).3

The quantile–quantile plot in figure 1 already reveals that the data of the two groups
are not identically distributed.

Biofeedback Control
group group
-1.15 -0.35
-0.15 2.55
2.48 1.73
3.25 0.73
3.71 0.35
4.29 2.69
5.00 0.46
7.74 -0.94
8.38 -0.37
8.60 12.07
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Figure 1. Values and quantile–quantile plot of the study by (Delse and Feather 1968)

Before taking a look at a comparison of the results of the ES test with the results
of the KS test, we would like to mention that the numerical example from section 5 of
Epps and Singleton (1986) contains an error that is either a simple typing error or a
programming error: On page 202, the scale measure σ̂ for standardizing tj is stated to
be 1.95. This is not correct. If one calculates σ̂ by hand, it becomes clear that this
value should be 2.05. Christian Rojas,4 who did some research on the ES test, arrived
at the same conclusion. Nevertheless, the result of the numerical example is correct.

The variable salivationDF gives the participant’s mean change rate of salivation
from the Delse and Feather study. The variable groupDF defines the two subject groups
in the study: group one with the biofeedback stimulus and group two without it. Both
groups consist of 10 participants. Let’s take a look at the test results:

3. Epps and Singleton take the data from an earlier edition of the same book.
4. See http://www.umass.edu/resec/faculty/rojas/index.shtml.
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. escftest salivationDF, group(groupDF)

Epps-Singleton Two-Sample Empirical Characteristic Function test

Sample sizes: groupDF = 1 10
groupDF = 2 10
total 20

t1 0.400
t2 0.800

Critical value for W2 at 10% 7.779
5% 9.488
1% 13.277

Test statistic W2 15.141

Ho: distributions are identical
P-value 0.00442

Note: a small sample correction factor of C(10,10) = 0.60140 has been applied
to W2.

The ES test gives the necessary values of the test statistic W2 for significance at 10%,
5%, and 1%. In this example, the test statistic W2 = 15.141 totals to a value much
higher than the necessary 13.277 for significance at the 1% level: the p-level is at 0.44%.
A small-sample correction factor is applied because both observations are smaller than
25.

. ksmirnov salivationDF, by(groupDF) exact

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group D P-value Exact

1: 0.1000 0.905
2: -0.6000 0.027
Combined K-S: 0.6000 0.055 0.035

Because of the small sample size, we apply ksmirnov, exact. The KS test gives
the p-value for the one-sided comparison, once with a smaller group 1 and once with a
smaller group 2. The combined value gives the exact p-value for the two-sided compari-
son. H0 is rejected at a level of 5.5%. This is a much weaker significance level than the
one for the ES test.

The second example is from the field of experimental economics.5 A popular research
question in this field is the comparison of economic behavior across different populations
and decision conditions. Typical characteristics of data obtained by economic exper-
iments are relatively small sample sizes and often the discreteness of attributes. The
last point forbids the application of the KS test. Thus the question of whether behavior
between subject groups differs and by what means is normally determined by the MW

test. In contrast to the ES test, the MW test has a directional alternative hypothesis,
H1, which is that one sample is stochastically larger than the other. On one hand, if
significant results are obtained by the MW test, they include more information than re-
sults from the ES test. On the other hand, if no sample is stochastically larger, the MW

test finds no differences. The following example, where the KS test is not applicable,

5. In contrast to experiments in psychology, participants in experiments by economists receive a payoff
that is determined by the decisions made in the experiment. This is done to ensure monetary
incentives, which economists are interested in.
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illustrates this limit of the MW test and the advantage of the ES test. The features of
data gathered by economic experiments, described above, make the ES test a valuable
tool for this research area where it is casually applied (for example, Henrich [2000],
Eckel and Grossman [1998], and Hoffman, McCabe, and Smith [1996]).

In the experiment by Goerg and Walkowitz (2008), the cooperative behavior of par-
ticipants from different countries is compared. Participants received an initial endow-
ment of 10 Talers.6 Two matched participants had to decide simultaneously and anony-
mously whether to send a part of their initial endowments to the matched player. The
transfer amount had to be an integer between 0 and 10. This transferred amount reached
the matched player doubled. The total payoff for the participant was his or her initial
endowment minus the amount sent to the other player plus the doubled amount sent
from the other player.

A participant who tries to maximize his own payoff would transfer nothing and
hope that the matched player would send something to him. A player who wants to
maximize the collective payoff would send everything and expect the matched player
to transfer everything, too. Thus transferring nothing is understood as no cooperation,
transferring something is understood as gradual cooperation, and transferring every-
thing is understood as full cooperation. The method is introduced in more detail in
Goerg and Walkowitz (2008), where it is applied on participants from Israel and Pales-
tine.

The new and yet unpublished data that is discussed here contains the choices of
20 participants in China and 20 participants in Germany. The variable cooperation

contains the transferred amount between 0 and 10, and the variable country defines
the two groups.

6. A fictional currency used in the experiment, with a fixed exchange rate to Euros.
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Figure 2. Cooperation in China and Germany

The quantile–quantile plot in figure 2 reveals differences between the two samples.
Recall that the participants could choose only integer numbers as transfer amounts.
The discreteness of the observed attribute rules out the application of the KS test to
the data. We will search for quantitative support of this qualitative result by applying
the MW test and the ES test. Let’s start with the MW test:

. ranksum cooperation, by(country)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

country obs rank sum expected

C 20 441.5 410
G 20 378.5 410

combined 40 820 820

unadjusted variance 1366.67
adjustment for ties -28.72

adjusted variance 1337.95

Ho: cooper~n(country==C) = cooper~n(country==G)
z = 0.861

Prob > |z| = 0.3891

The two-sided rank-sum test reveals no significant difference (p = 0.3891) between
the behavior in the two countries. The differences revealed by the quantile–quantile
plot are of a kind that the MW test is not capable of showing. In contrast to this, the
ES test detects more types of deviations than does the MW test. Thus the ES test leads
to a different result:
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. escftest cooperation, group(country)

Epps-Singleton Two-Sample Empirical Characteristic Function test

Sample sizes: country = C 20
country = G 20
total 40

t1 0.400
t2 0.800

Critical value for W2 at 10% 7.779
5% 9.488
1% 13.277

Test statistic W2 8.900

Ho: distributions are identical
P-value 0.06364

Note: a small sample correction factor of C(20,20) = 0.76092 has been applied
to W2.

The ES test finds a significant difference between the distributions of behavior in
the two countries, with a p-value of 0.0636. Obviously, the distribution of cooperative
behavior in the two populations (participants in Germany and participants in China)
differs. In both countries, the experimental conditions were kept identical regarding
stakes, incentives, and distributions of demographic attributes among the participants.
Thus the observed differences are most likely implied by the different cultural back-
grounds.

The rank-sum test could not detect differences between participants from the two
countries. This example impressively demonstrates the importance of the ES test for
situations where discrete data are investigated, and these situations frequently occur in
the field of experimental economics. While the MW test captures only central tendencies,
the ES test can capture distributional characteristics.

5 Conclusions

In this article, we briefly described a powerful alternative to the Kolmogorov–Smirnov
two-sample test and a complement to the Wilcoxon–Mann–Whitney rank-sum test,
namely, the Epps–Singleton characteristic function test. We explained the use of the
Stata implementation and applied the tests on two examples. The first example com-
pared the p-levels of the KS test with those of the ES test and showed that the p-level
of the ES test is far better. The second example showed a situation where the KS test
cannot be applied and the MW test does not lead to significant results.

We provide the community with a Stata implementation of the ES test and hope that
it might be of use. There is still room for future work; neither the Cramér–von Mises
nor the Anderson–Darling two-sample test has been introduced to Stata so far (the
Anderson–Darling goodness-of-fit test has already been adopted to Stata by Royston
[1996]).
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