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Abstract. In regression analysis, the presence of outliers in the dataset can
strongly distort the classical least-squares estimator and lead to unreliable results.
To deal with this, several robust-to-outliers methods have been proposed in the
statistical literature. In Stata, some of these methods are available through the
rreg and qreg commands. Unfortunately, these methods resist only some specific
types of outliers and turn out to be ineffective under alternative scenarios. In this
article, we present more effective robust estimators that we implemented in Stata.
We also present a graphical tool that recognizes the type of detected outliers.
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1 Introduction

The objective of linear regression analysis is to study how a dependent variable is linearly
related to a set of regressors. In matrix notation, the linear regression model is given
by

y = Xθ + ε

where, for a sample of size n, y is the n×1 vector containing the values for the dependent
variable, X is the n×p matrix containing the values for the p regressors, and ε is the n×1
vector containing the error terms. The p × 1 vector θ contains the unknown regression
parameters and needs to be estimated. On the basis of the estimated parameter θ̂, it
is then possible to fit the dependent variable by ŷ = Xθ̂ and compute the residuals
ri = yi − ŷi for i = 1 ≤ i ≤ n. Although θ can be estimated in several ways, the
underlying idea is always to try to get as close as possible to the true value by reducing
the magnitude of the residuals, as measured by an aggregate prediction error. For the
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support.
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440 Robust regression in Stata

well-known ordinary least squares (OLS), this aggregate prediction error is defined as
the sum of squared residuals. The vector of parameters estimated by OLS is then

θ̂OLS = arg min
θ

n∑

i=1

r2
i (θ)

with ri(θ) = yi−θ0−θ1Xi1−· · ·−θpXip for 1 ≤ i ≤ n. This estimation can be performed
in Stata by using the regress command. A drawback of OLS is that by considering
squared residuals, it tends to award an excessive importance to observations with very
large residuals and, consequently, distort parameters’ estimation in case of the existence
of outliers.

The scope of this article is, first, to describe regression estimators that are robust
with respect to outliers and, second, to propose Stata commands to implement them
in practice. The structure of the article is the following: in the next section, we briefly
present the types of outliers that can be found in regression analysis and introduce the
basics of robust regression. We recommend using estimators with a high breakdown
point, which are known to be resistant to outliers of different types. In section 3, we
describe them and provide a sketch of the Stata code we implemented to estimate them
in practice. In section 4, we give an example using the well-known Stata auto.dta

dataset. In section 5, we provide some simulation results to illustrate how the estima-
tors with a high breakdown point outperform the robust estimators available in Stata.
Finally, in section 6, we conclude.

2 Outliers and robust regression estimators

In regression analysis, three types of outliers influence the OLS estimator. Rousseeuw
and Leroy (2003) define them as vertical outliers, bad leverage points, and good leverage

points. To illustrate this terminology, consider a simple linear regression as shown in
figure 1 (the generalization to higher dimensions is straightforward). Vertical outliers
are those observations that have outlying values for the corresponding error term (the y
dimension) but are not outlying in the space of explanatory variables (the x dimension).
Their presence affects the OLS estimation and, in particular, the estimated intercept.
Good leverage points are observations that are outlying in the space of explanatory
variables but that are located close to the regression line. Their presence does not
affect the OLS estimation, but it affects statistical inference because they do deflate the
estimated standard errors. Finally, bad leverage points are observations that are both
outlying in the space of explanatory variables and located far from the true regression
line. Their presence significantly affects the OLS estimation of both the intercept and
the slope.
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Figure 1. Outliers in regression analysis

Edgeworth (1887) realized that because of the squaring of the residuals, OLS becomes
extremely vulnerable to the presence of outliers. To cope with this, he proposed a
method consisting of minimizing the sum of the absolute values of the residuals rather
than the sum of their squares. More precisely, his method defines the L1, or median

regression, estimator as

θ̂L1
= arg min

θ

n∑

i=1

| ri(θ) | (1)

The median regression estimator is available with Stata’s offical qreg command. This
estimator protects against vertical outliers but not against bad leverage points. It has
an efficiency of only 64% at a Gaussian error distribution (see Huber [1981]).

Huber (1964) generalized median regression to a wider class of estimators, called M-
estimators, by considering functions other than the absolute value in (1). This allows an
increase in Gaussian efficiency while keeping robustness with respect to vertical outliers.
An M-estimator is defined as

θ̂M = arg min
θ

n∑

i=1

ρ

{
ri(θ)

σ

}
(2)

where ρ(·) is a loss function, which is even, nondecreasing for positive values and less
increasing than the square function. To guarantee scale equivariance (i.e., indepen-
dence with respect to the measurement units of the dependent variable), residuals are
standardized by a measure of dispersion σ. M-estimators are called monotone if ρ(·) is
convex over the entire domain and redescending if ρ(·) is bounded.
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The practical implementation of M-estimators uses an iteratively reweighted OLS

algorithm. To simplify, suppose that σ is known, and define weights as ωi = ρ(ri/σ)/r2
i .

Then (2) can be rewritten as

θ̂M = arg min
θ

n∑

i=1

ωir
2
i (θ)

which is a weighted OLS estimator. The weights ωi are, however, a function of θ and
are thus unknown. Using an initial estimate θ̃ for θ, the weights can be computed and
serve as the start of an iteratively reweighted OLS algorithm. Unfortunately, the latter
is guaranteed to converge to the global minimum of (2) only for monotone M-estimators,
which are not robust with respect to bad leverage points.

In Stata, the rreg command computes a highly efficient M-estimator. The loss
function used is the Tukey biweight function defined as

ρ(u) =

{
1 −

{
1 −

(
u
k

)2
}3

if |u | ≤ k

1 if |u | > k
(3)

where k = 4.685. The starting value of the iterative algorithm θ̃ is taken to be a
monotone M-estimator with a Huber ρ(·) function:

ρ(u) =

{
1
2 (u)2 if |u | ≤ c
c |u | − 1

2c2 if |u | > c

where c = 1.345. Moreover, to give protection against bad leverage points, observations
associated with Cook distances larger than 1 receive a weight of zero. A command
(mregress) to compute a standard monotone M-estimator with a Huber ρ(·) function
is described in section 6.

Unfortunately, the rreg command does not have the expected robustness properties
for two main reasons. First, Cook distances only manage to identify isolated outliers
and are inappropriate when clusters of outliers exist, where one outlier can mask the
presence of another (see Rousseeuw and van Zomeren [1990]). It can therefore not be
guaranteed to have identification of all leverage points. Second, the initial values for the
iteratively reweighted OLS algorithm are monotone M-estimators that are not robust to
bad leverage points and that may lead the algorithm to converge to a local instead of a
global minimum.

3 Estimators with a high breakdown point

Full robustness can be achieved by tackling the regression problem from a different
perspective. The OLS estimator is based on the minimization of the variance of the
residuals. Hence, because the variance is highly sensitive to outliers, OLS is largely
influenced as well. For this reason, Rousseeuw and Yohai (1984) propose to minimize
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a measure of dispersion of the residuals that is less sensitive to extreme values than
the variance.2 They call this class of estimators the S-estimators. The intuition behind
the method is simple. For OLS, the objective is to minimize the variance, σ̂2, of the
residuals. The latter can be rewritten as 1/n

∑n
i=1 (ri/σ̂)

2
= 1. As stated previously,

the square value can be damaging because it gives a huge importance to large residuals.
Thus, to increase robustness, the square function could be replaced by another loss
function, ρ, that awards less importance to large residuals.3 The estimation problem
would now consist of finding the smallest robust scale of the residuals. This robust
dispersion, denoted by σ̂S , satisfies

1

n

n∑

i=1

ρ

{
ri(θ)

σ̂S

}
= b (4)

where b = E{ρ(Z)} with Z ∼ N(0, 1). The value of θ that minimizes σ̂S is then called
an S-estimator. More formally, an S-estimator is defined as

θ̂S = arg min
θ

σ̂S {r1(θ), . . . , rn(θ)} (5)

where σ̂S is the robust estimator of scale as defined in (4).

The choice of ρ(·) is crucial to have good robustness properties and a high Gaussian
efficiency. The Tukey biweight function defined in (3), with k = 1.547, is a common
choice. This S-estimator resists contamination of up to 50% of outliers; it is said to have
a breakdown point of 50%. Unfortunately, this S-estimator has a Gaussian efficiency of
only 28.7%. If k = 5.182, the Gaussian efficiency rises to 96.6%, but the breakdown point
drops to 10%. To cope with this, Yohai (1987) introduced MM-estimators that combine
a high breakdown point and a high efficiency. These estimators are redescending M-
estimators as defined in (2), but with the scale fixed at σ̂S . So an MM-estimator is
defined as

θ̂MM = arg min
θ

n∑

i=1

ρ

{
ri(θ)

σ̂S

}
(6)

The preliminary S-estimator guarantees a high breakdown point, and the final MM-
estimate guarantees a high Gaussian efficiency. It is common to use a Tukey biweight
ρ(·) function for both the preliminary S-estimator and the final MM-estimator. The
tuning constant k can be set to 1.547 for the S-estimator to guarantee a 50% breakdown
point, and it can be set to 4.685 for the second-step MM-estimator in (6) to guarantee
a 95% efficiency of the final estimator.

2. The least trimmed squares estimator and the least median squares estimator, introduced by
Rousseeuw (1984) rely on the same logic. We programmed these two estimators in Stata and made
them available through the ltsregress and lmsregress commands. ltsregress and lmsregress

are available from the authors upon request.
3. As before, ρ(·) is a function that is even, nondecreasing for positive values, less increasing than the

square with a unique minimum at zero.
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For computing the MM-estimator, the iteratively reweighted OLS algorithm can be
used, taking θ̂S as its initial value. Once the initial S-estimate is computed, θ̂MM

comes at almost no additional computational cost. We programmed an S- and an MM-
estimator in Stata (with Tukey biweight loss function) using the algorithm of Salibian-
Barrera and Yohai (2006). Explicit formulas for the estimators are not available, and it
is necessary to call on numerical optimization to compute them. We present, in the next
section, a sketch of the algorithm we implemented in Stata. The commands to compute
S- and MM-estimators (called sregress and mmregress, respectively) are described in
section 6.

3.1 S-estimator and MM-estimator algorithms

The algorithm implemented in Stata for computing the S-estimator starts by randomly
picking N subsets of p observations (defined as p-subset), where p is the number of
regression parameters to estimate. For each p-subset, the equation of the hyperplane
that fits all points perfectly is obtained, yielding a trial solution of (5). This trial value
is more reliable if all p points are regular observations, such that the p-subset does not
contain outliers. The number N of subsamples to generate is chosen to guarantee that
at least one p-subset without outliers is selected with high probability. As shown in
Salibian-Barrera and Yohai (2006), this can be achieved by taking

N =

⌈
log(1 − Pclean)

log{1 − (1 − α)p}

⌉
(7)

where α is the (maximal) expected proportion of outliers, p is the number of parameters
to estimate, and Pclean is the desired probability to have at least one p-subset without
outliers among the N subsamples.4

For each of the p-subsets, a hyperplane that perfectly fits the p-subset is computed.
Then, for all n observations in the sample, residuals with respect to this hyperplane
are computed, and a scale estimate, σ̂S , is computed from them as in (4). In this way,
scale estimates are obtained for each p-subset, and an approximation for the final scale
estimate, σ̂S , is then given by the trial value that leads to the smallest scale over all
p-subsets. This approximation can be improved further by carrying some refinement
steps that bring the approximation even closer to the solution of (5).

This algorithm is implemented in Stata and can be called either directly using
the sregress command or indirectly using the mmregress command and invoking the
initial option. Once the S-estimator is obtained, the MM-estimator directly follows
by applying the iteratively reweighted OLS algorithm up to convergence. We provide
a Stata command for MM-estimators through the mmregress command. As far as
inference is concerned, standard errors robust to heteroskedasticity (and asymmetric
errors) are computed according to the formulas available in the literature (see, e.g.,
Croux, Dhaene, and Hoorelbeke [2008]).

4. The default values we use in the implementation of the algorithm are α = 0.2 and Pclean = 0.99.
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The need of calling on subsampling algorithms becomes the Achilles’ heel of the
algorithm when several dummy variables are present. Indeed, as stated by Maronna and
Yohai (2000), subsampling algorithms can easily lead to collinear subsamples if various
dummies are among the regressors. To cope with this, Maronna and Yohai (2000)
introduce the MS-estimator that alternates an S-estimator (for continuous variables)
and an M-estimator (for dummy ones) till convergence. This estimator is out of the
scope of this article, and we thus do not elaborate on it here. We nevertheless briefly
describe the Stata command implemented to compute it in practice (msregress). This
estimator can be particularly helpful in the fixed-effects panel-data models, as suggested
by Bramati and Croux (2007).

3.2 Outlier detection

In addition to reducing the importance of outliers on the estimator, robust statistics
are also intended to identify atypical individuals. Once identified, they could be an-
alyzed separately from the bulk of the data. To do so, it is important to recognize
their type. This can be easily achieved by calling on the graphical tool proposed
by Rousseeuw and van Zomeren (1990). This graphical tool is constructed by plot-
ting, on the vertical axis, the robust standardized residuals, defined as ri/σ̂S , with

ri ≡ ri(θ̂
S), to give an idea of outlyingness with respect to the fitted regression plane.

On the horizontal axis, a measure of the (multivariate) outlyingness of the explana-
tory variables is plotted. The latter is measured by Mahalanobis distance defined as
di =

√
(Xi − µ)Σ−1(Xi − µ)′ , where µ is the multivariate location vector, Σ is the co-

variance matrix of the explanatory variables, and Xi is the ith row vector of matrix
X, for 1 ≤ i ≤ n. Obviously, both µ and Σ should be estimated robustly if we want
these distances to resist the presence of outliers. Several methods have been proposed
to robustly estimate the Mahalanobis distances. In Stata, the hadimvo command is
available, but more robust estimates for the covariance matrix (such as the minimum
covariance determinant estimator) are also available. We briefly describe the command
(mcd) to compute the minimum covariance determinant in section 6.

It is possible to set the limits outside which individuals can be considered as outliers.
For the y dimension, we set them to −2.25 and +2.25. These represent the values of
the standard normal that separate the 2.5% remotest area of the distribution from the

central mass. For the x dimension, we set the limit to
√

χ2
p,0.975, motivated by the fact

that the squared Mahalanobis distance is χ2
p distributed under normality.

4 Example

To illustrate the usefulness of the robust methods, we present an example based on the
well-known Stata auto.dta dataset. More specifically, we regress the price of cars on
the following set of characteristics: the mileage (mpg), the headroom (in.), the trunk
space (cu. ft.), the length (in.), the weight (lbs.), the turn circle (ft.), the displacement
(cu. in.), the gear ratio, four dummies identifying the categorical variable repair record
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in 1978, and a foreign dummy identifying whether the car was built in the United States.
We first identify outliers. For this purpose, we call on the graphical tool described in
section 3.2. The resulting plot is pictured in figure 2. This can be easily replicated by
typing the following Stata commands (which are described more precisely in section 6).

. use http://www.stata-press.com/data/r11/auto
(1978 Automobile Data)

. xi: mmregress price mpg headroom trunk length weight turn displacement
> gear_ratio foreign i.rep78, outlier graph label(make)

(output omitted )

Several features emerge. First, the Cadillac Seville is a bad leverage point. Indeed,
it is an outlier in the horizontal as well as in the vertical dimension. This means that
its characteristics are pretty different from those of the bulk of the data and its price
is much higher than it should be according to the fitted model. The Volkswagen Diesel
and the Plymouth Arrow are large good leverage points because they are outlying in the
horizontal dimension but not in the vertical one. This means that their characteristics
are rather different from the other cars but their prices are in accordance with what
the model predicts. Finally, the Cadillac Eldorado, the Lincoln Versailles, the Lincoln
Mark V, the Volvo 260, and some others are standard in their characteristics but are
more expensive than the model would suggest. They correspond to vertical outliers.

Buick Riviera
Cad. Deville

Cad. Eldorado

Cad. Seville

Linc. Continental

Linc. Mark V

Linc. Versailles

Olds 98

Olds Toronado

Plym. Arrow

Audi 5000

Audi Fox

BMW 320i

Datsun 810

VW Dasher

VW Diesel

Volvo 260
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Figure 2. Diagnostic plot of standardized robust residuals versus robust Mahalanobis
distances for the auto.dta dataset

Are these outlying observations sufficient to distort classical estimations? Because
several vertical outliers are present as well as a severe bad leverage point, there is a
serious risk that the OLS estimator becomes strongly attracted by the outliers. To
illustrate this, we compare the results obtained by using the recommended estimator
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with a high breakdown point, mmregress, with those obtained by using OLS (regress),
Huber’s monotonic M-estimator (rreg), and median regression (qreg). MM-estimators
with 70% and with 95% efficiency (for normal errors) are considered. The commands
(used in a do-file) to estimate these models are

. webuse auto, clear

. local exogenous="mpg headroom trunk length weight turn displacement
> gear ratio foreign i.rep78"

. xi: regress price �exogenous�

. xi: qreg price �exogenous�

. xi: rreg price �exogenous�

. xi: mmregress �exogenous�, eff(0.7)

. xi: mmregress �exogenous�, eff(0.95)

The differences are, as expected, important. We present the regression output in
table 1.

(Continued on next page)
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Table 1: Pricing of autos

Auto dataset. Dependent variable: Price in US$

regress qreg rreg MM(0.70) MM(0.95)

Mileage −43.95 −44.45 −68.91 −44.88 −46.74
(0.52) (0.55) (0.92) (−1.67) (1.56)

Headroom −689.40∗ −624.19∗ −739.30∗∗ −311.96∗∗ −440.06∗∗∗
(1.72) (1.71) (2.09) (2.52) (4.10)

Trunk space 74.29 37.50 114.53 186.60∗∗∗ 128.98∗∗∗
(0.74) (0.40) (1.29) (7.10) (3.53)

Length −80.66∗ −48.78 −27.50 −33.74∗∗ 0.03
(1.86) (1.17) (0.72) (2.57) (0.00)

Weight 4.67∗∗∗ 2.89∗∗ 2.59∗ 1.03∗∗∗ 0.37
(3.19) (2.10) (1.99) (5.29) (0.62)

Turn circle −143.71 30.22 −104.26 10.51 −23.79
(1.11) (0.30) (0.91) (0.48) (0.69)

Displacement 12.71 9.79 11.34 2.31 2.51
(1.45) (1.27) (1.46) (0.98) (0.58)

Gear ratio 115.08 92.28 917.19 492.467 370.20
(0.09) (0.08) (0.82) (0.89) (0.99)

Foreign 3064.52∗∗∗ 2496.04∗∗ 2326.91∗∗ −91.66 763.91∗
(2.89) (2.38) (2.48) (0.19) (1.89)

rep78==2 1353.80 −355.92 465.98 5.99 31.45
(0.79) (0.27) (0.31) (0.02) (0.11)

rep78==3 955.44 19.24 488.23 −720.50∗∗∗ −286.70
(0.59) (0.02) (0.34) (2.76) (1.17)

rep78==4 976.63 241.79 813.11 −275.89 390.71
(0.59) (0.18) (0.55) (1.04) (1.49)

rep78==5 1758.00 1325.18 1514.13 606.77∗ 359.01
(0.97) (0.91) (0.95) (1.70) (0.86)

Constant 9969.75 4083.51 2960.68 5352.18∗∗∗ 3495.97
(1.40) (0.60) (0.47) (3.10) (1.43)

Absolute value of t statistics is in parentheses.

Significant at ***1%, **5%, and *10%.

Let’s compare the results. First, headroom, trunk space, and length seem to be
unimportant in explaining prices (at a 5% level) when looking at the OLS, median,
and M-estimators (i.e., regress, qreg, and rreg). However, when the influence of
outliers (and especially of the bad leverage point) is taken into account (i.e., MM(0.7)
column), they turn out to be significantly different to zero. If we consider a more
efficient estimator (i.e., MM(0.95) column), length again becomes insignificant. The
weight variable is flagged as significant by most specifications (though the size of the
effect is very different). The turn, displacement, and gear ratio variables turn out to be
insignificant in all specifications. The foreign dummy is insignificant when using only
the most robust estimators.
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5 Simulations

Several recent articles have proven the theoretical properties of the estimators described
in the previous sections. In this article, we will compare the performances of the Stata
codes we implemented with the previously available robust commands and OLS. To do
so, we run some simulations according to the following setup. We start by creating
a dataset (of size n = 1,000) by randomly generating five independent explanatory
continuous variables (labeled X1, . . . ,X5) and an error term (e) from six independent
univariate normal distributions with mean zero and unit variance. A y variable is then
generated according to the formula yi = β0 +

∑5
j=1 βjXij +ei, where β0 = 0 and βj = 1

for j = 1, . . . , 5. This dataset is called the clean dataset. We then contaminate the
data by randomly replacing 10% of the X1 observations without modifying y. These
contaminated points are generated from a normal distribution with mean 5 and standard
deviation 0.1 and are bad leverage points. We call this the contaminated dataset. We
then repeat this procedure 1,000 times, and each time we estimate the parameters
using OLS, L1, M-estimators, S-estimators, and MM-estimators (with a 95% and a 70%
efficiency). On the basis of all the estimated parameters, we measure the bias (i.e., the
average of the estimated parameters minus the true value) and the mean squared error
(MSE) (i.e., the variance of the estimated parameters plus the square of the bias). The
results are presented in table 2. We do not present the results associated with the clean
sample because all estimation methods lead to comparable and very low biases.

Table 2: Simulated bias and MSE (sample size n = 1,000, 10% of outliers)

Estimation method β1 β2 β3 β4 β5 β0

OLS Bias 0.7149 0.0015 0.0010 0.0002 0.0016 −0.1440
reg MSE 0.5118 0.0017 0.0018 0.0019 0.0018 0.0223
L1 Bias 0.6369 0.0006 0.0013 0.0004 0.0011 −0.1281
qreg MSE 0.4071 0.0026 0.0024 0.0027 0.0027 0.0188
M Bias 0.6725 0.0012 0.0010 0.0005 0.00167 −0.1353
rreg MSE 0.4532 0.0018 0.0018 0.0019 0.0019 0.0200
MM(0.95) Bias 0.6547 0.0011 0.0009 0.0010 0.00167 −0.1318
mmregress MSE 0.4298 0.0018 0.0018 0.0020 0.0020 0.0190
MM(0.7) Bias 0.0867 0.0012 0.0028 −0.0008 −0.0010 −0.0164
mmregress MSE 0.0236 0.0015 0.0015 0.0015 0.0014 0.0024

The results of the simulations clearly show that for this contamination setup, the
least biased estimator among those we considered is the MM-estimator with an efficiency
of 70%. Its bias and MSE are 0.087 and 0.024, respectively, for β1 and −0.016 and 0.002
for β0. As a comparison, the bias and MSE of OLS are 0.715 and 0.512 for β1 and
−0.144 and 0.022 for β0. For the other coefficients, the performances of all estimators
are comparable. It is important to stress that if we set the efficiency of MM to 95%,
its performance in terms of bias worsens too much and would thus not be desirable.
The L1 and M-estimators (computed respectively with the qreg and rreg commands)
behave rather poorly and have a bias and an MSE comparable to that of OLS.
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6 The implemented commands

The mmregress command computes the MM-estimators with a high breakdown point,
described in section 3, and their standard errors. The general syntax for the command
is

mmregress depvar indepvars
[
if

] [
in

] [
, noconstant eff(#)

dummies(dummies) outlier graph label(varname) replic(#) initial
]

The optional parameter eff() fixes the efficiency of the MM-estimator. It can take
any value between 0.287 and 1; the higher its value, the more efficient the MM-estimator.
While the breakdown point of the MM-estimator is always 50%, its bias increases with
its efficiency. Therefore, to have a good compromise between robustness and efficiency
of the MM-estimator, we take eff(0.7) as a default. The dummies() option specifies
which variables are dichotomous. If dummies() is declared, the initial estimator will be
the MS-estimator rather than the S-estimator. Not declaring this option when dummy
variables are present may cause the algorithm for computing the S-estimator to fail (see
section 3.1).

The noconstant option specifies that no constant term has to be considered in
the regression. The outlier option provides robust standardized residuals and robust
Mahalanobis distances. These can be used to construct a diagnostic plot, as discussed
in section 3.2. The graph option calls on this graphical tool for outlier identification.
The label() option specifies the variable that will label the outlier. This option only
works jointly with the graph option. If label() is not declared, the label will be the
observation number.

The replic() option fixes the number of p-subsets to consider in the initial steps
of the algorithm. The user can use (7) to change the value of N in accordance to the
desired level of Pclean or α. The default value for N corresponds to Pclean = 0.99 and
α = 0.2. Finally, the initial option will return as output the initial S-estimator, or the
MS-estimator if the dummies() option is invoked, instead of the final MM-estimator.

The general syntax for the command to compute the S-estimator is

sregress depvar indepvars
[
if

] [
in

] [
, noconstant outlier graph

replic(#)
]

The optional parameters available are a subset of those available in mmregress; their
use is therefore the same as described above. If sregress is called exclusively defining
a dependent variable, the code will return an M-estimator of scale (sometimes called an
S-estimator of scale) and an S-estimator of location of that variable.
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The general syntax for the command to compute the MS-estimator is

msregress depvar indepvars
[
if

] [
in

]
, dummies(dummies)

[
noconstant

outlier graph replic(#)
]

Here again the use of options is comparable to mmregress. The dummies() option is
compulsory and is used to declare which variables among the explanatory are dichoto-
mous.

The general syntax for the command to compute the Huber M-estimator is

mregress depvar indepvars
[
if

] [
in

] [
, noconstant tune(#) level(#)

]

The noconstant option removes the constant, while the tune() option changes the
tuning parameter as in Stata’s rreg command. mregress is only a slight modification
of the rreg command.

The general syntax for the minimum covariance determinant command is

mcd varlist
[
if

] [
in

] [
, e(#) proba(#) trim(#) outlier bestsample raw

setseed(#)
]

The e() and proba() options are used to modify α and Pclean, respectively, in (7);
trim() sets the percentage of trimming desired; outlier calls for robust Mahalanobis
distances and flags outliers; bestsample identifies the observations that have been used
for calculating the robust covariance matrix; raw returns the raw robust covariance ma-
trix estimated classically, but on the sample cleaned of identified outliers; and setseed()

sets the seed. The algorithm for computing the minimum covariance determinant is de-
scribed in Rousseeuw and van Driessen (1999).

7 Conclusion

The strong impact of outliers on the OLS regression estimator has been known for a
long time. Consequently, much literature has been developed to find robust estimators
that cope with the “atypical” observations and have a high breakdown point. At the
same time, the statistical efficiency of the robust estimators needs to remain sufficiently
high. In recent years, it seems that a consensus has emerged to recommend the MM-
estimators as the best-suited estimation method, because they combine a high resistance
to outliers and high efficiency for regression models with normal errors.

On the other hand, robust methods were not often used by applied researchers,
mainly because their practical implementation remained quite cumbersome. Over the
last decade, efficient and relatively fast algorithms for computing robust estimators,
including MM-estimators, were developed. Nowadays, the use of robust statistical
methods has become much more widespread in the applied sciences, like engineering
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and chemistry. By providing the Stata code, we also make robust regression methods
available for the econometrics research community.

In this article, we summarized the properties of the best-known robust estima-
tion procedures and provided Stata commands to implement them. We created the
mmregress command (based on a set of commands that can be run separately if needed);
furthermore, we showed how this estimator outperforms all “robust” estimators avail-
able in Stata by means of a modest simulation study. We hope that this article will
contribute to the development of further robust methods in Stata. In particular, devel-
opment of robust procedures for panel-data and time-series models would be of major
interest for applied economic research. The time-series setting will give rise to new
problems; for example, selecting random p-subsets will not be appropriate because they
break the temporal structure of the data.
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