
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2009)
9, Number 3, pp. 398–421

Implementing weak-instrument robust tests for

a general class of instrumental-variables models

Keith Finlay
Tulane University
New Orleans, LA

kfinlay@tulane.edu

Leandro M. Magnusson
Tulane University
New Orleans, LA

lmagnuss@tulane.edu

Abstract. We present a minimum distance approach for conducting hypothesis
testing in the presence of potentially weak instruments. Under this approach, we
propose size-correct tests for limited dependent variable models with endogenous
explanatory variables such as endogenous tobit and probit models. Addition-
ally, we extend weak-instrument tests for the linear instrumental-variables model
by allowing for variance–covariance estimation that is robust to arbitrary het-
eroskedasticity or intracluster dependence. We invert these tests to construct
confidence intervals on the coefficient of the endogenous variable. We also provide
a postestimation command for Stata, called rivtest, for computing the tests and
estimating confidence intervals.
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1 Introduction
In this article, we present an indirect method for performing hypothesis testing based
on the classical minimum distance approach. This method allows us to develop two ex-
tensions to the current set of weak-instrument robust tests that are available for linear
instrumental-variables (IV) models. The first extension allows one to perform size-
correct inference for a class of limited dependent variable (LDV) models that includes
the endogenous tobit and probit models. The second extension allows size-correct in-
ference with the linear IV model when dealing with covariance matrices with arbitrary
heteroskedasticity or intracluster dependence.

There exists vast literature dealing with inference in the linear IV model when instru-
ments are weak (see Stock, Wright, and Yogo [2002] for a review). When instruments
are weak, point estimators are biased and Wald tests are unreliable. There are several
tests available for linear IV models that have the correct size even when instruments are
weak. These include the Anderson–Rubin (AR) statistic (Anderson and Rubin 1949),
the Kleibergen–Moreira Lagrange multiplier (LM) test (Moreira 2003; Kleibergen 2007),
the overidentification (J) test, and the conditional likelihood-ratio (CLR) test.

Concern about weak identification is not isolated to linear IV models. Identification
issues also arise in the popular class of LDV models with endogenous explanatory vari-
ables. The endogenous tobit and endogenous probit models are two examples of these
models (the ivtobit and ivprobit commands in Stata).

c© 2009 StataCorp LP st0171
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Extending the weak-instrument robust tests from the linear IV case to the LDV mod-
els is not straightforward. In the LDV models, the untested (nuisance) parameters are
not separable from the structural parameters. As such, the orthogonal transformation
that projects nuisance parameters out from the tests in the linear IV is not valid in the
LDV case.

Fortunately, for this particular class of LDV models, the structural model also has a
reduced-form representation. Consequently, inference on the structural parameter can
be conducted indirectly by testing the restrictions on the reduced-form coefficients im-
posed by the underlying relationship between the structural and reduced-form param-
eters. Magnusson (2008a) describes this method of conducting inference under weak
identification as the minimum distance approach. Our proposed tests for the endoge-
nous variable coefficient have the correct size regardless of whether the identification
condition holds.

Working with the reduced-form models also allows us to relax the homoskedastic
assumption used in other implementations of the tests (e.g., the condivreg command
of Moreira and Poi [2003] and Mikusheva and Poi [2006]). This is possible because
the asymptotic behavior of our tests is derived from the reduced-form parameters es-
timator. In the linear IV model, this property allows us to use the heteroskedastic-
robust variance–covariance matrix estimate as the reduced-form parameters covariance
matrix. The same method allows us to deal with covariance matrices with cluster
dependence. Some of these tests are asymptotically equivalent to those proposed by
Chernozhukov and Hansen (2008), who also use a reduced-form approach.

Once we compute the statistical tests, we derive confidence intervals by inverting
them. This guarantees that our confidence intervals have the correct coverage prob-
ability despite the instruments’ strength or weakness. For the linear IV model under
homoskedasticity, the existence of a closed-form solution for confidence intervals has
been shown by Dufour (2003) for the AR test and by Mikusheva (2005) for the LM and
CLR tests. However, their methods do not extend to nonlinear models or models with
nonspherical residuals, so we use a grid search for estimating confidence intervals for
the other models.

Because our tests are not model specific, we propose just one postestimation com-
mand for Stata, called rivtest. The command tests the simple composite hypothesis
H0 : β = β0 against the alternative Ha : β 6= β0 using five statistics: AR, LM, J , the
combination of LM and J , and CLR. The command will also compute the confidence in-
tervals based on these statistics. rivtest can be used after running ivregress, ivreg2,
ivprobit, or ivtobit in Stata with one endogenous variable.

In the next section, we present a brief description of our tests. Then we present a
general algorithm for implementing them. Next we discuss the command syntax of our
postestimation command, rivtest, and provide examples of its use. Finally, we show
results from Monte Carlo simulations we performed using the rivtest command.
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2 Weak-instrument robust tests in LDV models: A min-

imum distance approach

2.1 Setup

We start by considering a class of models that includes both typical two-stage least-
squares models and LDV models. Suppose there exists a model that satisfies the following
structural form representation:

{
y∗

i = xiβ + wiγ + ui

xi = ziπz + wiπw + vi

for i = 1, . . . , n (1)

where y∗
i is a latent endogenous variable and xi is a continuously observed endogenous

explanatory variable; wi and zi are, respectively, vectors of included and excluded instru-
ments with dimensions 1×kw and 1×kz; and the residuals ui and vi are independently
distributed. Rather than observing y∗

i , we observe

yi = f (y∗
i )

where f is a known function. This representation is compatible with the class of LDV

models in this study. For the endogenous tobit model, let dlb and dub be, respectively, the
lower and the upper bound. So, we have yi = dlb if y∗

i ≤ dlb; yi = y∗
i if dlb < y∗

i < dub;
and yi = dub if y∗

i ≥ dub. For the endogenous probit, we have yi = 0 if y∗
i ≤ 0 and

yi = 1 if y∗
i > 0. In particular, when yi = y∗

i we have the well-known linear IV model.

Our goal is to test H0 : β = β0 against Ha : β 6= β0. However, whereas the coefficient
γ can be concentrated out of the linear IV model, this is not possible under a more
general specification, so the available tests are inappropriate.

An unrestricted reduced-form model derived from (1) is
{

y∗
i = ziδz + wiδw + ǫi

xi = ziπz + wiπw + vi

(2)

where ǫi = viβ +ui. The restrictions imposed by the structural model over the reduced-
form parameters give us the following relation:

δz = πzβ (3)

We use (3) to develop our tests on the structural parameter, β, based on the unrestricted
model (2). In this representation, the global identification of β requires that ‖πz ‖ 6= 0.
So as πz approaches zero, the instruments become weaker.

For now, let’s assume that δz and πz are consistently estimated by δ̂z and π̂z. Let’s

also assume that Λ, the asymptotic variance–covariance of
√

n
[
(δ̂z − δz)

′, (π̂z − πz)
′
]′

,

is also consistently estimated by

Λ̂ =

[
Λ̂δzδz

Λ̂δzπz

Λ̂πzδz
Λ̂πzπz

]
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Let’s introduce two more statistics:

Ψ̂β = Λ̂δzδz
− βΛ̂δzπz

− βΛ̂πzδz
+ (β)2Λ̂πzπz

π̂β = π̂z −
(
Λ̂πzδz

− βΛ̂πzπz

)
Ψ̂−1

β

(
δ̂z − π̂zβ

)

The first statistic is an estimate of the asymptotic covariance matrix of
√

n(δ̂z − π̂zβ).
The second statistic is an estimate of πz, whose properties are discussed in Magnusson
(2008a).

2.2 Weak-instrument robust tests

Under H0 : β = β0, our version of the AR test is

ARMD(β0) = n
(
δ̂z − π̂zβ0

)′

Ψ̂−1
β0

(
δ̂z − π̂zβ0

)

d−→ χ2(kz)

where the value inside the parentheses indicates the chi-squared distribution degrees of
freedom. Then we reject H0 at significance level α if ARMD(β0) is greater than the 1−α
percentile of the χ2(kz) distribution.

The ARMD statistic simultaneously tests the value of the structural parameter and
the overidentification restriction. We can make an orthogonal decomposition of the
ARMD test into two statistics, namely, the LMMD and JMD tests. Under the null hy-
pothesis, the LMMD statistic tests the value of the structural parameter given that the
overidentification condition holds, while the JMD statistic tests the overidentification
restriction given the value of β0. They are

LMMD(β0) = n
{

Ψ̂
− 1

2

β0

(
δ̂z − π̂zβ0

)}′

P̂β0

{
Ψ̂

− 1

2

β0

(
δ̂z − π̂zβ0

)}
(4)

JMD(β0) = n
{

Ψ̂
− 1

2

β0

(
δ̂z − π̂zβ0

)}′

M̂β0

{
Ψ̂

− 1

2

β0

(
δ̂z − π̂zβ0

)}
(5)

where

P̂β0
=

(
Ψ̂

− 1

2

β0
π̂β0

) (
Ψ̂

− 1

2

β0
π̂β0

)′

(
π̂
′

β0
Ψ̂−1

β0
π̂β0

)

M̂β0
= Ikz

− P̂β0

and Ikz
is a kz × kz identity matrix. Assuming that some regularity conditions hold

under the null hypothesis, we have

LMMD(β0)
d−→ χ2(1)

JMD(β0)
d−→ χ2(kz − 1)
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independent of whether the instruments are weak (see Magnusson [2008a] for more
details). From (4) and (5), we have

ARMD = LMMD + JMD

It is well-known that the LMMD test suffers from a spurious decline of power at
some regions of the parameter space. In those regions, the JMD test approximates the
ARMD test, which always has discriminatory power. We combine the LMMD and JMD

tests to rule out regions where the LMMD test behaves spuriously. For example, testing
H0 : β = β0 at the 5% significance level could be performed by testing the null at the
4% significance level with the LMMD test and at the 1% significance level with the JMD

test. We reject the null if either KMD or JMD is rejected. We call this combination test
the LM-JMD test.

The minimum distance version of Moreira’s (2003) conditional likelihood-ratio test
is

CLRMD(β0) =
1

2

[
ARMD(β0) − rk(β0)+

√
{ARMD(β0) + rk(β0)}2 − 4JMD(β0)rk(β0)

]

where

rk(β0) = n
(
π̂
′

β0
Ξ̂−1

β0
π̂β0

)

Ξ̂β0
= Λ̂πzπz

−
(
Λ̂πzδz

− β0Λ̂πzπz

)
Ψ̂−1

β0

(
Λ̂δzπz

− β0Λ̂πzπz

)

The asymptotic distribution of the CLRMD is not pivotal and depends on rk(β0). The
critical values of this test are calculated by simulating independent values of χ2(1) and
χ2(kz−1) for a given value of rk(β0). This approach is not satisfactory because accuracy
demands many simulations, which can be computationally intensive. For linear IV

models under homoskedasticity, Andrews, Moreira, and Stock (2007) provide a formula
for computing the p-value function of the CLR test (which is embedded in the condivreg
command). Although this is not the correct p-value function when homoskedasticity is
violated, our simulations indicate that it provides a good approximation.

Two Stata packages currently provide some functionality to perform these tests.
For the linear IV case under homoskedastic residuals, the condivreg command in
Stata provides a set of weak-instrument robust tests (Moreira and Poi 2003; Mikusheva
and Poi 2006). Our command, rivtest, complements condivreg by offering weak-
instrument robust tests for a larger class of models. For nonhomoskedastic residuals,
Baum, Schaffer, and Stillman (2007) provide the AR test in the ivreg2 package. The
degrees of freedom of the AR test depends on the number of instruments and not on the
number of endogenous variables, so its power decreases as one increases the number of
instruments. We complement this package by offering a set of tests that are valid even
with many instruments.
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2.3 Confidence intervals

Confidence intervals for the proposed tests are derived by inverting the statistical tests.
By definition, confidence intervals derived from the ARMD, LMMD, LMMD–JMD, and
CLRMD tests are, respectively,

CARMD

(1−τ) =
{
β0 : ARMD(β0) < χ2

1−τ,kz

}

CLMMD

(1−τ) =
{
β0 : LMMD(β0) < χ2

1−τ,1

}

CLMMD−JMD

(1−τ) =
{
β0 :

[
LMMD(β0) < χ2

1−w1τ,1

]
∩

[
JMD(β0) < χ2

1−w2τ,kz−1

]}

CCLRMD

(1−τ) = {β0 : CLRMD(β0) < c [rk(β0)]}

where τ denotes the significance level, w1 +w2 = 1, and c{rk(β0)} is the 95th percentile
of the distribution of the CLRMD tests conditional on the value of rk(β0).

The weak instrument robust confidence intervals are not necessarily convex or sym-
metric as is the usual Wald-type confidence interval, which includes points two standard
deviations from the estimated coefficient. For example, they can be a union of disjoint
intervals or the real line when the instruments are completely irrelevant. The ARMD

confidence interval can be empty. This occurs when the overidentifying restriction is re-
jected for any value of β. However, the LMMD and CLRMD confidence intervals are never
empty because the continuous updating minimum distance estimate always belongs to
them.1

Dufour (2003) and Mikusheva (2005) provide closed-form solutions for obtaining
confidence intervals in the homoskedastic linear IV model. In particular, Mikusheva, by
solving quadratic inequalities, proposes a numerically simple algorithm for estimating
confidence intervals derived from the LMMD and CLRMD tests. However, their methods
are not generalized to either nonspherical residuals or models with LDV. We employ
their solutions for the homoskedastic linear IV model. In the other models, we use
the grid search method for generating the confidence intervals by testing points in the
parameter space. Points β for which H0 : β = β is not rejected belong in the confidence
interval. The user has the option to choose the interval and the number of points in
the grid search. For the LM-JMD test, the user can select the weight, w1, given to the
LMMD. The default option is w1 = 0.8.

1. The continuous updating minimum distance estimate is the value that minimizes the ARMD test.
It is not numerically equal to the generalized method of moments continuous updating estimate of
Hansen, Heaton, and Yaron (1996).
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3 Generic algorithm for implementing minimum distance

weak-instrument robust tests

The implementation of our weak-instrument robust tests takes advantage of several
built-in functions of Stata. We separate our implementation into two cases: one in
which residuals are homoskedastic and another in which residuals have either arbitrary
heteroskedasticity or intracluster dependence.

3.1 Homoskedastic residuals

Under a homoskedastic assumption, we use the fact that ui = viα + εi, where α =
σ−1

vu σvv. This condition is suitable, for example, if residuals are jointly normally dis-
tributed. Moreover, the assumption allows the computation of the tests by using built-in
functions available in Stata (Magnusson 2008b). The reduced-form (2) becomes

{
y∗

i = ziδz + wiδw + viδv + εi

xi = ziπz + wiπw + vi

(6)

In the above representation, εi and vi are independent by construction. The test algo-
rithm has the following steps:

1. Estimate πz and Λπzπz
by ordinary least squares (OLS). Denote the estimated

values as π̂z and Λ̂πzπz
. Also compute the OLS estimated residuals:

v̂i = xi − ziπ̂z − wiπ̂w

2. Estimate δz and δw by using the following equation:

y∗
i = ziδz + wiδw + v̂iδv + ε̃i

where ε̃i = εi − (v̂i − vi)δv. Denote the estimated values of δz, δw, and δv as δ̂z,

δ̂w, and δ̂v, respectively. For the endogenous probit model, our algorithm fixes
σεε = 1 for normalization, which is a different normalization than the default
option in Stata (σuu = 1) but the same as the Newey two-step estimator (see
[R] ivprobit).

3. Save Γ̂δzδz
, the output of the variance–covariance matrix estimate of δ̂z. This is

not the “correct” variance–covariance of δ̂z because we are not adjusting for the
presence of v̂i.

Using the same notation as in the body of the text, we have

Ψ̂β = Γ̂δzδz
+ (δ̂v − β)2Λ̂πzπz

π̂β = π̂z − (δ̂v − β)2Ψ̂−1
β Λ̂πzπz

Ξ̂β0
= Λ̂πzπz

− (δ̂v − β)2Λ̂πzπz
Ψ̂−1

β Λ̂πzπz
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3.2 Heteroskedastic/clustered residuals

For heteroskedasticity or cluster dependence in the distribution of errors, we consider
just the linear model. Baum, Schaffer, and Stillman (2007) provide an option using a
generalized method of moments approach for autocorrelation- and heteroskedasticity-
robust AR tests in the ivreg2 command. We extend this functionality for the LMMD,
LM-JMD, and CLRMD tests.

The implementation is similar to the homoskedastic case. The reduced-form model
is {

yi = ziδz + wiδw + ei

xi = ziπz + wiπw + vi

We estimate the δz, πz, Λδzδz
, and Λπzπz

by running two separate regressions with
the appropriate robust or cluster options. The covariance term Λπzδz

has the general
sandwich formula

Λ̂πzδz
= A B A′

where A = (Z⊥′

Z⊥)−1 is a kz×kz matrix, Z⊥ = MW Z, and MW = In−W (W ′W )−1W ′,
the matrix that projects Z to the orthogonal space spanned by W . Let’s denote v̂ and
ê as the vectors of OLS residuals. The B matrix is given by:

∑

j

z⊥
′

j v̂j ê
′
jz

⊥
j

For robust standard errors, z⊥j is a kz×1 vector, and v̂j and ûj are scalars. For clustered

standard errors, z⊥j is a kz × nj matrix, and v̂j and ûj are nj × 1 vectors, where nj is
the number of observations in cluster j.

The tests obtained here and by Chernozhukov and Hansen (2008) are closely related.
They work with the following regression model:

yi − Yiβ = Ziγ + ui (7)

A simple t test, γ̂/sbγ , is the same as testing H0 : β = β0, where γ̂ is the OLS estimator
derived from (7) replacing β with β0. Our AR test and the AR test of Chernozhukov and
Hansen (2008) are identical. Our LM test, however, is only asymptotically equivalent to
theirs; they are slightly different in small samples.2

4 The rivtest command

The software package accompanying this article contains a Stata command, rivtest,
to implement the tests discussed above after using the ivregress, ivreg2, ivprobit,
or ivtobit command.

2. A proof is available upon request.
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4.1 Command description

For ivregress and ivreg2, rivtest supports limited-information maximum likeli-
hood and two-stage least-squares models (the liml and 2sls options of ivregress,
respectively), as well as vce(robust) and vce(cluster clustvar) options for variance–
covariance estimation. For ivprobit and ivtobit, rivtest supports all variance–
covariance estimation options except the vce(robust) and vce(cluster clustvar) op-
tions. Weights are allowed as long as they are supported by the appropriate IV command.

rivtest calculates the minimum distance version of the AR test statistic. When
the IV model contains more than one instrumental variable, rivtest also conducts
the minimum distance versions of the CLR test, the LM test, the J overidentification
test, and a combination of the LM multiplier and overidentification tests (LM-J). As a
reference, rivtest also presents the Wald test.

The AR test is a joint test of the structural parameter and the overidentification
restrictions. The AR statistic can be decomposed into the LM statistic, which tests only
the structural parameter, and the J statistic, which tests only the overidentification
restrictions. (This J statistic, evaluated at the null hypotheses, is different from the
Hansen J statistic, which is evaluated at the parameter estimate.) The LM test loses
power in some regions of the parameter space when the likelihood function has a local
extrema or inflection. In the linear IV model with homoskedasticity, the CLR statistic
combines the LM statistic and the J statistic in the most efficient way, thereby testing
both the structural parameter and the overidentification restrictions simultaneously.
The LM-J combination test is another approach for testing the hypotheses simultane-
ously. It is more efficient than the AR test and allows different weights to be put on the
parameter and overidentification hypotheses. The CLR test is the most powerful test
for the linear model under homoskedasticity (within a class of invariant similar tests),
but this result has not been proven yet for other IV-type estimators, so we present all
test results.

rivtest can also estimate confidence intervals based on the AR, CLR, LM, and LM-J

tests. With ivregress there is a closed-form solution for these confidence intervals
only when homoskedasticity is assumed. More generally, rivtest estimates confidence
intervals through test inversion over a grid. The default grid is twice the size of the
confidence interval based on the Wald test. As a reference, rivtest also presents the
Wald confidence interval.

4.2 Syntax

The following is the command syntax for rivtest:

rivtest
[
, null(#) lmwt(#) small ci grid(numlist) points(#)

gridmult(#) usegrid retmat level(#)
]
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4.3 Options

The options for rivtest relate to testing and confidence-interval estimation.

Testing options

null(#) specifies the null hypothesis for the coefficient on the endogenous variable in
the IV model. The default is null(0).

lmwt(#) is the weight put on the LM test statistic in the LM-J test. The default is
lmwt(0.8).

small specifies that small-sample adjustments be made when test statistics are calcu-
lated. The default is given by whatever small-sample adjustment option was chosen
in the IV command.

Confidence-interval options

ci requests that confidence intervals be estimated. By default, these are not estimated
because grid-based test inversion can be time intensive.

grid(numlist) specifies the grid points over which to calculate the confidence sets. The
default grid is centered around the point estimate with a width equal to twice the
Wald confidence interval. That is, if β̂ is the estimated coefficient on the endogenous
variable, σ̂β is its estimated standard error, and 1 − α is the confidence level, then
the default endpoints of the interval over which confidence sets will be calculated
are β̂±2zα/2σ̂β . With weak instruments, this is often too small of a grid to estimate
the confidence intervals. grid(numlist) may not be used with the other two grid
options: points(#) and gridmult(#). If one of the other options is used, only
input from grid(numlist) will be used to construct the grid.

points(#) specifies the number of equally spaced values over which to calculate the
confidence sets. The default is points(100). Increasing the number of grid points
will increase the time required to estimate the confidence intervals, but a greater
number of grid points will improve precision.

gridmult(#) is another way of specifying a grid to calculate confidence sets. This
option specifies that the grid be # times the size of the Wald confidence interval.
The default is gridmult(2).

usegrid forces grid-based test inversion for confidence-interval estimation under the
homoskedastic linear IV model. The default is to use the analytic solution. Under
the other models, grid-based estimation is the only method.

retmat returns a matrix of test results over the confidence-interval search grid. This
matrix can be large if the number of grid points is large, but it can be useful for
graphing confidence sets.
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level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level. Because the LM-J test has no p-value
function, we report whether the test is rejected. Changing level(#) also changes
the level of significance used to determine this result: [100-level(#)]%.

4.4 Saved results

rivtest saves the following in r():

Scalars
r(null) null hypothesis
r(clr p) CLR test p-value
r(clr stat) CLR test statistic
r(ar p) AR test p-value
r(ar chi2) AR test statistic
r(lm p) LM test p-value
r(lm chi2) LM test statistic
r(j p) J test p-value
r(j chi2) J test statistic
r(lmj r) LM-J test rejection indicator
r(rk) rk statistic
r(wald p) Wald test p-value
r(wald chi2) Wald test statistic
r(points) number of points in grid used to estimate confidence sets

Macros
r(clr cset) confidence set based on CLR test
r(ar cset) confidence set based on AR test
r(lm cset) confidence set based on LM test
r(lmj cset) confidence set based on LM-J test
r(wald cset) confidence set based on Wald test
r(inexog) list of instruments included in the second-stage equation
r(exexog) list of instruments excluded from the second-stage equation
r(endo) endogenous variable
r(grid) range of grid used to estimate confidence sets

Matrices
r(citable) table with test statistics, p-values, and rejection indicators for every grid

point over which hypothesis was tested

5 Examples: Married female labor market participation

We demonstrate the use of the rivtest command in a set of applications with the data
from Mroz (1987), available from the Stata web site at
http://www.stata.com/data/jwooldridge/eacsap/mroz.dta. These examples are related
to married female labor supply and illustrate the differences between robust and non-
robust inference when instruments are potentially weak.

5.1 Example 1: Two-stage least squares with unknown heteroskedas-
ticity

In this example, we fit a two-stage least-squares model with Stata’s ivregress com-
mand using the robust variance–covariance estimation option to account for arbitrary
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heteroskedasticity. We regress working hours (hours), on log wages (lwage), other
household income in logs (nwifeinc), years of education (educ), number of children less
than 6 years old (kidslt6), and the number of children at least 6 years old (kidsge6).
As instruments for the wage, we use labor market experience (exper) and its square
(expersq), and father’s and mother’s years of education (fatheduc and motheduc). We
consider the subsample of women who are participating in the labor market and have
strictly positive wages.

. use http://www.stata.com/data/jwooldridge/eacsap/mroz.dta

. ivregress 2sls hours nwifeinc educ age kidslt6 kidsge6 (lwage = exper expersq
> fatheduc motheduc) if inlf==1 , first vce(robust)

First-stage regressions

Number of obs = 428
F( 9, 418) = 10.78
Prob > F = 0.0000
R-squared = 0.1710
Adj R-squared = 0.1532
Root MSE = 0.6655

Robust
lwage Coef. Std. Err. t P>|t| [95% Conf. Interval]

nwifeinc .0057445 .0027375 2.10 0.036 .0003636 .0111255
educ .1127654 .0154679 7.29 0.000 .0823609 .1431699
age -.0053092 .0063134 -0.84 0.401 -.0177191 .0071007

kidslt6 -.066367 .103709 -0.64 0.523 -.2702231 .137489
kidsge6 -.0192837 .0292029 -0.66 0.509 -.0766866 .0381191

exper .0404503 .0151505 2.67 0.008 .0106697 .0702309
expersq -.0007512 .0004056 -1.85 0.065 -.0015485 .000046

fatheduc -.0061784 .0106541 -0.58 0.562 -.0271208 .0147639
motheduc -.016405 .0119691 -1.37 0.171 -.039932 .0071221

_cons -.2273025 .3343392 -0.68 0.497 -.8844983 .4298933

Instrumental variables (2SLS) regression Number of obs = 428
Wald chi2(6) = 18.22
Prob > chi2 = 0.0057
R-squared = .
Root MSE = 1143.2

Robust
hours Coef. Std. Err. z P>|z| [95% Conf. Interval]

lwage 1265.326 473.6747 2.67 0.008 336.9408 2193.711
nwifeinc -8.353995 4.57849 -1.82 0.068 -17.32767 .6196797

educ -148.2865 54.38669 -2.73 0.006 -254.8824 -41.69053
age -10.23769 9.299097 -1.10 0.271 -28.46358 7.98821

kidslt6 -234.3907 181.9979 -1.29 0.198 -591.1001 122.3187
kidsge6 -59.62672 49.24854 -1.21 0.226 -156.1521 36.89865

_cons 2375.395 535.4835 4.44 0.000 1325.867 3424.923

Instrumented: lwage
Instruments: nwifeinc educ age kidslt6 kidsge6 exper

expersq fatheduc motheduc
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. rivtest, ci grid(-1000(10)8000)
Estimating confidence sets over grid points

1 2 3 4 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.................................................. 850
.................................................. 900
.
Weak instrument robust tests and confidence sets for linear IV with robust VCE
H0: beta[hours:lwage] = 0

Test Statistic p-value 95% Confidence Set

CLR stat(.) = 27.27 Prob > stat = 0.0000 [ 810, 5330]
AR chi2(4) = 32.61 Prob > chi2 = 0.0000 [ 770, 6930]
LM chi2(1) = 21.22 Prob > chi2 = 0.0000

[ -830, -670] U [ 790, 5460]
J chi2(3) = 11.39 Prob > chi2 = 0.0098

LM-J H0 rejected at 5% level [ 760, 5940]

Wald chi2(1) = 7.14 Prob > chi2 = 0.0076 [ 336.941, 2193.71]

Note: Wald test not robust to weak instruments. Confidence sets estimated for
901 points in [-1000,8000].

The confidence intervals derived from weak-instrument robust tests are wider than
the Wald confidence interval, indicating that instruments are not strong and that point
estimates are biased. The negative values of the LM confidence set are discarded in the
LM-J confidence interval, indicating the spurious behavior of the LM test in that part of
the parameter space. The above result suggests a positive effect of wages on the labor
supply, but rivtest is unable to predict the magnitude of the effect.

5.2 Example 2: Endogenous probit

Next we fit a model of labor force participation for the married women in the sample.
The binary variable inlf equals one if the woman is in the labor market and zero
otherwise. The endogenous explanatory variable is nonwife household income, which
is instrumented by husband’s hours of work (hushrs), father’s education, mother’s
education, and the county-level unemployment rate (unem). As exogenous variables,
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we include education, years of labor market experience, experience squared, number of
children less than 6 years old, number of children at least 6 years old, and a dummy for
whether the individual lives in a metropolitan area (city).

. ivprobit inlf educ exper expersq kidslt6 kidsge6 city (nwifeinc = hushrs
> fatheduc motheduc unem), twostep first
Checking reduced-form model...
First-stage regression

Source SS df MS Number of obs = 753
F( 10, 742) = 16.00

Model 18057.3855 10 1805.73855 Prob > F = 0.0000
Residual 83739.7301 742 112.856779 R-squared = 0.1774

Adj R-squared = 0.1663
Total 101797.116 752 135.368505 Root MSE = 10.623

nwifeinc Coef. Std. Err. t P>|t| [95% Conf. Interval]

hushrs .0029782 .0006719 4.43 0.000 .0016591 .0042972
fatheduc .1760206 .1385697 1.27 0.204 -.0960147 .4480558
motheduc -.1395621 .1458037 -0.96 0.339 -.425799 .1466749

unem .1652976 .1283373 1.29 0.198 -.0866498 .417245
educ 1.218966 .2011015 6.06 0.000 .8241703 1.613762
exper -.3562876 .1406571 -2.53 0.012 -.632421 -.0801543

expersq .0031554 .0045229 0.70 0.486 -.0057239 .0120346
kidslt6 -.3788863 .7624489 -0.50 0.619 -1.8757 1.117928
kidsge6 -.1729039 .3105805 -0.56 0.578 -.782625 .4368172

city 4.949449 .8419922 5.88 0.000 3.296478 6.602419
_cons -2.916913 2.883583 -1.01 0.312 -8.577865 2.744039

Two-step probit with endogenous regressors Number of obs = 753
Wald chi2(7) = 136.69
Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

nwifeinc -.0631912 .0292417 -2.16 0.031 -.1205038 -.0058785
educ .2148807 .0473224 4.54 0.000 .1221304 .307631
exper .1067194 .0225831 4.73 0.000 .0624574 .1509813

expersq -.0022201 .0006423 -3.46 0.001 -.003479 -.0009611
kidslt6 -.5794973 .1113274 -5.21 0.000 -.797695 -.3612996
kidsge6 .1284411 .0429235 2.99 0.003 .0443126 .2125696

city .1421479 .1805589 0.79 0.431 -.2117411 .4960368
_cons -2.038166 .3551659 -5.74 0.000 -2.734279 -1.342054

Instrumented: nwifeinc
Instruments: educ exper expersq kidslt6 kidsge6 city

hushrs fatheduc motheduc unem

Wald test of exogeneity: chi2(1) = 3.05 Prob > chi2 = 0.0808

(Continued on next page)
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. rivtest, ci grid(-.2(.001).6)
Estimating confidence sets over grid points

1 2 3 4 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.
Weak instrument robust tests and confidence sets for IV probit
H0: beta[inlf:nwifeinc] = 0

Test Statistic p-value 95% Confidence Set

CLR stat(.) = 5.82 Prob > stat = 0.0249 [ -.172, -.01]
AR chi2(4) = 9.50 Prob > chi2 = 0.0498 [ -.197, -.001]
LM chi2(1) = 4.75 Prob > chi2 = 0.0293

[ -.177, -.008] U [ .17, .534]
J chi2(3) = 4.75 Prob > chi2 = 0.1913

LM-J H0 rejected at 5% level [ -.186, -.005]

Wald chi2(1) = 4.67 Prob > chi2 = 0.0307 [-.120504,-.005879]

Note: Wald test not robust to weak instruments. Confidence sets estimated for
801 points in [-.2,.6].

In the endogenous probit model, the rivtest command uses the normalization of
Newey’s minimum chi-squared estimator, σε = 1 in (6), which is different from the de-
fault normalization used in maximum likelihood estimation, σu = 1 in (1) (see [R] ivpro-

bit for further explanation). Therefore, the confidence intervals produced by rivtest

and the maximum likelihood version of ivprobit are not comparable.

In this example, although one instrument, husband’s hours of work, has a first-stage
t statistic greater than 4, the confidence intervals produced from the weak-instrument
tests are significantly larger than the nonrobust Wald confidence interval; for example,
the LM-J confidence interval is 50% larger than the Wald confidence interval. Thus the
presence of only one strong instrument in the first stage among other weaker ones does
not imply that classical inference is correct.
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5.3 Example 3: Endogenous tobit

In the following example, we fit an endogenous tobit model with Stata’s ivtobit com-
mand. We regress hours of work, including the many observations in which the woman
does not supply labor, on the same regressors as in the previous example.

. ivtobit hours educ exper expersq kidslt6 kidsge6 city (nwifeinc = hushrs
> fatheduc motheduc unem), ll(0) first nolog

Tobit model with endogenous regressors Number of obs = 753
Wald chi2(7) = 173.12

Log likelihood = -6686.3386 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

hours
nwifeinc -71.02316 33.59912 -2.11 0.035 -136.8762 -5.170087

educ 183.002 51.47165 3.56 0.000 82.11939 283.8846
exper 121.0376 23.65995 5.12 0.000 74.66493 167.4102

expersq -2.478807 .623252 -3.98 0.000 -3.700358 -1.257255
kidslt6 -639.99 116.5606 -5.49 0.000 -868.4446 -411.5353
kidsge6 74.23684 41.79029 1.78 0.076 -7.670611 156.1443

city 187.9859 194.1849 0.97 0.333 -192.6095 568.5814
_cons -1436.843 351.9196 -4.08 0.000 -2126.593 -747.0931

nwifeinc
educ 1.284978 .198927 6.46 0.000 .8950883 1.674868
exper -.368858 .1399175 -2.64 0.008 -.6430913 -.0946248

expersq .0033886 .0044934 0.75 0.451 -.0054183 .0121955
kidslt6 -.3558916 .75725 -0.47 0.638 -1.840074 1.128291
kidsge6 -.1665826 .308437 -0.54 0.589 -.771108 .4379429

city 4.833468 .8349314 5.79 0.000 3.197033 6.469904
hushrs .0027375 .0007263 3.77 0.000 .001314 .0041611

fatheduc .1481241 .1277639 1.16 0.246 -.1022886 .3985368
motheduc -.2084148 .1309959 -1.59 0.112 -.465162 .0483325

unem .2506685 .1163957 2.15 0.031 .022537 .4787999
_cons -2.883293 2.871029 -1.00 0.315 -8.510407 2.743821

/alpha 57.91175 34.02567 1.70 0.089 -8.777325 124.6008
/lns 7.062261 .0372561 189.56 0.000 6.989241 7.135282
/lnv 2.356454 .02581 91.30 0.000 2.305867 2.40704

s 1167.081 43.48089 1084.897 1255.491
v 10.55346 .2723849 10.03287 11.10106

Instrumented: nwifeinc
Instruments: educ exper expersq kidslt6 kidsge6 city

hushrs fatheduc motheduc unem

Wald test of exogeneity (/alpha = 0): chi2(1) = 2.90 Prob > chi2 = 0.0888

Obs. summary: 325 left-censored observations at hours<=0
428 uncensored observations

0 right-censored observations
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. rivtest, ci points(500) gridmult(14)
Estimating confidence sets over grid points

1 2 3 4 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500

Weak instrument robust tests and confidence sets for IV Tobit
H0: beta[hours:nwifeinc] = 0

Test Statistic p-value 95% Confidence Set

CLR stat(.) = 5.35 Prob > stat = 0.0315 [-176.335, -10.053]
AR chi2(4) = 11.53 Prob > chi2 = 0.0212 [-154.164,-17.4433]
LM chi2(1) = 3.73 Prob > chi2 = 0.0535

[-202.201, 1.03251] U [ 122.973, 813.968]
J chi2(3) = 7.81 Prob > chi2 = 0.0502

LM-J H0 not rejected at 5% level [-216.982, 4.72767]

Wald chi2(1) = 4.47 Prob > chi2 = 0.0345 [-136.876,-5.17009]

Note: Wald test not robust to weak instruments. Confidence sets estimated for
500 points in [-992.966, 850.92].

After the rivtest command, we have requested two rivtest options related to
confidence estimation: points(500) and gridmult(14), which specify that confidence
set estimation should be performed on a grid of 500 points over a width of 14 times the
Wald confidence interval (centered around the IV point estimate).3

Here we obtain similar results to the ones in the endogenous probit example. While
the estimated confidence sets are generally consistent with a negative effect of nonwife
income on labor supply, the estimated confidence sets from the weak-instrument tests
are wider than the Wald confidence interval.

6 Monte Carlo simulations

To show the performance of the tests, we perform Monte Carlo simulations of the
rivtest command with linear IV, IV probit, and IV tobit. We show simulations from
small (N = 200) samples, but results were qualitatively similar with larger samples. We
performed simulations with both weak (πz = 0.1) and nonweak (πz = 1) instruments.
The coefficient β is 0.5 and the excluded instruments are drawn from independent stan-
dard normal distributions and are the same for all simulations. Finally, we experimented

3. Calculation of the test statistics is almost instantaneous, but grid-based confidence-interval esti-
mation takes time (increasing linearly with the number of grid points). In the IV tobit example,
the command required about 2 seconds for 100 grid points and 8 seconds for 500 points.
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with three levels of correlation between the error terms in the two equations (ρ): 0.1
for low levels of simultaneity, 0.5 for moderate simultaneity, and 0.8 for a high degree
of simultaneity. For each Monte Carlo experiment, we generated 5,000 simulations and
computed the rejection probability under the true null hypothesis. All simulations were
performed in Stata with the built-in regression commands with our rivtest command.4

Table 1 shows the results of Monte Carlo simulations for the linear IV model under
homoskedasticity and arbitrary heteroskedasticity. Panel A shows the results when the
errors are homoskedastic. Here we see that the Wald test does not have the correct size
when the instrument is weak for all different degrees of simultaneity. For example, with
a highly correlated interequation error (ρ = 0.8), the Wald test incorrectly rejected the
true parameter in 44.94% of the simulations.

Panel B shows the results when the errors are arbitrarily heteroskedastic.5 The per-
formance of the Wald test with weak instruments (π = 0.1) is similar to the previous
case: it overrejects the null hypothesis when the errors in the two equations are mod-
erately or highly correlated (ρ = 0.5 or ρ = 0.8), and underrejects the null hypothesis
when the simultaneity is low (ρ = 0.1). For the case of strong instruments (π = 1), the
tests have similar nominal sizes.

4. The Monte Carlo simulations include five instruments excluded from the second-stage equation,
but only one of the instruments has a nonzero coefficient in the first stage. In the tables, we refer to
this coefficient as π. Also, two control variables entered the model, including a vector of ones. The
error terms were drawn from a bivariate standard normal distribution with correlation coefficient ρ.

5. We generated this heteroskedasticity by multiplying homoskedastic errors by an independently
drawn uniform random variable between zero and two—separately for each equation error.
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Table 1. Size (in percent) for testing H0 : β = 0.5 at the 5% significance level in the
linear IV model under homoskedasticity and arbitrary heteroskedasticity

Models Test size
Simulation parameters Rejection rate for tests (percent)

A. 2SLS with homoskedasticity

N π ρ CLR AR LM J LM-J Wald

200 0.1 0.8 5.34 5.40 5.34 5.30 5.62 44.94
(0.32) (0.32) (0.32) (0.32) (0.33) (0.70)

200 0.1 0.5 5.22 5.08 5.42 5.48 5.38 13.28
(0.31) (0.31) (0.32) (0.32) (0.32) (0.48)

200 0.1 0.1 5.84 5.52 6.00 5.02 5.56 0.90
(0.33) (0.32) (0.34) (0.31) (0.32) (0.13)

200 1 0.8 5.06 5.38 5.08 5.40 5.28 5.68
(0.31) (0.32) (0.31) (0.32) (0.32) (0.33)

200 1 0.5 4.64 5.34 4.68 5.36 4.94 4.96
(0.30) (0.32) (0.30) (0.32) (0.31) (0.31)

200 1 0.1 5.32 5.52 5.34 5.10 5.46 5.10
(0.32) (0.32) (0.32) (0.31) (0.32) (0.31)

B. 2SLS with arbitrary heteroskedasticity

N π ρ CLR AR LM J LM-J Wald

200 0.1 0.8 6.34 6.68 6.08 6.42 6.16 36.66
(0.34) (0.35) (0.34) (0.35) (0.34) (0.68)

200 0.1 0.5 6.60 6.72 6.18 6.58 6.22 11.60
(0.35) (0.35) (0.34) (0.35) (0.34) (0.45)

200 0.1 0.1 6.80 6.46 6.30 6.44 6.56 0.84
(0.36) (0.35) (0.34) (0.35) (0.35) (0.13)

200 1 0.8 6.26 6.84 6.22 5.92 6.76 6.20
(0.34) (0.36) (0.34) (0.33) (0.36) (0.34)

200 1 0.5 5.70 6.46 5.72 6.36 6.42 5.38
(0.33) (0.35) (0.33) (0.35) (0.35) (0.32)

200 1 0.1 6.06 6.32 6.02 6.28 6.12 5.08
(0.34) (0.34) (0.34) (0.34) (0.34) (0.31)

Note: Simulation standard errors are in parentheses.

In table 2, we present the result from some Monte Carlo simulations for the linear IV

model when the errors have intracluster dependence.6 We experimented with different
combinations of overall sample sizes (N), number of clusters (G), and resulting clus-
ter sizes (Mg). In general, asymptotics related to cluster–robust variance–covariance
estimation apply only to the case when the cluster sample sizes are small and the num-

6. Within clusters, errors were drawn from a multivariate normal distribution with a nondiagonal co-
variance matrix. The off-diagonal blocks are multiplied by the cross-equation correlation coefficient.
Across clusters, the errors are independent.
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ber of clusters goes to infinity. In our simulations, we find that this is true for the
weak-instrument robust tests as well.

Table 2. Size (in percent) for testing H0 : β = 0.5 at the 5% significance level in the
linear IV model with intracluster-dependent errors

Models Test size
Simulation parameters Rejection rate for tests (percent)

N G Mg π ρ CLR AR LM J LM-J Wald

400 100 4 0.1 0.8 6.44 6.52 5.96 6.20 6.28 1.12
(0.35) (0.35) (0.33) (0.34) (0.34) (0.15)

400 100 4 0.1 0.5 6.88 7.08 6.34 6.20 6.66 1.10
(0.36) (0.36) (0.34) (0.34) (0.35) (0.14)

400 100 4 0.1 0.1 6.82 7.20 6.42 6.46 6.54 0.98
(0.36) (0.37) (0.35) (0.35) (0.35) (0.14)

400 100 4 1 0.8 6.30 7.16 6.22 6.76 6.76 4.78
(0.34) (0.36) (0.34) (0.36) (0.36) (0.30)

400 100 4 1 0.5 5.98 7.16 5.96 6.84 6.22 4.86
(0.34) (0.36) (0.33) (0.36) (0.34) (0.30)

400 100 4 1 0.1 6.26 7.08 6.22 6.48 6.90 4.94
(0.34) (0.36) (0.34) (0.35) (0.36) (0.31)

500 50 10 0.1 0.8 8.46 8.74 7.68 7.18 8.64 1.50
(0.39) (0.40) (0.38) (0.37) (0.40) (0.17)

500 50 10 0.1 0.5 7.88 8.04 7.26 6.94 7.94 1.12
(0.38) (0.38) (0.37) (0.36) (0.38) (0.15)

500 50 10 0.1 0.1 8.56 8.72 7.66 7.46 8.62 1.38
(0.40) (0.40) (0.38) (0.37) (0.40) (0.14)

500 50 10 1 0.8 6.90 8.50 6.92 7.90 7.74 4.62
(0.36) (0.39) (0.36) (0.38) (0.38) (0.30)

500 50 10 1 0.5 6.98 8.40 6.98 7.38 7.98 5.05
(0.36) (0.39) (0.36) (0.37) (0.38) (0.31)

500 50 10 1 0.1 7.82 8.94 7.86 7.66 8.70 4.98
(0.38) (0.40) (0.38) (0.38) (0.40) (0.31)

Note: Simulation standard errors are in parentheses.

In the first six simulations, with 400 observations split into 100 clusters, the weak-
instrument robust tests slightly overreject the null hypothesis, having a nominal size
between 5% and 8%. This holds with weak or nonweak instruments. The Wald test,
however, has a less predictable pattern; it consistently underrejects when instruments
are weak but has the correct size when instruments are not weak. In the second six
simulations, with 500 observations split into 50 clusters (an example consistent with
many applications that use cross-sectional data from U.S. states), the weak-instrument
robust tests also overreject, but their performance is still closer to the correct size than
the Wald tests when instruments are weak.
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We also conducted simulations with larger and smaller numbers of clusters and dif-
ferent numbers of observations within cluster. We found that the number of clusters is
the most important element in determining the rejection probability of the tests. The
overrejection decreases as the number of clusters increases.7 We recommend bootstrap-
ping the test to find appropriate critical values when the number of clusters is small
(less than 50). A discussion of techniques that work well in the single equation linear
model can be found in Cameron, Gelbach, and Miller (2008).

In table 3, we present the results from Monte Carlo simulations for the endogenous
probit and tobit models (panels A and B, respectively). To avoid having to rescale
the maximum likelihood test in the endogenous probit model, we let the population
parameter, β, equal zero.8

7. Results are available upon request.
8. When β = 0, we have β/σu = β/σε = 0 for positive values of σu and σε.
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Table 3. Size (in percent) for testing H0 : β = 0 at the 5% significance level in the
endogenous probit model and H0 : β = 0.5 at the 5% significance level in the endogenous
tobit model

Models Test size
Simulation parameters Rejection rate for tests (percent)

A. IV probit (β = 0)
N π ρ CLR AR LM J LM-J Wald
200 0.1 0.8 3.58 3.52 4.59 4.07 4.01 32.95

(0.26) (0.26) (0.30) (0.28) (0.28) (0.67)
200 0.1 0.5 3.99 3.93 5.03 4.49 4.77 41.94

(0.28) (0.28) (0.31) (0.29) (0.30) (0.70)
200 0.1 0.1 4.90 4.70 5.24 4.68 4.90 45.17

(0.31) (0.30) (0.32) (0.30) (0.31) (0.70)
200 1 0.8 3.94 3.88 3.96 4.72 3.82 5.12

(0.28) (0.27) (0.28) (0.30) (0.27) (0.31)
200 1 0.5 4.68 4.88 4.66 4.90 4.38 5.68

(0.30) (0.30) (0.30) (0.31) (0.29) (0.33)
200 1 0.1 5.24 5.10 5.26 5.32 5.16 6.18

(0.32) (0.31) (0.32) (0.32) (0.31) (0.34)

B. IV tobit

N π ρ CLR AR LM J LM-J Wald
200 0.1 0.8 5.18 5.38 5.24 5.16 5.06 18.10

(0.31) (0.32) (0.32) (0.31) (0.31) (0.54)
200 0.1 0.5 5.34 5.50 5.16 5.44 5.24 7.20

(0.32) (0.32) (0.31) (0.32) (0.32) (0.37)
200 0.1 0.1 6.28 5.86 6.02 5.36 6.10 0.74

(0.34) (0.33) (0.34) (0.32) (0.34) (0.12)
200 1 0.8 5.12 5.22 5.10 5.40 5.22 5.14

(0.31) (0.31) (0.31) (0.32) (0.31) (0.31)
200 1 0.5 5.30 5.66 5.24 5.26 5.44 5.20

(0.32) (0.33) (0.32) (0.32) (0.32) (0.31)
200 1 0.1 5.16 5.84 5.26 5.72 5.26 5.04

(0.31) (0.33) (0.32) (0.33) (0.32) (0.31)

Note: Simulation standard errors are in parentheses.

(Continued on next page)
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With any value of the simultaneity parameter, we find that the Wald test performs
poorly when the instruments are weak (π = 0.1) in both the endogenous probit and tobit
models. Surprisingly, the rejection probability for the Wald test in the endogenous probit
model with weak instruments is above 30% independent of the degree of simultaneity,
which contrasts with patterns observed in the linear IV and endogenous tobit models.9

Regardless of the strength or weakness of the instruments, our tests are estimated to
have rejection rates between 3.5% and 6.3%, close to the correct size of 5%.
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